layers_common.simd.hpp
30.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "opencv2/core/hal/intrin.hpp"
namespace cv {
namespace dnn {
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
void fastConv( const int8_t* weights, size_t wstep, const int* bias,
const int8_t* rowbuf, int* output, const int* outShape,
int blockSize, int vecsize, int vecsize_aligned, int outZp,
const float* multiplier, bool initOutput, bool finalOutput );
void fastDepthwiseConv( const int8_t* wptr,
int kernel_h, int kernel_w,
int stride_h, int stride_w,
int dilation_h, int dilation_w,
int pad_t, int pad_l,
const int* biasptr, const float* multptr,
const int8_t* inptr_,
int height, int width,
int* outptr_,
int out_d, int outH, int outW,
int inpZp, int outZp );
void fastGEMM1T( const int8_t* vec, const int8_t* weights,
size_t wstep, const int* bias, const float* multiplier,
int* dst, int nvecs, int vecsize, int outZp );
#if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && CV_AVX2
#define OPENCV_FMADD_EPI8(_Tpvec, func) \
inline _Tpvec _##func##_fmaddepi8_epi32(const _Tpvec& a, const _Tpvec& b, const _Tpvec& c) \
{ \
_Tpvec even_a = _##func##_srai_epi16(_##func##_bslli_epi128(a, 1), 8); \
_Tpvec odd_a = _##func##_srai_epi16(a, 8); \
\
_Tpvec even_b = _##func##_srai_epi16(_##func##_bslli_epi128(b, 1), 8); \
_Tpvec odd_b = _##func##_srai_epi16(b, 8); \
\
_Tpvec prod0 = _##func##_madd_epi16(even_a, even_b); \
_Tpvec prod1 = _##func##_madd_epi16(odd_a, odd_b); \
return _##func##_add_epi32(_##func##_add_epi32(prod0, prod1), c); \
}
OPENCV_FMADD_EPI8(__m256i, mm256)
//OPENCV_FMADD_EPI8(__m512i, mm512)
enum { FASCONV_BASE_VECSZ = 4 };
void fastConv( const int8_t* weights, size_t wstep, const int* bias,
const int8_t* rowbuf, int* output, const int* outShape,
int blockSize, int vecsize, int vecsize_aligned, int outZp,
const float* multiplier, bool initOutput, bool finalOutput )
{
int outCn = outShape[1];
size_t outPlaneSize = outShape[2]*outShape[3];
int CV_DECL_ALIGNED(16) maskbuf[FASCONV_BASE_VECSZ] = {0};
int rsz = blockSize % FASCONV_BASE_VECSZ;
for( int i = 0; i < rsz; i++ )
maskbuf[FASCONV_BASE_VECSZ - i - 1] = -1;
__m128 mask = _mm_loadu_ps((const float*)maskbuf);
// now compute dot product of the weights
// and im2row-transformed part of the tensor
for( int i = 0; i < outCn; i += 3 )
{
const int8_t* wptr0 = weights + i*wstep;
const int8_t* wptr1 = wptr0 + wstep;
const int8_t* wptr2 = wptr1 + wstep;
int* outptr0 = output + i*outPlaneSize;
int* outptr1 = outptr0 + outPlaneSize;
int* outptr2 = outptr1 + outPlaneSize;
int bias0 = bias[i], bias1 = bias[i+1], bias2 = bias[i+2];
float mult0 = multiplier[i], mult1 = multiplier[i+1], mult2 = multiplier[i+2];
if( i+2 >= outCn )
{
wptr2 = wptr1;
outptr2 = outptr1;
bias2 = bias1;
mult2 = mult1;
if( i+1 >= outCn )
{
wptr2 = wptr1 = wptr0;
outptr2 = outptr1 = outptr0;
bias2 = bias1 = bias0;
mult2 = mult1 = mult0;
}
}
int j = 0;
for( ; j < blockSize; j += FASCONV_BASE_VECSZ )
{
bool tail = false;
if (j + FASCONV_BASE_VECSZ > blockSize)
{
if (j == 0)
break;
j = blockSize - FASCONV_BASE_VECSZ;
tail = true;
}
int k = 0;
const int8_t* rptr = rowbuf + j*vecsize_aligned;
__m256i vs00 = _mm256_setzero_si256(), vs01 = _mm256_setzero_si256(),
vs02 = _mm256_setzero_si256(), vs03 = _mm256_setzero_si256(),
vs10 = _mm256_setzero_si256(), vs11 = _mm256_setzero_si256(),
vs12 = _mm256_setzero_si256(), vs13 = _mm256_setzero_si256(),
vs20 = _mm256_setzero_si256(), vs21 = _mm256_setzero_si256(),
vs22 = _mm256_setzero_si256(), vs23 = _mm256_setzero_si256();
/* TODO : Fix AVX-512 path. Segmentation fault in Conv2D Tests.
#if CV_AVX512_SKX // AVX512VL is necessary to avoid register spilling
if (vecsize >= 64)
{
__m512i vs00_5 = _mm512_setzero_si512(), vs01_5 = _mm512_setzero_si512(),
vs02_5 = _mm512_setzero_si512(), vs03_5 = _mm512_setzero_si512(),
vs10_5 = _mm512_setzero_si512(), vs11_5 = _mm512_setzero_si512(),
vs12_5 = _mm512_setzero_si512(), vs13_5 = _mm512_setzero_si512(),
vs20_5 = _mm512_setzero_si512(), vs21_5 = _mm512_setzero_si512(),
vs22_5 = _mm512_setzero_si512(), vs23_5 = _mm512_setzero_si512();
for (; k <= vecsize - 64; k += 64, rptr += 64)
{
__m512i w0 = _mm512_load_si512(wptr0 + k);
__m512i w1 = _mm512_load_si512(wptr1 + k);
__m512i w2 = _mm512_load_si512(wptr2 + k);
__m512i r0 = _mm512_load_si512(rptr);
vs00_5 = _mm512_fmaddepi8_epi32(w0, r0, vs00_5);
vs10_5 = _mm512_fmaddepi8_epi32(w1, r0, vs10_5);
vs20_5 = _mm512_fmaddepi8_epi32(w2, r0, vs20_5);
r0 = _mm512_load_si512(rptr + vecsize_aligned);
vs01_5 = _mm512_fmaddepi8_epi32(w0, r0, vs01_5);
vs11_5 = _mm512_fmaddepi8_epi32(w1, r0, vs11_5);
vs21_5 = _mm512_fmaddepi8_epi32(w2, r0, vs21_5);
r0 = _mm512_load_si512(rptr + vecsize_aligned*2);
vs02_5 = _mm512_fmaddepi8_epi32(w0, r0, vs02_5);
vs12_5 = _mm512_fmaddepi8_epi32(w1, r0, vs12_5);
vs22_5 = _mm512_fmaddepi8_epi32(w2, r0, vs22_5);
r0 = _mm512_load_si512(rptr + vecsize_aligned*3);
vs03_5 = _mm512_fmaddepi8_epi32(w0, r0, vs03_5);
vs13_5 = _mm512_fmaddepi8_epi32(w1, r0, vs13_5);
vs23_5 = _mm512_fmaddepi8_epi32(w2, r0, vs23_5);
}
// now fold the 512 bit accumulator vectors into 256 bit vectors so that the AVX2 code can finish
// the tail of the vector
vs00 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs00_5, 0), _mm512_extracti32x8_epi32(vs00_5, 1));
vs10 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs10_5, 0), _mm512_extracti32x8_epi32(vs10_5, 1));
vs20 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs20_5, 0), _mm512_extracti32x8_epi32(vs20_5, 1));
vs01 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs01_5, 0), _mm512_extracti32x8_epi32(vs01_5, 1));
vs11 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs11_5, 0), _mm512_extracti32x8_epi32(vs11_5, 1));
vs21 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs21_5, 0), _mm512_extracti32x8_epi32(vs21_5, 1));
vs02 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs02_5, 0), _mm512_extracti32x8_epi32(vs02_5, 1));
vs12 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs12_5, 0), _mm512_extracti32x8_epi32(vs12_5, 1));
vs22 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs22_5, 0), _mm512_extracti32x8_epi32(vs22_5, 1));
vs03 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs03_5, 0), _mm512_extracti32x8_epi32(vs03_5, 1));
vs13 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs13_5, 0), _mm512_extracti32x8_epi32(vs13_5, 1));
vs23 = _mm256_add_epi32( _mm512_extracti32x8_epi32(vs23_5, 0), _mm512_extracti32x8_epi32(vs23_5, 1));
}
#endif
*/
for (; k < vecsize; k += 32, rptr += 32 )
{
__m256i w0 = _mm256_load_si256((const __m256i*)(wptr0 + k));
__m256i w1 = _mm256_load_si256((const __m256i*)(wptr1 + k));
__m256i w2 = _mm256_load_si256((const __m256i*)(wptr2 + k));
__m256i r0 = _mm256_load_si256((const __m256i*)rptr);
vs00 = _mm256_fmaddepi8_epi32(w0, r0, vs00);
vs10 = _mm256_fmaddepi8_epi32(w1, r0, vs10);
vs20 = _mm256_fmaddepi8_epi32(w2, r0, vs20);
r0 = _mm256_load_si256((const __m256i*)(rptr + vecsize_aligned));
vs01 = _mm256_fmaddepi8_epi32(w0, r0, vs01);
vs11 = _mm256_fmaddepi8_epi32(w1, r0, vs11);
vs21 = _mm256_fmaddepi8_epi32(w2, r0, vs21);
r0 = _mm256_load_si256((const __m256i*)(rptr + vecsize_aligned*2));
vs02 = _mm256_fmaddepi8_epi32(w0, r0, vs02);
vs12 = _mm256_fmaddepi8_epi32(w1, r0, vs12);
vs22 = _mm256_fmaddepi8_epi32(w2, r0, vs22);
r0 = _mm256_load_si256((const __m256i*)(rptr + vecsize_aligned*3));
vs03 = _mm256_fmaddepi8_epi32(w0, r0, vs03);
vs13 = _mm256_fmaddepi8_epi32(w1, r0, vs13);
vs23 = _mm256_fmaddepi8_epi32(w2, r0, vs23);
}
__m256i t0 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs00, vs01), _mm256_hadd_epi32(vs02, vs03));
__m256i t1 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs10, vs11), _mm256_hadd_epi32(vs12, vs13));
__m256i t2 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs20, vs21), _mm256_hadd_epi32(vs22, vs23));
t0 = _mm256_add_epi32(t0, _mm256_permute2x128_si256(t0, t0, 1));
t1 = _mm256_add_epi32(t1, _mm256_permute2x128_si256(t1, t1, 1));
t2 = _mm256_add_epi32(t2, _mm256_permute2x128_si256(t2, t2, 1));
__m128i s0, s1, s2;
if( initOutput )
{
s0 = _mm_set1_epi32(bias0);
s1 = _mm_set1_epi32(bias1);
s2 = _mm_set1_epi32(bias2);
}
else
{
s0 = _mm_loadu_si128((__m128i*)(outptr0 + j));
s1 = _mm_loadu_si128((__m128i*)(outptr1 + j));
s2 = _mm_loadu_si128((__m128i*)(outptr2 + j));
}
s0 = _mm_add_epi32(s0, _mm256_castsi256_si128(t0));
s1 = _mm_add_epi32(s1, _mm256_castsi256_si128(t1));
s2 = _mm_add_epi32(s2, _mm256_castsi256_si128(t2));
if( finalOutput )
{
__m128i voutzp = _mm_set1_epi32(outZp);
__m128i outmin = _mm_set1_epi32(-128), outmax = _mm_set1_epi32(127);
s0 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(s0), _mm_set1_ps(mult0))));
s1 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(s1), _mm_set1_ps(mult1))));
s2 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(s2), _mm_set1_ps(mult2))));
s0 = _mm_min_epi32(_mm_max_epi32(s0, outmin), outmax);
s1 = _mm_min_epi32(_mm_max_epi32(s1, outmin), outmax);
s2 = _mm_min_epi32(_mm_max_epi32(s2, outmin), outmax);
}
if( tail )
{
s0 = _mm_castps_si128(_mm_blendv_ps(_mm_loadu_ps((const float*)outptr0 + j), _mm_castsi128_ps(s0), mask));
s1 = _mm_castps_si128(_mm_blendv_ps(_mm_loadu_ps((const float*)outptr1 + j), _mm_castsi128_ps(s1), mask));
s2 = _mm_castps_si128(_mm_blendv_ps(_mm_loadu_ps((const float*)outptr2 + j), _mm_castsi128_ps(s2), mask));
}
_mm_storeu_si128((__m128i*)(outptr0 + j), s0);
_mm_storeu_si128((__m128i*)(outptr1 + j), s1);
_mm_storeu_si128((__m128i*)(outptr2 + j), s2);
}
for( ; j <= blockSize - 2; j += 2 )
{
const int8_t* rptr0 = rowbuf + j*vecsize_aligned;
const int8_t* rptr1 = rowbuf + (j+1)*vecsize_aligned;
int s00, s01, s10, s11, s20, s21;
if( initOutput )
{
s00 = s01 = bias0;
s10 = s11 = bias1;
s20 = s21 = bias2;
}
else
{
s00 = outptr0[j]; s01 = outptr0[j+1];
s10 = outptr1[j]; s11 = outptr1[j+1];
s20 = outptr2[j]; s21 = outptr2[j+1];
}
for( int k = 0; k < vecsize; k++ )
{
int8_t w0 = wptr0[k], w1 = wptr1[k], w2 = wptr2[k];
int8_t r = rptr0[k];
s00 += (int)w0*r; s10 += (int)w1*r; s20 += (int)w2*r;
r = rptr1[k];
s01 += (int)w0*r; s11 += (int)w1*r; s21 += (int)w2*r;
}
if( finalOutput )
{
s00 = std::min(std::max(outZp + (int)std::round(s00*mult0), -128), 127);
s01 = std::min(std::max(outZp + (int)std::round(s01*mult0), -128), 127);
s10 = std::min(std::max(outZp + (int)std::round(s10*mult1), -128), 127);
s11 = std::min(std::max(outZp + (int)std::round(s11*mult1), -128), 127);
s20 = std::min(std::max(outZp + (int)std::round(s20*mult2), -128), 127);
s21 = std::min(std::max(outZp + (int)std::round(s21*mult2), -128), 127);
}
outptr0[j] = s00;
outptr0[j+1] = s01;
outptr1[j] = s10;
outptr1[j+1] = s11;
outptr2[j] = s20;
outptr2[j+1] = s21;
}
for( ; j < blockSize; j++ )
{
const int8_t* rptr0 = rowbuf + j*vecsize_aligned;
int s00, s10, s20;
if( initOutput )
{
s00 = bias0;
s10 = bias1;
s20 = bias2;
}
else
{
s00 = outptr0[j];
s10 = outptr1[j];
s20 = outptr2[j];
}
for( int k = 0; k < vecsize; k++ )
{
int8_t w0 = wptr0[k], w1 = wptr1[k], w2 = wptr2[k];
int8_t r = rptr0[k];
s00 += (int)w0*r; s10 += (int)w1*r; s20 += (int)w2*r;
}
if( finalOutput )
{
s00 = std::min(std::max(outZp + (int)std::round(s00*mult0), -128), 127);
s10 = std::min(std::max(outZp + (int)std::round(s10*mult1), -128), 127);
s20 = std::min(std::max(outZp + (int)std::round(s20*mult2), -128), 127);
}
outptr0[j] = s00;
outptr1[j] = s10;
outptr2[j] = s20;
}
}
_mm256_zeroupper();
}
static inline void _mm256_expand_mul_add(const __m256i& a, const __m256i& b,
__m256i& out0, __m256i& out1, __m256i& out2, __m256i& out3)
{
__m256i a0 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(a));
__m256i a1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(a, 1));
__m256i b0 = _mm256_cvtepi8_epi16(_mm256_castsi256_si128(b));
__m256i b1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(b, 1));
__m256i a0b0 = _mm256_mullo_epi16(a0, b0);
__m256i a1b1 = _mm256_mullo_epi16(a1, b1);
out0 = _mm256_add_epi32(out0, _mm256_cvtepi16_epi32(_mm256_castsi256_si128(a0b0)));
out1 = _mm256_add_epi32(out1, _mm256_cvtepi16_epi32(_mm256_extracti128_si256(a0b0, 1)));
out2 = _mm256_add_epi32(out2, _mm256_cvtepi16_epi32(_mm256_castsi256_si128(a1b1)));
out3 = _mm256_add_epi32(out3, _mm256_cvtepi16_epi32(_mm256_extracti128_si256(a1b1, 1)));
}
static inline void _mm256_load_deinterleave(const int8_t* ptr, __m256i& a, __m256i& b)
{
__m256i t0 = _mm256_loadu_si256((const __m256i*)ptr);
__m256i t1 = _mm256_loadu_si256((const __m256i*)(ptr + 32));
const __m256i sh = _mm256_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15,
0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
__m256i p0 = _mm256_shuffle_epi8(t0, sh);
__m256i p1 = _mm256_shuffle_epi8(t1, sh);
__m256i lo = _mm256_permute2x128_si256(p0, p1, 0 + 2*16);
__m256i hi = _mm256_permute2x128_si256(p0, p1, 1 + 3*16);
a = _mm256_unpacklo_epi64(lo, hi);
b = _mm256_unpackhi_epi64(lo, hi);
}
void fastDepthwiseConv( const int8_t* wptr,
int kernel_h, int kernel_w,
int stride_h, int stride_w,
int dilation_h, int dilation_w,
int pad_t, int pad_l,
const int* biasptr, const float* multptr,
const int8_t* inptr_,
int height, int width,
int* outptr_,
int out_d, int outH, int outW,
int inpZp, int outZp)
{
const int8_t w00_ = wptr[0], w01_ = wptr[1], w02_ = wptr[2],
w10 = wptr[3], w11 = wptr[4], w12 = wptr[5],
w20_ = wptr[6], w21_ = wptr[7], w22_ = wptr[8];
int outW1 = min(outW, (width - dilation_w*(kernel_w - 1) + pad_l)/stride_w);
float mult = multptr[out_d];
int bias = biasptr[out_d];
int biasCopy;
for (int out_i = 0; out_i < outH; out_i++)
{
int in_i = out_i * stride_h - pad_t, out_j = 0;
const int8_t* imgptr0 = inptr_ + in_i*width;
const int8_t* imgptr1 = imgptr0 + dilation_h*width;
const int8_t* imgptr2 = imgptr0 + (dilation_h*2)*width;
int8_t w00 = w00_, w01 = w01_, w02 = w02_;
int8_t w20 = w20_, w21 = w21_, w22 = w22_;
int out;
biasCopy = bias;
if (in_i < 0)
{
biasCopy += inpZp * (w00 + w01 + w02);
w00 = w01 = w02 = 0;
imgptr0 = imgptr1;
}
else if (in_i + dilation_h*(kernel_h-1) >= height)
{
biasCopy += inpZp * (w20 + w21 + w22);
w20 = w21 = w22 = 0;
imgptr2 = imgptr1;
}
int* outptr = outptr_ + out_i*outW;
if (pad_l > 0)
{
out = (int)imgptr0[0]*w01 + (int)imgptr0[dilation_w]*w02 +
(int)imgptr1[0]*w11 + (int)imgptr1[dilation_w]*w12 +
(int)imgptr2[0]*w21 + (int)imgptr2[dilation_w]*w22 +
biasCopy + inpZp*(w00 + w10 + w20);
outptr[0] = std::min(std::max(outZp + (int)std::round(out*mult), -128), 127);
out_j = 1;
}
if (stride_w == 1 || (stride_w == 2 && dilation_w == 1))
{
const int VECSZ = 32;
__m256i vw00 = _mm256_set1_epi8(w00), vw01 = _mm256_set1_epi8(w01), vw02 = _mm256_set1_epi8(w02),
vw10 = _mm256_set1_epi8(w10), vw11 = _mm256_set1_epi8(w11), vw12 = _mm256_set1_epi8(w12),
vw20 = _mm256_set1_epi8(w20), vw21 = _mm256_set1_epi8(w21), vw22 = _mm256_set1_epi8(w22);
__m256i vbias = _mm256_set1_epi32(biasCopy), voutzp = _mm256_set1_epi32(outZp),
outmin = _mm256_set1_epi32(-128), outmax = _mm256_set1_epi32(127);
__m256 vmult = _mm256_set1_ps(mult);
__m256i vout0, vout1, vout2, vout3;
if( stride_w == 1 )
{
for( ; out_j < outW1; out_j += VECSZ )
{
if (out_j + VECSZ > outW1)
{
if (out_j <= pad_l)
break;
out_j = outW1 - VECSZ;
}
int in_j = out_j * stride_w - pad_l;
__m256i v00 = _mm256_loadu_si256((const __m256i*)(imgptr0 + in_j)),
v01 = _mm256_loadu_si256((const __m256i*)(imgptr0 + in_j + dilation_w)),
v02 = _mm256_loadu_si256((const __m256i*)(imgptr0 + in_j + dilation_w*2)),
v10 = _mm256_loadu_si256((const __m256i*)(imgptr1 + in_j)),
v11 = _mm256_loadu_si256((const __m256i*)(imgptr1 + in_j + dilation_w)),
v12 = _mm256_loadu_si256((const __m256i*)(imgptr1 + in_j + dilation_w*2)),
v20 = _mm256_loadu_si256((const __m256i*)(imgptr2 + in_j)),
v21 = _mm256_loadu_si256((const __m256i*)(imgptr2 + in_j + dilation_w)),
v22 = _mm256_loadu_si256((const __m256i*)(imgptr2 + in_j + dilation_w*2));
vout0 = vout1 = vout2 = vout3 = vbias;
_mm256_expand_mul_add(v00, vw00, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v01, vw01, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v02, vw02, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v10, vw10, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v11, vw11, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v12, vw12, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v20, vw20, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v21, vw21, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v22, vw22, vout0, vout1, vout2, vout3);
vout0 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout0), vmult)));
vout1 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout1), vmult)));
vout2 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout2), vmult)));
vout3 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout3), vmult)));
vout0 = _mm256_min_epi32(_mm256_max_epi32(vout0, outmin), outmax);
vout1 = _mm256_min_epi32(_mm256_max_epi32(vout1, outmin), outmax);
vout2 = _mm256_min_epi32(_mm256_max_epi32(vout2, outmin), outmax);
vout3 = _mm256_min_epi32(_mm256_max_epi32(vout3, outmin), outmax);
_mm256_storeu_si256((__m256i*)(outptr + out_j), vout0);
_mm256_storeu_si256((__m256i*)(outptr + out_j + 8), vout1);
_mm256_storeu_si256((__m256i*)(outptr + out_j + 16), vout2);
_mm256_storeu_si256((__m256i*)(outptr + out_j + 24), vout3);
}
}
else
{
for( ; out_j < outW1; out_j += VECSZ )
{
if (out_j + VECSZ > outW1)
{
if (out_j <= pad_l)
break;
out_j = outW1 - VECSZ;
}
int in_j = out_j * stride_w - pad_l;
__m256i v00, v01, v02, v10, v11, v12, v20, v21, v22, unused;
_mm256_load_deinterleave(imgptr0 + in_j, v00, v01);
_mm256_load_deinterleave(imgptr0 + in_j + 2, v02, unused);
_mm256_load_deinterleave(imgptr1 + in_j, v10, v11);
_mm256_load_deinterleave(imgptr1 + in_j + 2, v12, unused);
_mm256_load_deinterleave(imgptr2 + in_j, v20, v21);
_mm256_load_deinterleave(imgptr2 + in_j + 2, v22, unused);
vout0 = vout1 = vout2 = vout3 = vbias;
_mm256_expand_mul_add(v00, vw00, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v01, vw01, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v02, vw02, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v10, vw10, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v11, vw11, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v12, vw12, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v20, vw20, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v21, vw21, vout0, vout1, vout2, vout3);
_mm256_expand_mul_add(v22, vw22, vout0, vout1, vout2, vout3);
vout0 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout0), vmult)));
vout1 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout1), vmult)));
vout2 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout2), vmult)));
vout3 = _mm256_add_epi32(voutzp, _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_cvtepi32_ps(vout3), vmult)));
vout0 = _mm256_min_epi32(_mm256_max_epi32(vout0, outmin), outmax);
vout1 = _mm256_min_epi32(_mm256_max_epi32(vout1, outmin), outmax);
vout2 = _mm256_min_epi32(_mm256_max_epi32(vout2, outmin), outmax);
vout3 = _mm256_min_epi32(_mm256_max_epi32(vout3, outmin), outmax);
_mm256_storeu_si256((__m256i*)(outptr + out_j), vout0);
_mm256_storeu_si256((__m256i*)(outptr + out_j + 8), vout1);
_mm256_storeu_si256((__m256i*)(outptr + out_j + 16), vout2);
_mm256_storeu_si256((__m256i*)(outptr + out_j + 24), vout3);
}
}
}
for (; out_j < outW1; out_j++)
{
int in_j = out_j * stride_w - pad_l;
out = (int)imgptr0[in_j]*w00 + (int)imgptr0[in_j + dilation_w]*w01 + (int)imgptr0[in_j + dilation_w*2]*w02 +
(int)imgptr1[in_j]*w10 + (int)imgptr1[in_j + dilation_w]*w11 + (int)imgptr1[in_j + dilation_w*2]*w12 +
(int)imgptr2[in_j]*w20 + (int)imgptr2[in_j + dilation_w]*w21 + (int)imgptr2[in_j + dilation_w*2]*w22 + biasCopy;
outptr[out_j] = std::min(std::max(outZp + (int)std::round(out*mult), -128), 127);
}
for (; out_j < outW; out_j++ )
{
int in_j0 = out_j * stride_w - pad_l, in_j1 = in_j0 + dilation_w, in_j2 = in_j0 + dilation_w*2;
int s0 = 1, s1 = 1, s2 = 1;
if (in_j0 >= width)
{
in_j0 = 0;
s0 = 0;
biasCopy += inpZp*(w00 + w10 + w20);
}
if (in_j1 >= width)
{
in_j1 = 0;
s1 = 0;
biasCopy += inpZp*(w01 + w11 + w21);
}
if (in_j2 >= width)
{
in_j2 = 0;
s2 = 0;
biasCopy += inpZp*(w02 + w12 + w22);
}
out = (int)imgptr0[in_j0]*w00*s0 + (int)imgptr0[in_j1]*w01*s1 + (int)imgptr0[in_j2]*w02*s2 +
(int)imgptr1[in_j0]*w10*s0 + (int)imgptr1[in_j1]*w11*s1 + (int)imgptr1[in_j2]*w12*s2 +
(int)imgptr2[in_j0]*w20*s0 + (int)imgptr2[in_j1]*w21*s1 + (int)imgptr2[in_j2]*w22*s2 + biasCopy;
outptr[out_j] = std::min(std::max(outZp + (int)std::round(out*mult), -128), 127);
}
}
_mm256_zeroupper();
}
// dst = vec * weights^t + bias
void fastGEMM1T( const int8_t* vec, const int8_t* weights,
size_t wstep, const int* bias, const float* multiplier,
int* dst, int nvecs, int vecsize, int outZp )
{
int i = 0;
for( ; i <= nvecs - 8; i += 8 )
{
const int8_t* wptr = weights + i*wstep;
__m256i vs0 = _mm256_setzero_si256(), vs1 = _mm256_setzero_si256(),
vs2 = _mm256_setzero_si256(), vs3 = _mm256_setzero_si256(),
vs4 = _mm256_setzero_si256(), vs5 = _mm256_setzero_si256(),
vs6 = _mm256_setzero_si256(), vs7 = _mm256_setzero_si256();
__m128i voutzp = _mm_set1_epi32(outZp);
__m128i outmin = _mm_set1_epi32(-128), outmax = _mm_set1_epi32(127);
for( int k = 0; k < vecsize; k += 32, wptr += 32 )
{
__m256i v = _mm256_load_si256((const __m256i*)(vec + k));
vs0 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)wptr), v, vs0);
vs1 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep)), v, vs1);
vs2 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*2)), v, vs2);
vs3 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*3)), v, vs3);
vs4 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*4)), v, vs4);
vs5 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*5)), v, vs5);
vs6 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*6)), v, vs6);
vs7 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)(wptr + wstep*7)), v, vs7);
}
__m256i s0 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs0, vs1), _mm256_hadd_epi32(vs2, vs3));
__m256i s1 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs4, vs5), _mm256_hadd_epi32(vs6, vs7));
s0 = _mm256_add_epi32(s0, _mm256_permute2x128_si256(s0, s0, 1));
s1 = _mm256_add_epi32(s1, _mm256_permute2x128_si256(s1, s1, 1));
__m128i t0 = _mm_add_epi32(_mm256_castsi256_si128(s0), _mm_loadu_si128((__m128i*)(bias + i)));
__m128i t1 = _mm_add_epi32(_mm256_castsi256_si128(s1), _mm_loadu_si128((__m128i*)(bias + i + 4)));
t0 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(t0), _mm_loadu_ps(multiplier + i))));
t1 = _mm_add_epi32(voutzp, _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(t1), _mm_loadu_ps(multiplier + i + 4))));
t0 = _mm_min_epi32(_mm_max_epi32(t0, outmin), outmax);
t1 = _mm_min_epi32(_mm_max_epi32(t1, outmin), outmax);
_mm_storeu_si128((__m128i*)(dst + i), t0);
_mm_storeu_si128((__m128i*)(dst + i + 4), t1);
}
for( ; i < nvecs; i++ )
{
const int8_t* wptr = weights + i*wstep;
__m256i vs0 = _mm256_setzero_si256();
for( int k = 0; k < vecsize; k += 32, wptr += 32 )
{
__m256i v = _mm256_load_si256((const __m256i*)(vec + k));
vs0 = _mm256_fmaddepi8_epi32(_mm256_load_si256((const __m256i*)wptr), v, vs0);
}
__m256i s0 = _mm256_hadd_epi32(_mm256_hadd_epi32(vs0, vs0), vs0);
s0 = _mm256_add_epi32(s0, _mm256_permute2x128_si256(s0, s0, 1));
int temp = _mm_extract_epi32(_mm256_castsi256_si128(s0), 0);
dst[i] = outZp + (int)std::round((temp + bias[i]) * multiplier[i]);
}
_mm256_zeroupper();
}
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
CV_CPU_OPTIMIZATION_NAMESPACE_END
}} // namespace