convolution_layer.cpp
56.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <opencv2/core/utils/logger.hpp>
#include "opencv2/core/hal/hal.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <iostream>
#include <numeric>
namespace cv
{
namespace dnn
{
#if CV_SIMD
static inline void v_expand_mul_add(const v_int8x16& a, const v_int8x16& b,
v_int32x4& out0, v_int32x4& out1, v_int32x4& out2, v_int32x4& out3)
{
v_int16x8 a0, a1, b0, b1;
v_expand(a, a0, a1);
v_expand(b, b0, b1);
v_int32x4 t0, t1;
v_mul_expand(a0, b0, t0, t1);
out0 += t0; out1 += t1;
v_mul_expand(a1, b1, t0, t1);
out2 += t0; out3 += t1;
}
#endif
class BaseConvolutionLayerInt8Impl : public ConvolutionLayerInt8
{
public:
BaseConvolutionLayerInt8Impl(const LayerParams ¶ms)
{
setParamsFrom(params);
getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations, padMode, adjust_pads);
numOutput = params.get<int>("num_output");
int ngroups = params.get<int>("group", 1);
CV_Assert(numOutput % ngroups == 0);
input_zp = params.get<int>("input_zeropoint");
output_zp = params.get<int>("zeropoints");
output_sc = params.get<float>("scales");
if (kernel_size.size() == 2) {
kernel = Size(kernel_size[1], kernel_size[0]);
stride = Size(strides[1], strides[0]);
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != pads_end[i])
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
}
pad = Size(pads_begin[1], pads_begin[0]);
dilation = Size(dilations[1], dilations[0]);
adjustPad.height = adjust_pads[0];
adjustPad.width = adjust_pads[1];
}
for (int i = 0; i < adjust_pads.size(); i++) {
CV_Assert(adjust_pads[i] < strides[i]);
}
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
// blobs[0] - Weights (INT8)
// blobs[1] - Biases (INT32)
// blobs[2] - Multipliers for convolution output stage (FP32)
CV_Assert(!inputs.empty() && blobs.size() == 3);
MatSize weightShape = blobs[0].size;
CV_Assert(inputs[0].dims == outputs[0].dims);
if (weightShape.dims() == 3)
{
kernel_size.assign(1, kernel_size[0]);
strides.assign(1, strides[0]);
dilations.assign(1, dilations[0]);
pads_begin.assign(1, pads_begin[0]);
pads_end.assign(1, pads_end[0]);
}
CV_Assert(weightShape.dims() == kernel_size.size() + 2);
for (int i = 0; i < kernel_size.size(); i++) {
CV_Assert(weightShape[i + 2] == kernel_size[i]);
}
const Mat &input = inputs[0];
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || input.dims == 4 || input.dims == 5) && input.type() == CV_8S);
for (size_t i = 0; i < outputs.size(); i++)
{
CV_Assert(inputs[i].type() == input.type());
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]);
for (int j = 0; j < inputs[i].dims; j++) {
CV_Assert(inputs[i].size[j] == input.size[j]);
}
}
std::vector<int> inpShape;
std::vector<int> outShape;
for (int i = 2; i < inputs[0].dims; i++) {
inpShape.push_back(inputs[0].size[i]);
outShape.push_back(outputs[0].size[i]);
}
getConvPoolPaddings(inpShape, kernel_size, strides, padMode, pads_begin, pads_end);
if (pads_begin.size() == 2) {
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != pads_end[i])
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
}
pad = Size(pads_begin[1], pads_begin[0]);
}
}
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
bool is1x1() const
{
return (kernel.height == 1 && kernel.width == 1) &&
(stride.height == 1 && stride.width == 1) &&
(dilation.height == 1 && dilation.width == 1);
}
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
{
Mat w, b;
top->getScaleShift(w, b);
if (w.empty() && b.empty())
return false;
CV_Assert((w.empty() || w.type() == CV_32F) &&
(b.empty() || b.type() == CV_32F));
float new_sc;
int new_zp;
top->getScaleZeropoint(new_sc, new_zp);
fuseWeights(w, b, new_sc);
output_sc = new_sc;
output_zp = new_zp;
return true;
}
virtual void fuseWeights(const Mat& w_, const Mat& b_, const float& new_sc) = 0;
};
//TODO: simultaneously convolution and bias addition for cache optimization
class ConvolutionLayerInt8Impl CV_FINAL : public BaseConvolutionLayerInt8Impl
{
public:
enum { VEC_ALIGN = 32, DFT_TYPE = CV_8S };
Mat weightsMat;
std::vector<int> biasvec;
std::vector<float> outputMultiplier;
Mat activationLUT;
Ptr<ActivationLayerInt8> activ;
ConvolutionLayerInt8Impl(const LayerParams ¶ms) : BaseConvolutionLayerInt8Impl(params){}
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
{
CV_Assert(!blobs.empty());
int dims = inpShape.size();
int inpD = dims == 5 ? inpShape[2] : 1;
int inpH = inpShape[dims - 2];
int inpW = inpShape.back();
int inpGroupCn = blobs[0].size[1];
int ksize = inpGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
1, std::multiplies<size_t>());
return shape(inpD * inpH * inpW, ksize);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
size_t ksize = kernel_size.size();
// Only default backend and Conv1D/Conv2D/Conv3D are supported
return backendId == DNN_BACKEND_OPENCV && ksize >= 1 && ksize <= 3;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(!blobs.empty());
const int* weightShape = blobs[0].size.p;
CV_Assert(blobs[1].total() == (size_t)weightShape[0]);
internals.clear();
CV_Assert(inputs.size() != 0);
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
int outCn = weightShape[0];
std::vector<int> outShape;
outShape.push_back(inputs[0][0]);
outShape.push_back(outCn);
int inpCn = inputs[0][1];
if (padMode.empty())
{
for (int i = 0; i < inpShape.size(); i++)
outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1);
}
else
{
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape);
}
int ngroups = inpCn / weightShape[1];
if (ngroups == 0 || ngroups * weightShape[1] != inpCn)
CV_Error(Error::StsError, format("Number of input channels should "
"be multiple of %d but got %d", weightShape[1], inpCn));
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
outputs.resize(1, outShape);
return false;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
BaseConvolutionLayerInt8Impl::finalize(inputs_arr, outputs_arr);
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
// use vectorized (i.e. with intrinsics) loops without tail processing
Mat wm = blobs[0].reshape(1, numOutput);
if( wm.step1() % VEC_ALIGN != 0 )
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
wm_padding.setTo(Scalar::all(0));
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
wm.copyTo(wm_aligned);
wm = wm_aligned;
}
weightsMat = wm;
Mat biasMat = blobs[1];
biasvec.resize(numOutput+2);
Mat outMult = blobs[2];
outputMultiplier.resize(numOutput+2);
for(int i = 0; i < numOutput; i++ )
{
biasvec[i] = biasMat.at<int>(i);
outputMultiplier[i] = outMult.at<float>(i);
}
}
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
Ptr<ActivationLayerInt8> activ_int8 = layer.dynamicCast<ActivationLayerInt8>();
if (!activ_int8.empty())
{
activ = activ_int8;
if (!activ_int8->blobs.empty())
activ_int8->blobs[0].convertTo(activationLUT, CV_32S);
return true;
}
return false;
}
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
{
return BaseConvolutionLayerInt8Impl::tryFuse(top);
}
void fuseWeights(const Mat& w_, const Mat& b_, const float& new_sc) CV_OVERRIDE
{
const int outCn = weightsMat.size[0];
Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at<float>(0))) : w_;
Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at<float>(0))) : b_;
CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
for (int i = 0; i < outCn; ++i)
{
float off = outputMultiplier[i] * output_sc;
if (!w.empty())
off *= w.at<float>(i);
if (!b.empty())
biasvec[i] += (int)std::round(b.at<float>(i)/off);
outputMultiplier[i] = off/new_sc;
}
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
outputMultiplier[outCn] = outputMultiplier[outCn+1] = outputMultiplier[outCn-1];
}
class ParallelConv : public cv::ParallelLoopBody
{
public:
enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };
const Mat* input_;
const Mat* weights_;
Mat* output_;
int outShape[4]; // used only for conv2d
std::vector<size_t> kernel_size, pads_begin, pads_end, strides, dilations;
int ngroups_, nstripes_;
std::vector<int> ofstab_;
const std::vector<int>* biasvec_;
const Mat* activLUT_;
const ActivationLayerInt8* activ_;
bool is1x1_;
bool useAVX2;
bool useAVX512;
int blk_size_cn;
int inpZp, outZp;
const std::vector<float>* multiplier;
ParallelConv()
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
biasvec_(0), activLUT_(0), activ_(0), is1x1_(false), useAVX2(false), useAVX512(false)
, blk_size_cn(0), inpZp(0), outZp(0), multiplier(0)
{}
static void run( const Mat& input, Mat& output, const Mat& weights, const std::vector<float>& multipliers,
const std::vector<int>& biasvec, const Mat& activLUT,
const std::vector<size_t>& kernel_size, const std::vector<size_t>& strides,
const std::vector<size_t>& pads_begin, const std::vector<size_t>& pads_end,
const std::vector<size_t>& dilations,
const ActivationLayerInt8* activ, int ngroups, int nstripes, int inp_Zp, int out_Zp)
{
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
1, std::multiplies<size_t>());
bool isConv1D = input.dims == 3;
bool isConv2D = input.dims == 4;
bool isConv3D = input.dims == 5;
CV_CheckEQ(static_cast<int>(kernel_size.size()), input.dims - 2, "");
CV_Assert_N(input.dims == output.dims,
input.size[0] == output.size[0],
weights.rows == output.size[1],
weights.cols == (input.size[1]/ngroups)*karea,
input.type() == CV_8SC1,
output.type() == CV_32SC1,
input.type() == weights.type(),
input.isContinuous(),
output.isContinuous(),
biasvec.size() == (size_t)output.size[1]+2);
CV_Check(weights.step1(), weights.step1() % VEC_ALIGN == 0, "");
ParallelConv p;
p.input_ = &input;
p.weights_ = &weights;
p.output_ = &output;
int max_ind = isConv1D? 3: 4;
for( int i = 0; i < max_ind; i++ ) p.outShape[i] = output.size[i];
p.outShape[1] /= ngroups;
p.kernel_size = kernel_size; p.strides = strides; p.dilations = dilations;
p.pads_begin = pads_begin; p.pads_end = pads_end;
p.ngroups_ = ngroups;
p.nstripes_ = nstripes;
int inpCnAll = input.size[1];
int depth = (input.dims == 5) ? input.size[2] : 1;
int width = input.size[input.dims - 1];
int height = isConv1D? 1 : input.size[input.dims - 2];
int inpCn = inpCnAll / ngroups;
p.is1x1_ = (isConv2D && kernel_size[0] == 1 && kernel_size[1] == 1 &&
pads_begin[0] == 0 && pads_begin[1] == 0) ||
(isConv1D && pads_begin[0] == 0 && kernel_size[0] == 1);
p.useAVX2 = checkHardwareSupport(CPU_AVX2) && isConv2D;
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX && isConv2D;
int kernel_d = isConv3D? kernel_size[0] : 1;
int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
int blk_size_cn0 = cvCeil(1600./(kernel_w*kernel_h));
int ncn = 32;
while (ncn*2 < blk_size_cn0 && ncn < inpCn)
ncn *= 2;
ncn = std::min(ncn, inpCn);
p.blk_size_cn = ncn;
int dil_d = isConv3D? dilations[0] : 1;
int dil_h = isConv1D? 1 : dilations[dilations.size() - 2];
int dil_w = dilations.back();
p.inpZp = inp_Zp;
p.outZp = out_Zp;
p.multiplier = &multipliers;
p.ofstab_.resize(karea * ncn);
int* ofstab = &p.ofstab_[0];
if (isConv1D)
{
for( int k = 0; k < ncn; k++ )
for( int k_c = 0; k_c < kernel_w; k_c++ )
ofstab[k*kernel_w + k_c] = k*width + k_c*dil_w;
}
else if (isConv2D)
{
for( int k = 0; k < ncn; k++ )
for( int k_r = 0; k_r < kernel_h; k_r++ )
for( int k_c = 0; k_c < kernel_w; k_c++ )
ofstab[(k*kernel_h + k_r)*kernel_w + k_c] =
(k*height + k_r*dil_h)*width + k_c*dil_w;
}
else
{
for( int k = 0; k < ncn; k++ )
for (int k_d = 0; k_d < kernel_d; k_d++)
for( int k_r = 0; k_r < kernel_h; k_r++ )
for( int k_c = 0; k_c < kernel_w; k_c++ )
ofstab[(k*kernel_d*kernel_h + k_d*kernel_h + k_r)*kernel_w + k_c] =
(k*depth*height + k_d*dil_d*height + k_r*dil_h)*width + k_c*dil_w;
}
p.biasvec_ = &biasvec;
p.activLUT_ = &activLUT;
p.activ_ = !activLUT.empty() ? activ : 0;
parallel_for_(Range(0, nstripes), p, nstripes);
}
virtual void operator ()(const Range &r0) const CV_OVERRIDE
{
const int valign = ConvolutionLayerInt8Impl::VEC_ALIGN;
int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
bool isConv1D = input_->dims == 3;
bool isConv2D = input_->dims == 4;
bool isConv3D = input_->dims == 5;
int outW = output_->size[output_->dims - 1];
int outH = isConv1D? 1 : output_->size[output_->dims - 2];
int outCn = output_->size[1]/ngroups;
int depth = isConv3D? input_->size[2] : 1;
int height = isConv1D? 1 : input_->size[input_->dims - 2];
int width = input_->size[input_->dims - 1];
int inpCn = input_->size[1]/ngroups;
const int nstripes = nstripes_;
int kernel_d = isConv3D? kernel_size[0] : 1;
int kernel_h = isConv1D? 1 : kernel_size[kernel_size.size() - 2];
int kernel_w = kernel_size.back();
int karea = kernel_w*kernel_h*kernel_d;
int pad_d = isConv3D? pads_begin[0] : 0;
int pad_t = isConv1D? 0 : pads_begin[pads_begin.size() - 2];
int pad_l = pads_begin.back();
int stride_d = isConv3D? strides[0] : 0;
int stride_h = isConv1D? 0 : strides[strides.size() - 2];
int stride_w = strides.back();
int dilation_d = isConv3D? dilations[0] : 1;
int dilation_h = isConv1D? 1 : dilations[dilations.size() - 2];
int dilation_w = dilations.back();
int i, j, k, d;
int inpPlaneSize = (int)input_->total(2);
int outPlaneSize = (int)output_->total(2);
bool is1x1 = is1x1_;
int stripesPerSample;
int stripeSize;
Range r = r0;
bool depthWiseConvolution = !is1x1 && isConv2D && ngroups > 1 && inpCn == 1 &&
outCn == 1 && kernel_d == 1 && dilation_d == 1 && stride_d == 0 && pad_d == 0 &&
width >= 16 + dilation_w*(kernel_w - 1);
// for now only 3x3 depth-wise convolutions are supported
depthWiseConvolution = depthWiseConvolution && kernel_w == 3 && kernel_h == 3 &&
// computing at most 1 pixel from each side can involve padding
max(stride_w, dilation_w) >= pad_l && max(stride_h, dilation_h) >= pad_t &&
pad_l <= 1 && pad_t <= 1;
if( !depthWiseConvolution && nstripes >= batchSize*2 )
{
stripesPerSample = nstripes/batchSize;
stripeSize = (int)alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, 8);
stripeSize = std::min(stripeSize, outPlaneSize);
}
else
{
stripesPerSample = 1;
int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
r.start *= samplesPerStripe;
r.end *= samplesPerStripe;
stripeSize = outPlaneSize;
}
const int8_t* data_inp0_ = input_->ptr<int8_t>();
const int* ofstab = &ofstab_[0];
const int8_t* wptr_orig_ = weights_->ptr<int8_t>();
size_t wstep = weights_->step1();
const int* biasptr_ = &biasvec_->at(0);
const float* multptr_ = &multiplier->at(0);
const int* lutptr_ = !activLUT_->empty() ? activLUT_->ptr<int>() : 0;
int* data_out0_ = output_->ptr<int>();
AutoBuffer<int8_t> rowbuf0_;
int8_t* rowbuf0 = 0;
bool use_rowbuf = !depthWiseConvolution;
int blk_size = depthWiseConvolution ? outPlaneSize : min((int)BLK_SIZE, stripeSize);
// im2row buffer is not used for depth-wise convolution
if(use_rowbuf)
{
size_t rowbufsz = alignSize(karea*blk_size_cn, valign)*min((int)BLK_SIZE, blk_size);
//printf("karea=%d, blk_size_cn=%d, rowbufsz=%d, stripeSize=%d\n", karea, blk_size_cn, (int)rowbufsz, stripeSize);
rowbuf0_.allocate(rowbufsz + valign);
rowbuf0 = alignPtr(rowbuf0_.data(), (int)(valign*sizeof(int8_t)));
// we clear the buffer once; ultimately, it lets us to avoid
// tail processing after running the unrolled/vectorized loop.
// the main idea is to make sure that the tail (a.k.a. padding) of each row
// (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
// does not contain NaNs or Infs. Because the padding in the weights
// matrix is explicitly initialized with 0's, we handle all other
// cases nicely, i.e. we can skip expliciting re-initialization
// of the padding - we just retain elements from the previous iteration
// of the loop over channels (cn0).
memset(rowbuf0, (int8_t)inpZp, rowbufsz*sizeof(rowbuf0[0]) );
}
for( int stripe = r.start; stripe < r.end; stripe++ )
{
int subsampleIdx = stripe/stripesPerSample;
if( subsampleIdx >= batchSize )
break;
int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
const int8_t* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
int* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
int startOutCn = (subsampleIdx % ngroups)*outCn;
const int8_t* wptr_orig = wptr_orig_ + wstep*startOutCn;
const int* biasptr = biasptr_ + startOutCn;
const float* multptr = multptr_ + startOutCn;
for( int cn0 = 0; cn0 < inpCn; cn0 += blk_size_cn )
{
int cn1 = std::min(cn0 + blk_size_cn, inpCn);
int ncn = cn1 - cn0, vsz = karea*ncn;
int vsz_a = (int)alignSize(vsz, valign);
const int8_t* wptr = wptr_orig + cn0*karea;
for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += blk_size )
{
int ofs, ofs1 = std::min(ofs0 + blk_size, stripeEnd);
int bsz = ofs1 - ofs0;
int out_d = ofs0 / (outH * outW);
int out_i = (ofs0 - out_d * outH * outW) / outW;
int out_j = ofs0 % outW;
if (depthWiseConvolution)
{
CV_Assert(out_i == 0 && out_j == 0);
int in_d = out_d * stride_d - pad_d;
const int8_t* inptr_ = data_inp0 + (cn0*depth*height + in_d*height)*width;
int* outptr_ = data_out0 + ofs0;
#if CV_TRY_AVX2
if(useAVX2)
opt_AVX2::fastDepthwiseConv(wptr, kernel_h, kernel_w,
stride_h, stride_w, dilation_h, dilation_w, pad_t, pad_l,
biasptr, multptr, inptr_, height, width, outptr_, out_d, outH, outW, inpZp, outZp);
else
#endif
{
const int8_t w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
w10 = wptr[3], w11 = wptr[4], w12 = wptr[5],
w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8];
int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w);
int bias = biasptr[out_d], biasCopy;
float mult = multptr[out_d];
for (int out_i = 0; out_i < outH; out_i++)
{
int in_i = out_i * stride_h - pad_t, out_j = 0;
const int8_t* imgptr0 = inptr_ + in_i*width;
const int8_t* imgptr1 = imgptr0 + dilation_h*width;
const int8_t* imgptr2 = imgptr0 + (dilation_h*2)*width;
int8_t w00 = w00_, w01 = w01_, w02 = w02_;
int8_t w20 = w20_, w21 = w21_, w22 = w22_;
int out, out1;
// Bias has a fused offset component. bias = bias_quantized - input_zeropoint*sum_of_weights.
// In some cases below, certain weights are not used for convolution or set to zero.
// So we create a copy of bias at the start and remove the weight's components as necessary.
biasCopy = bias;
if (in_i < 0)
{
biasCopy += inpZp * (w00 + w01 + w02);
w00 = w01 = w02 = 0;
imgptr0 = imgptr1;
}
else if (in_i + dilation_h*(kernel_h-1) >= height)
{
biasCopy += inpZp * (w20 + w21 + w22);
w20 = w21 = w22 = 0;
imgptr2 = imgptr1;
}
int* outptr = outptr_ + out_i*outW;
if (pad_l > 0)
{
out = (int)imgptr0[0]*w01 + (int)imgptr0[dilation_w]*w02 +
(int)imgptr1[0]*w11 + (int)imgptr1[dilation_w]*w12 +
(int)imgptr2[0]*w21 + (int)imgptr2[dilation_w]*w22 +
biasCopy + inpZp*(w00 + w10 + w20);
out1 = outZp + (int)std::round(out*mult);
outptr[0] = std::min(std::max(out1, -128), 127);
out_j = 1;
}
#if CV_SIMD
if( stride_w == 1 )
{
const int out_delta = 16;
v_int8x16 vw00 = v_setall_s8(w00), vw01 = v_setall_s8(w01), vw02 = v_setall_s8(w02),
vw10 = v_setall_s8(w10), vw11 = v_setall_s8(w11), vw12 = v_setall_s8(w12),
vw20 = v_setall_s8(w20), vw21 = v_setall_s8(w21), vw22 = v_setall_s8(w22);
v_int32x4 vout0, vout1, vout2, vout3, vbias = v_setall_s32(biasCopy), voutzp = v_setall_s32(outZp),
outmin = v_setall_s32(-128), outmax = v_setall_s32(127);
v_float32x4 vmult = v_setall_f32(mult);
for( ; out_j < outW1; out_j += out_delta )
{
if (out_j + out_delta > outW1)
{
if (out_j <= pad_l)
break;
out_j = outW1 - out_delta;
}
int in_j = out_j * stride_w - pad_l;
v_int8x16 v00 = v_load(imgptr0 + in_j),
v01 = v_load(imgptr0 + in_j + dilation_w),
v02 = v_load(imgptr0 + in_j + dilation_w*2),
v10 = v_load(imgptr1 + in_j),
v11 = v_load(imgptr1 + in_j + dilation_w),
v12 = v_load(imgptr1 + in_j + dilation_w*2),
v20 = v_load(imgptr2 + in_j),
v21 = v_load(imgptr2 + in_j + dilation_w),
v22 = v_load(imgptr2 + in_j + dilation_w*2);
vout0 = vout1 = vout2 = vout3 = vbias;
v_expand_mul_add(v00, vw00, vout0, vout1, vout2, vout3);
v_expand_mul_add(v01, vw01, vout0, vout1, vout2, vout3);
v_expand_mul_add(v02, vw02, vout0, vout1, vout2, vout3);
v_expand_mul_add(v10, vw10, vout0, vout1, vout2, vout3);
v_expand_mul_add(v11, vw11, vout0, vout1, vout2, vout3);
v_expand_mul_add(v12, vw12, vout0, vout1, vout2, vout3);
v_expand_mul_add(v20, vw20, vout0, vout1, vout2, vout3);
v_expand_mul_add(v21, vw21, vout0, vout1, vout2, vout3);
v_expand_mul_add(v22, vw22, vout0, vout1, vout2, vout3);
vout0 = voutzp + v_round(v_cvt_f32(vout0)*vmult);
vout1 = voutzp + v_round(v_cvt_f32(vout1)*vmult);
vout2 = voutzp + v_round(v_cvt_f32(vout2)*vmult);
vout3 = voutzp + v_round(v_cvt_f32(vout3)*vmult);
vout0 = v_min(v_max(vout0, outmin), outmax);
vout1 = v_min(v_max(vout1, outmin), outmax);
vout2 = v_min(v_max(vout2, outmin), outmax);
vout3 = v_min(v_max(vout3, outmin), outmax);
v_store(outptr + out_j, vout0);
v_store(outptr + out_j + 4, vout1);
v_store(outptr + out_j + 8, vout2);
v_store(outptr + out_j + 12, vout3);
}
}
#endif
for (; out_j < outW1; out_j++)
{
int in_j = out_j * stride_w - pad_l;
out = (int)imgptr0[in_j]*w00 + (int)imgptr0[in_j + dilation_w]*w01 + (int)imgptr0[in_j + dilation_w*2]*w02 +
(int)imgptr1[in_j]*w10 + (int)imgptr1[in_j + dilation_w]*w11 + (int)imgptr1[in_j + dilation_w*2]*w12 +
(int)imgptr2[in_j]*w20 + (int)imgptr2[in_j + dilation_w]*w21 + (int)imgptr2[in_j + dilation_w*2]*w22 + biasCopy;
out1 = outZp + (int)std::round(out*mult);
outptr[out_j] = std::min(std::max(out1, -128), 127);
}
for (; out_j < outW; out_j++ )
{
int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
int s0 = 1, s1 = 1, s2 = 1;
if (in_j0 >= width)
{
in_j0 = 0;
s0 = 0;
biasCopy += inpZp*(w00 + w10 + w20);
}
if (in_j1 >= width)
{
in_j1 = 0;
s1 = 0;
biasCopy += inpZp*(w01 + w11 + w21);
}
if (in_j2 >= width)
{
in_j2 = 0;
s2 = 0;
biasCopy += inpZp*(w02 + w12 + w22);
}
out = (int)imgptr0[in_j0]*w00*s0 + (int)imgptr0[in_j1]*w01*s1 + (int)imgptr0[in_j2]*w02*s2 +
(int)imgptr1[in_j0]*w10*s0 + (int)imgptr1[in_j1]*w11*s1 + (int)imgptr1[in_j2]*w12*s2 +
(int)imgptr2[in_j0]*w20*s0 + (int)imgptr2[in_j1]*w21*s1 + (int)imgptr2[in_j2]*w22*s2 + biasCopy;
out1 = outZp + (int)std::round(out*mult);
outptr[out_j] = std::min(std::max(out1, -128), 127);
}
}
}
continue;
}
// do im2row for a part of input tensor
int8_t* rowbuf = rowbuf0;
if (isConv1D)
{
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
{
int delta = std::min(ofs1 - ofs, outW - out_j);
int out_j1 = out_j + delta;
int in_j = out_j * stride_w - pad_l;
const int8_t* imgptr = data_inp0 + cn0*width + in_j;
ofs += delta;
// do im2row for a part of input tensor
if( is1x1 )
{
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
{
for( k = 0; k < vsz; k++ )
rowbuf[k] = imgptr[k*inpPlaneSize];
}
}
else
{
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
{
// this condition should be true for most of the tensor elements, i.e.
// most of the time the kernel aperture is inside the tensor X-Y plane.
if( out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
{
for( k = 0; k < vsz; k++ )
{
int k1 = ofstab[k];
int8_t v0 = imgptr[k1];
int8_t v1 = imgptr[k1 + stride_w];
rowbuf[k] = v0;
rowbuf[k+vsz_a] = v1;
}
out_j++;
rowbuf += vsz_a;
imgptr += stride_w;
in_j += stride_w;
}
else
{
int i0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
int i1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
// here some non-continuous sub-row of the row will not be
// filled from the tensor; we need to make sure that the uncovered
// elements are explicitly set to 0's. the easiest way is to
// set all the elements to 0's before the loop.
memset(rowbuf, (int8_t)inpZp, vsz*sizeof(rowbuf[0]));
for( k = 0; k < ncn; k++ )
{
for( i = i0; i < i1; i++ )
{
int imgofs = k*width + i*dilation_w;
rowbuf[k*kernel_w + i] = imgptr[imgofs];
}
}
}
}
}
}
}
else if (isConv2D)
{
if( is1x1 && stride_w == 1 && stride_h == 1 )
{
const int8_t* imgptr = data_inp0 + (cn0*height + out_i)*width + out_j;
for( int j = 0; j < bsz; j++, rowbuf += vsz_a )
{
if( j + 4 <= bsz )
{
k = 0;
for( ; k < vsz; k++ )
{
const int8_t* inp = imgptr + j + k*inpPlaneSize;
int8_t v0 = inp[0], v1 = inp[1], v2 = inp[2], v3 = inp[3];
rowbuf[k] = v0;
rowbuf[k + vsz_a] = v1;
rowbuf[k + vsz_a*2] = v2;
rowbuf[k + vsz_a*3] = v3;
}
j += 3;
rowbuf += vsz_a*3;
}
else
{
for( k = 0; k < vsz; k++ )
{
rowbuf[k] = imgptr[j + k*inpPlaneSize];
}
}
}
}
else
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
{
int delta = std::min(ofs1 - ofs, outW - out_j);
int out_j1 = out_j + delta;
int in_i = out_i * stride_h - pad_t;
int in_j = out_j * stride_w - pad_l;
const int8_t* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
ofs += delta;
// do im2row for a part of input tensor
if( is1x1 )
{
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
{
for( k = 0; k < vsz; k++ )
rowbuf[k] = imgptr[k*inpPlaneSize];
}
}
else
{
bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
{
// this condition should be true for most of the tensor elements, i.e.
// most of the time the kernel aperture is inside the tensor X-Y plane.
if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
{
for( k = 0; k < vsz; k++ )
{
int k1 = ofstab[k];
int8_t v0 = imgptr[k1];
int8_t v1 = imgptr[k1 + stride_w];
rowbuf[k] = v0;
rowbuf[k+vsz_a] = v1;
}
out_j++;
rowbuf += vsz_a;
imgptr += stride_w;
in_j += stride_w;
}
else
{
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
// here some non-continuous sub-row of the row will not be
// filled from the tensor; we need to make sure that the uncovered
// elements are explicitly set to 0's. the easiest way is to
// set all the elements to 0's before the loop.
memset(rowbuf, (int8_t)inpZp, vsz*sizeof(rowbuf[0]));
for( k = 0; k < ncn; k++ )
{
for( i = i0; i < i1; i++ )
{
for( j = j0; j < j1; j++ )
{
int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
}
}
}
}
}
}
}
}
else
{
for( ofs = ofs0; ofs < ofs1; out_d += (out_i + 1) / outH, out_i = (out_i + 1) % outH, out_j = 0 )
{
int delta = std::min(ofs1 - ofs, outW - out_j);
int out_j1 = out_j + delta;
int in_d = out_d * stride_d - pad_d;
int in_i = out_i * stride_h - pad_t;
int in_j = out_j * stride_w - pad_l;
const int8_t* imgptr = data_inp0 + (cn0*depth*height + in_d*height + in_i)*width + in_j;
ofs += delta;
int d0 = std::max(0, (-in_d + dilation_d - 1) / dilation_d);
int d1 = std::min(kernel_d, (depth - in_d + dilation_d - 1) / dilation_d);
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
{
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
// here some non-continuous sub-row of the row will not be
// filled from the tensor; we need to make sure that the uncovered
// elements are explicitly set to 0's. the easiest way is to
// set all the elements to 0's before the loop.
memset(rowbuf, (int8_t)inpZp, vsz*sizeof(rowbuf[0]));
for( k = 0; k < ncn; k++ )
{
for ( d = d0; d < d1; d++)
{
for( i = i0; i < i1; i++ )
{
for( j = j0; j < j1; j++ )
{
int imgofs = k*(depth*width*height) + d*dilation_d*width*height + i*(dilation_h*width) + j*dilation_w;
rowbuf[(k*kernel_d*kernel_h + d*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
}
}
}
}
}
}
}
// now compute dot product of the weights
// and im2row-transformed part of the tensor
#if CV_TRY_AVX512_SKX
if(useAVX512)
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
outShape, bsz, vsz, vsz_a, outZp, multptr, cn0 == 0, cn1 == inpCn);
else
#endif
#if CV_TRY_AVX2
if(useAVX2)
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
outShape, bsz, vsz, vsz_a, outZp, multptr, cn0 == 0, cn1 == inpCn);
else
#endif
for( int i = 0; i < outCn; i += 2 )
{
const int8_t* wptr0 = wptr + i*wstep;
const int8_t* wptr1 = wptr0 + wstep;
int* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
int* outptr1 = outptr0 + outPlaneSize;
int bias0 = biasptr[i], bias1 = biasptr[i+1];
float mult0 = multptr[i], mult1 = multptr[i+1];
if( i+1 >= outCn )
{
wptr1 = wptr0;
outptr1 = outptr0;
bias1 = bias0;
mult1 = mult0;
}
int j = 0;
#if CV_SIMD128
v_int32x4 voutzp = v_setall_s32(outZp), outmin = v_setall_s32(-128), outmax = v_setall_s32(127);
v_float32x4 vmult0 = v_setall_f32(mult0), vmult1 = v_setall_f32(mult1);
for( ; j <= bsz - 4; j += 4 )
{
const int8_t* rptr = rowbuf0 + j*vsz_a;
v_int32x4 s0, s1;
if( cn0 == 0 )
{
s0 = v_setall_s32(bias0);
s1 = v_setall_s32(bias1);
}
else
{
s0 = v_load(outptr0 + j);
s1 = v_load(outptr1 + j);
}
v_int32x4 vs00 = v_setzero_s32(), vs01 = v_setzero_s32(),
vs02 = v_setzero_s32(), vs03 = v_setzero_s32(),
vs10 = v_setzero_s32(), vs11 = v_setzero_s32(),
vs12 = v_setzero_s32(), vs13 = v_setzero_s32();
for( k = 0; k < vsz; k += 16, rptr += 16 )
{
v_int8x16 w0 = v_load_aligned(wptr0 + k);
v_int8x16 w1 = v_load_aligned(wptr1 + k);
v_int8x16 r0 = v_load_aligned(rptr);
v_int8x16 r1 = v_load_aligned(rptr + vsz_a);
v_int8x16 r2 = v_load_aligned(rptr + vsz_a*2);
v_int8x16 r3 = v_load_aligned(rptr + vsz_a*3);
vs00 = v_dotprod_expand_fast(w0, r0, vs00);
vs01 = v_dotprod_expand_fast(w0, r1, vs01);
vs02 = v_dotprod_expand_fast(w0, r2, vs02);
vs03 = v_dotprod_expand_fast(w0, r3, vs03);
vs10 = v_dotprod_expand_fast(w1, r0, vs10);
vs11 = v_dotprod_expand_fast(w1, r1, vs11);
vs12 = v_dotprod_expand_fast(w1, r2, vs12);
vs13 = v_dotprod_expand_fast(w1, r3, vs13);
}
s0 += v_int32x4(v_reduce_sum(vs00), v_reduce_sum(vs01), v_reduce_sum(vs02), v_reduce_sum(vs03));
s1 += v_int32x4(v_reduce_sum(vs10), v_reduce_sum(vs11), v_reduce_sum(vs12), v_reduce_sum(vs13));
if( cn1 == inpCn )
{
s0 = voutzp + v_round(v_cvt_f32(s0)*vmult0);
s1 = voutzp + v_round(v_cvt_f32(s1)*vmult1);
s0 = v_min(v_max(s0, outmin), outmax);
s1 = v_min(v_max(s1, outmin), outmax);
}
v_store(outptr0 + j, s0);
v_store(outptr1 + j, s1);
}
#endif
for( ; j < bsz; j++ )
{
const int8_t* rptr = rowbuf0 + j*vsz_a;
int s00, s10;
if( cn0 == 0 )
{
s00 = bias0;
s10 = bias1;
}
else
{
s00 = outptr0[j];
s10 = outptr1[j];
}
for( k = 0; k < vsz; k++ )
{
int8_t r0 = rptr[k];
s00 += (int)wptr0[k] * r0;
s10 += (int)wptr1[k] * r0;
}
if( cn1 == inpCn )
{
int out0 = outZp + (int)std::round(s00*mult0);
int out1 = outZp + (int)std::round(s10*mult1);
s00 = std::min(std::max(out0, -128), 127);
s10 = std::min(std::max(out1, -128), 127);
}
outptr0[j] = s00;
outptr1[j] = s10;
}
}
}
}
if( activ_ )
activ_->forwardSlice(data_out0 + stripeStart, lutptr_,
data_out0 + stripeStart, (int)(stripeEnd - stripeStart),
outPlaneSize, startOutCn, startOutCn + outCn);
}
}
};
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
#if CV_SSE3
uint32_t ftzMode = _MM_GET_FLUSH_ZERO_MODE();
uint32_t dazMode = _MM_GET_DENORMALS_ZERO_MODE();
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
#endif
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
/*if (inputs[0].dims > 3) {
printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3],
kernel.width, kernel.height, pad.width, pad.height,
stride.width, stride.height, dilation.width, dilation.height);
}
else {
printf("conv %s: input (%d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2],
kernel.width, kernel.height, pad.width, pad.height,
stride.width, stride.height, dilation.width, dilation.height);
}*/
int inpGroupCn = blobs[0].size[1];
CV_Assert_N(inputs.size() == (size_t)1, inputs[0].size[1] % inpGroupCn == 0,
outputs.size() == 1, inputs[0].data != outputs[0].data);
int ngroups = inputs[0].size[1] / inpGroupCn;
CV_Assert(outputs[0].size[1] % ngroups == 0);
int nstripes = std::max(getNumThreads(), 1);
Mat outputInt32 = Mat(shape(outputs[0]), CV_32S);
ParallelConv::run(inputs[0], outputInt32, weightsMat, outputMultiplier, biasvec, activationLUT, kernel_size, strides,
pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes, input_zp, output_zp);
outputInt32.convertTo(outputs[0], CV_8S);
#if CV_SSE3
_MM_SET_FLUSH_ZERO_MODE(ftzMode);
_MM_SET_DENORMALS_ZERO_MODE(dazMode);
#endif
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_Assert(inputs.size() == outputs.size());
int64 flops = 0;
int karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies<size_t>());
for (int i = 0; i < outputs.size(); i++)
{
flops += total(outputs[i])*(CV_BIG_INT(2)*karea*inputs[i][1] + 1);
}
return flops;
}
};
Ptr<BaseConvolutionLayer> ConvolutionLayerInt8::create(const LayerParams ¶ms)
{
return Ptr<BaseConvolutionLayer>(new ConvolutionLayerInt8Impl(params));
}
}
}