fully_connected_layer.cpp 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"

#include <opencv2/dnn/shape_utils.hpp>

#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif

#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/matmul.hpp"
#include "../cuda4dnn/primitives/inner_product.hpp"
using namespace cv::dnn::cuda4dnn;
#endif

namespace cv
{
namespace dnn
{

class FullyConnectedLayerImpl CV_FINAL : public InnerProductLayer
{
public:
    enum { VEC_ALIGN = 8 };

#ifdef HAVE_OPENCL
    Ptr<OCL4DNNInnerProduct<float> > innerProductOp;
    std::vector<UMat> umat_blobs;
    std::vector<UMat> half_blobs;
#endif

    FullyConnectedLayerImpl(const LayerParams& params)
    {
        setParamsFrom(params);
        bias = params.get<bool>("bias_term", true);
        axis = params.get<int>("axis", 1);
        if (!blobs.empty())
        {
            CV_Assert(1 <= blobs.size() && blobs.size() <= 2);
            int numOutput = params.get<int>("num_output");
            int innerSize = (int)blobs[0].total() / numOutput;

            CV_Assert(blobs[0].dims >= 2 && (size_t)(innerSize * numOutput) == blobs[0].total());
            CV_Assert(!bias || (blobs.size() == 2 && (size_t)numOutput == blobs[1].total()));

            weightsMat = blobs[0] = blobs[0].reshape(1, numOutput);
            int vecsize = weightsMat.cols;
            if (vecsize % VEC_ALIGN != 0)
            {
                int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
                Mat weightsBuf(weightsMat.rows, vecsize_aligned, weightsMat.type());
                Mat wpadding = weightsBuf.colRange(vecsize, vecsize_aligned);
                wpadding.setTo(Scalar::all(0.));
                weightsMat = weightsBuf.colRange(0, vecsize);
                blobs[0].copyTo(weightsMat);
            }

            if (bias)
                biasMat = blobs[1] = blobs[1].reshape(1, 1);
            else
                biasMat = Mat::zeros(1, numOutput, weightsMat.type());
        }
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &) const CV_OVERRIDE
    {
        int numOutput, cAxis;
        if (blobs.empty())
        {
            CV_CheckEQ(inputs.size(), (size_t)2, "");
            numOutput = inputs[1].back();
            cAxis = inputs[0].size() - 1;
            int dims = inputs[0].size();
            CV_CheckEQ(inputs[1].size(), (size_t)dims, "");
            CV_CheckGE(dims, 2, "");
            for (int i = 0; i < dims - 2; i++)
                CV_CheckEQ(inputs[0][i], inputs[1][i], "");
            CV_CheckEQ(inputs[0].back(), inputs[1][dims - 2], "");
        }
        else
        {
            CV_CheckEQ(inputs.size(), (size_t)1, "");
            CV_CheckEQ(blobs[0].dims, 2, "");
            numOutput = blobs[0].size[0];
            CV_Assert(!bias || (size_t)numOutput == blobs[1].total());
            cAxis = normalize_axis(axis, inputs[0]);
        }

        MatShape outShape(cAxis + 1);
        for (int i = 0; i < cAxis; ++i)
            outShape[i] = inputs[0][i];
        outShape.back() = numOutput;

        outputs.resize(1, outShape);
        return false;
    }

    virtual bool supportBackend(int backendId) CV_OVERRIDE
    {
        return backendId == DNN_BACKEND_OPENCV ||
               backendId == DNN_BACKEND_CUDA ||
               (backendId == DNN_BACKEND_HALIDE && haveHalide() && axis == 1) ||
               (((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && !blobs.empty()) ||
                backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && axis == 1);
    }

    virtual bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
    {
        if (activ.empty() || layer.empty())
        {
            activ = layer;
            return !activ.empty();
        }
        else
            return false;
    }

    class FullyConnected : public ParallelLoopBody
    {
    public:
        FullyConnected() : srcMat(0), weights(0), biasMat(0), activ(0), dstMat(0), nstripes(0), useAVX(false), useAVX2(false), useAVX512(false), useRVV(false) {}

        static void run(const Mat& srcMat, const Mat& weights, const Mat& biasMat,
                        Mat& dstMat, const ActivationLayer* activ, int nstripes)
        {
            CV_Assert( srcMat.dims == 2 && srcMat.cols == weights.cols &&
                       dstMat.rows == srcMat.rows && dstMat.cols == weights.rows &&
                       srcMat.type() == weights.type() && weights.type() == dstMat.type() &&
                       srcMat.type() == CV_32F &&
                       (biasMat.empty() || (biasMat.type() == srcMat.type() &&
                                           biasMat.isContinuous() && (int)biasMat.total() == dstMat.cols)) );

            FullyConnected p;

            p.srcMat = &srcMat;
            p.weights = &weights;
            p.biasMat = &biasMat;
            p.dstMat = &dstMat;
            p.nstripes = nstripes;
            p.activ = activ;
            p.useAVX = checkHardwareSupport(CPU_AVX);
            p.useAVX2 = checkHardwareSupport(CPU_AVX2);
            p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
            p.useRVV = checkHardwareSupport(CPU_RVV);

            parallel_for_(Range(0, nstripes), p, nstripes);
        }

        void operator()(const Range& r) const CV_OVERRIDE
        {
            int valign = FullyConnectedLayerImpl::VEC_ALIGN;
            int nsamples = srcMat->rows;
            int nw0 = weights->rows;
            int k, vecsize = srcMat->cols;
            int vecsize_aligned = (int)alignSize(vecsize, VEC_ALIGN);
            size_t total = (size_t)nsamples*nw0;
            size_t stripeSize = (total + nstripes - 1)/nstripes;
            size_t stripeStart = r.start*stripeSize;
            size_t stripeEnd = r.end == nstripes ? total : std::min(r.end*stripeSize, total);
            size_t wstep = weights->step1();
            AutoBuffer<float> srcbuf(vecsize_aligned + valign);
            float* sptr = alignPtr(srcbuf.data(), (int)(valign*sizeof(float)));

            for( k = vecsize; k < vecsize_aligned; k++ )
                sptr[k] = 0.f;

            for( size_t ofs = stripeStart; ofs < stripeEnd; )
            {
                int sampleIdx = (int)(ofs / nw0);
                int delta = (int)(ofs - (size_t)sampleIdx*nw0);
                const float* sptr_ = srcMat->ptr<float>(sampleIdx);
                const float* wptr = weights->ptr<float>(delta);
                float* dptr = dstMat->ptr<float>(sampleIdx) + delta;
                const float* biasptr = biasMat->ptr<float>() + delta;
                int nw = std::min(nw0 - delta, (int)(stripeEnd - ofs));

                memcpy(sptr, sptr_, vecsize*sizeof(sptr[0]));

            #if CV_TRY_AVX512_SKX
                if( useAVX512 )
                    opt_AVX512_SKX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
                else
            #endif
            #if CV_TRY_AVX2
                if( useAVX2 )
                    opt_AVX2::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
                else
            #endif
            #if CV_TRY_AVX
                if( useAVX )
                    opt_AVX::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
                else
            #endif
            #if CV_TRY_RVV
                if( useRVV )
                    opt_RVV::fastGEMM1T( sptr, wptr, wstep, biasptr, dptr, nw, vecsize);
                else
            #endif
                {
                    int i = 0;

            #if CV_SIMD128
                    for( ; i <= nw - 4; i += 4, wptr += 4*wstep )
                    {
                        v_float32x4 vs0 = v_setall_f32(0.f);
                        v_float32x4 vs1 = v_setall_f32(0.f);
                        v_float32x4 vs2 = v_setall_f32(0.f);
                        v_float32x4 vs3 = v_setall_f32(0.f);

                        for( k = 0; k < vecsize; k += 4 )
                        {
                            v_float32x4 v = v_load_aligned(sptr + k);
                            vs0 = v_fma(v, v_load_aligned(wptr + k), vs0);
                            vs1 = v_fma(v, v_load_aligned(wptr + wstep + k), vs1);
                            vs2 = v_fma(v, v_load_aligned(wptr + wstep*2 + k), vs2);
                            vs3 = v_fma(v, v_load_aligned(wptr + wstep*3 + k), vs3);
                        }

                        v_float32x4 s = v_reduce_sum4(vs0, vs1, vs2, vs3);
                        s += v_load(biasptr + i);
                        v_store(dptr + i, s);
                    }
            #endif

                    for( ; i < nw; i++, wptr += wstep )
                    {
                        float s0=biasptr[i];

                        for( k = 0; k < vecsize; k++ )
                        {
                            float v = sptr[k];
                            s0 += v*wptr[k];
                        }
                        dptr[i] = s0;
                    }
                }

                if(activ)
                    activ->forwardSlice(dptr, dptr, 1, 1, delta, delta + nw);

                ofs += nw;
            }
        }

        const Mat *srcMat, *weights, *biasMat;
        const ActivationLayer* activ;
        Mat* dstMat;
        int nstripes;
        bool useAVX;
        bool useAVX2;
        bool useAVX512;
        bool useRVV;
    };

#ifdef HAVE_OPENCL
    virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
    {
        innerProductOp.release();
        umat_blobs.clear();
        half_blobs.clear();
    }

    bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, InputArrayOfArrays internals)
    {
        std::vector<UMat> inputs;
        std::vector<UMat> outputs;

        bool use_half = (inps.depth() == CV_16S);
        inps.getUMatVector(inputs);
        outs.getUMatVector(outputs);

        if (inputs.size() == 2)
        {
            int dims = outputs[0].dims;
            int m = inputs[0].size[dims - 2];
            int n = inputs[0].size[dims - 1];
            int k = inputs[1].size[dims - 1];
            int rows = inputs[0].total() / (m * n);

            MatShape sh_A = shape(rows, m * n);
            MatShape sh_B = shape(rows, n * k);
            MatShape sh_C = shape(rows, m * k);
            UMat inp = inputs[0].reshape(1, sh_A.size(), &sh_A[0]);
            UMat weight = inputs[1].reshape(1, sh_B.size(), &sh_B[0]);
            UMat out = outputs[0].reshape(1, sh_C.size(), &sh_C[0]);

            UMat A, B, C, A_fp32, B_fp32, C_fp32;
            for (int i = 0; i < rows; ++i)
            {
                A = inp.row(i).reshape(1, m);
                B = weight.row(i).reshape(1, n);
                C = out.row(i).reshape(1, m);

                if (use_half)
                {
                    convertFp16(A, A_fp32);
                    convertFp16(B, B_fp32);
                    convertFp16(C, C_fp32);
                }
                else
                {
                    A_fp32 = A;
                    B_fp32 = B;
                    C_fp32 = C;
                }
                cv::gemm(A_fp32, B_fp32, 1, noArray(), 0, C_fp32);
                if (use_half)
                {
                    convertFp16(A_fp32, A);
                    convertFp16(B_fp32, B);
                    convertFp16(C_fp32, C);
                }
            }
            return true;
        }

        int axisCan = normalize_axis(axis, inputs[0].dims);
        int numOutput = blobs[0].size[0];
        int innerSize = blobs[0].size[1];
        int outerSize = total(shape(inputs[0]), 0, axisCan);
        bool ret = true;

        if (innerProductOp.empty())
        {
            size_t n = blobs.size();
            umat_blobs.resize(n);
            for (int i = 0; i < n; i++) blobs[i].copyTo(umat_blobs[i]);

            OCL4DNNInnerProductConfig config;
            config.num_output = numOutput;
            config.bias_term = bias;
            config.M = outerSize;
            config.K = innerSize;
            config.use_half = use_half;

            if (use_half)
            {
                half_blobs.resize(umat_blobs.size());
                for (int i = 0; i < umat_blobs.size(); i++)
                {
                    if (!umat_blobs[i].empty())
                        convertFp16(umat_blobs[i], half_blobs[i]);
                }
            }

            innerProductOp = Ptr<OCL4DNNInnerProduct<float> >(new OCL4DNNInnerProduct<float>(config));
        }

        for (size_t i = 0; i < inputs.size(); i++)
        {
            MatShape inshape, outshape;
            inshape = shape(outerSize, innerSize);
            outshape = shape(outerSize, numOutput);

            UMat srcMat, dstMat;
            srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
            dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);

            if (!innerProductOp->Forward(srcMat, (use_half) ? half_blobs[0] : umat_blobs[0],
                                         (bias) ? (use_half ? half_blobs[1] : umat_blobs[1]) : UMat(),
                                         dstMat))
            {
                ret = false;
                break;
            }

            if (!use_half && bias && (outerSize > 1))
            {
                UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
                UMat& biases = umat_blobs[1];
                cv::gemm(biasOnesMat, biases, 1, dstMat, 1, dstMat, 0);
            }
        }

        if (ret) return true;

        UMat& weights = umat_blobs[0];
        for (size_t i = 0; i < inputs.size(); i++)
        {
            MatShape inshape, outshape;
            inshape = shape(outerSize, innerSize);
            outshape = shape(outerSize, numOutput);

            UMat srcMat, dstMat, srcMat_fp32, dstMat_fp32;
            srcMat = inputs[i].reshape(1, inshape.size(), &inshape[0]);
            dstMat = outputs[i].reshape(1, outshape.size(), &outshape[0]);

            if (use_half)
            {
                convertFp16(srcMat, srcMat_fp32);
                convertFp16(dstMat, dstMat_fp32);
            }
            else
            {
                srcMat_fp32 = srcMat;
                dstMat_fp32 = dstMat;
            }

            cv::gemm(srcMat_fp32, weights, 1, noArray(), 0, dstMat_fp32, GEMM_2_T);

            if (bias)
            {
                UMat biasOnesMat = UMat::ones(outerSize, 1, umat_blobs[0].type());
                UMat& biases = umat_blobs[1];
                cv::gemm(biasOnesMat, biases, 1, dstMat_fp32, 1, dstMat_fp32, 0);
            }
            if (use_half)
            {
                convertFp16(srcMat_fp32, srcMat);
                convertFp16(dstMat_fp32, dstMat);
            }
        }

        return true;
    }
#endif

    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
                   forward_ocl(inputs_arr, outputs_arr, internals_arr))

        if (inputs_arr.depth() == CV_16S)
        {
            forward_fallback(inputs_arr, outputs_arr, internals_arr);
            return;
        }

        std::vector<Mat> input, output;
        inputs_arr.getMatVector(input);
        outputs_arr.getMatVector(output);

        if (!blobs.empty())
        {
            int axisCan = normalize_axis(axis, input[0].dims);
            int outerSize = input[0].total(0, axisCan);

            for (size_t i = 0; i < input.size(); i++)
            {
                Mat srcMat = input[i].reshape(1, outerSize);
                Mat dstMat = output[i].reshape(1, outerSize);

                const int nstripes = getNumThreads();
                FullyConnected::run(srcMat, weightsMat, biasMat, dstMat, activ.get(), nstripes);
            }
        }
        else
        {
            float* inpData = input[0].ptr<float>();
            float* weightData = input[1].ptr<float>();
            float* outData = output[0].ptr<float>();

            int dims = output[0].dims;
            int numSlice = output[0].total() / output[0].total(dims - 2);
            int m = input[0].size[dims - 2];
            int n = input[0].size[dims - 1];
            int k = input[1].size[dims - 1];
            for (int i = 0; i < numSlice; i++)
            {
                Mat inpSlice(m, n, CV_32F, inpData);
                Mat weightSlice(n, k, CV_32F, weightData);
                Mat outSlice(m, k, CV_32F, outData);

                outSlice = inpSlice * weightSlice;
                inpData += inpSlice.total();
                weightData += weightSlice.total();
                outData += outSlice.total();
            }
        }
    }

#ifdef HAVE_CUDA
    Ptr<BackendNode> initCUDA(
        void *context_,
        const std::vector<Ptr<BackendWrapper>>& inputs,
        const std::vector<Ptr<BackendWrapper>>& outputs
    ) override
    {
        auto context = reinterpret_cast<csl::CSLContext*>(context_);

        if (weightsMat.empty())
        {
            CV_Assert(!bias);
            return make_cuda_node<cuda4dnn::MatMulOp>(preferableTarget, std::move(context->stream), std::move(context->cublas_handle));
        }

        auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
        auto flatten_start_axis = normalize_axis(axis, input_wrapper->getRank());
        auto biasMat_ = bias ? biasMat : Mat();
        return make_cuda_node<cuda4dnn::InnerProductOp>(preferableTarget, std::move(context->stream), std::move(context->cublas_handle), flatten_start_axis, weightsMat, biasMat_);
    }
#endif

    virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
    {
#ifdef HAVE_HALIDE
        int inW, inH, inC, inN, outC = blobs[0].size[0];
        Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
        getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
        auto weights = wrapToHalideBuffer(blobs[0], {inW, inH, inC, outC});

        Halide::Var x("x"), y("y"), c("c"), n("n");
        Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
        Halide::RDom r(0, inW, 0, inH, 0, inC);
        Halide::Expr topExpr = sum(inputBuffer(r.x, r.y, r.z, n) *
                                   weights(r.x, r.y, r.z, c));
        if (bias)
        {
            Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outC});
            topExpr += bias(c);
        }
        top(x, y, c, n) = topExpr;
        return Ptr<BackendNode>(new HalideBackendNode(top));
#endif  // HAVE_HALIDE
        return Ptr<BackendNode>();
    }

#ifdef HAVE_DNN_IE_NN_BUILDER_2019
    virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
    {
        InferenceEngine::Builder::FullyConnectedLayer ieLayer(name);

        const int outNum = blobs[0].size[0];
        ieLayer.setOutputNum(outNum);

        InferenceEngine::Builder::Layer l = ieLayer;
        addConstantData("weights", wrapToInfEngineBlob(blobs[0], {(size_t)blobs[0].size[0], (size_t)blobs[0].size[1], 1, 1}, InferenceEngine::Layout::OIHW), l);
        if (bias)
            addConstantData("biases", wrapToInfEngineBlob(blobs[1], {(size_t)outNum}, InferenceEngine::Layout::C), l);

        return Ptr<BackendNode>(new InfEngineBackendNode(l));
    }
#endif  // HAVE_DNN_IE_NN_BUILDER_2019


#ifdef HAVE_DNN_NGRAPH
    virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
                                        const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
    {
        auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
        std::shared_ptr<ngraph::Node> matmul;

        if (nodes.size() == 2)
        {
            auto& inp2 = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
            matmul = std::make_shared<ngraph::op::MatMul>(ieInpNode, inp2, false, false);
        }
        else
        {
            std::vector<int64_t> data = {(int64_t)ieInpNode->get_shape()[0], (int64_t)blobs[0].size[1]};
            auto new_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, data.data());
            auto inp = std::make_shared<ngraph::op::v1::Reshape>(ieInpNode, new_shape, true);

            std::vector<size_t> weight_shape{(size_t)blobs[0].size[0], (size_t)blobs[0].size[1]};
            auto ieWeights = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, weight_shape, blobs[0].data);
            matmul = std::make_shared<ngraph::op::MatMul>(inp, ieWeights, false, true);
        }

        if (bias) {
            auto bias_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
                                              ngraph::Shape{(size_t)blobs[1].size[1]}, blobs[1].data);
            matmul = std::make_shared<ngraph::op::v1::Add>(matmul, bias_node, ngraph::op::AutoBroadcastType::NUMPY);
        }
        return Ptr<BackendNode>(new InfEngineNgraphNode(matmul));
    }
#endif  // HAVE_DNN_NGRAPH

    virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
                             const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
    {
        if (blobs.empty())
            return false;

        int numOutput = blobs[0].size[0];
        float inputScale = scales[0][0], outputScale = scales[1][0];
        int inputZp = zeropoints[0][0];

        Mat weightsQuantized(weightsMat.rows, weightsMat.cols, CV_8S);
        Mat biasQuantized(1, numOutput, CV_32S);
        Mat outputMultiplier(1, numOutput, CV_32F);

        double realMin, realMax, weightsScale;
        for( int i = 0; i < numOutput; i++ )
        {
            // Quantize weights
            cv::minMaxIdx(weightsMat.row(i), &realMin, &realMax);
            realMin = std::min(realMin, 0.0);
            realMax = std::max(realMax, 0.0);
            weightsScale = (realMax == realMin) ? 1.0 : std::max(-realMin, realMax)/127;
            weightsMat.row(i).convertTo(weightsQuantized.row(i), CV_8S, 1.f/weightsScale);

            // Quantize biases
            float biasScale = inputScale * weightsScale;
            biasQuantized.at<int>(i) = (int)std::round(biasMat.at<float>(i)/biasScale) - inputZp*(cv::sum(weightsQuantized.row(i))[0]);

            // Store multiplier
            outputMultiplier.at<float>(i) = biasScale / outputScale;
        }

        params.blobs.clear();
        params.blobs.push_back(weightsQuantized.reshape(1, shape(blobs[0])));
        params.blobs.push_back(biasQuantized);
        params.blobs.push_back(outputMultiplier);
        return true;
    }

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const CV_OVERRIDE
    {
        CV_UNUSED(inputs); // suppress unused variable warning
        long flops = 0;

        int innerSize = blobs[0].size[1];
        for(int i = 0; i < outputs.size(); i++)
        {
            flops += CV_BIG_INT(3)*innerSize*total(outputs[i]);
        }

        return flops;

    }

    bool bias;
    Mat weightsMat, biasMat;
    Ptr<ActivationLayer> activ;
};

Ptr<InnerProductLayer> InnerProductLayer::create(const LayerParams& params)
{
    return Ptr<InnerProductLayer>(new FullyConnectedLayerImpl(params));
}

}
}