region_layer.cpp
29.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*M ///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "../op_cuda.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include "../nms.inl.hpp"
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
#ifdef HAVE_DNN_NGRAPH
#include "../ie_ngraph.hpp"
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/region.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class RegionLayerImpl CV_FINAL : public RegionLayer
{
public:
int coords, classes, anchors, classfix;
float thresh, scale_x_y;
int new_coords;
bool useSoftmax, useLogistic;
#ifdef HAVE_OPENCL
UMat blob_umat;
#endif
RegionLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
CV_Assert(blobs.size() == 1);
thresh = params.get<float>("thresh", 0.2);
coords = params.get<int>("coords", 4);
classes = params.get<int>("classes", 0);
anchors = params.get<int>("anchors", 5);
classfix = params.get<int>("classfix", 0);
useSoftmax = params.get<bool>("softmax", false);
useLogistic = params.get<bool>("logistic", false);
nmsThreshold = params.get<float>("nms_threshold", 0.4);
scale_x_y = params.get<float>("scale_x_y", 1.0); // Yolov4
new_coords = params.get<int>("new_coords", 0); // Yolov4x-mish
CV_Assert(nmsThreshold >= 0.);
CV_Assert(coords == 4);
CV_Assert(classes >= 1);
CV_Assert(anchors >= 1);
CV_Assert(useLogistic || useSoftmax);
if (params.get<bool>("softmax_tree", false))
CV_Error(cv::Error::StsNotImplemented, "Yolo9000 is not implemented");
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() > 0);
// channels == cell_size*anchors
CV_Assert(inputs[0][3] == (1 + coords + classes)*anchors);
int batch_size = inputs[0][0];
if(batch_size > 1)
outputs = std::vector<MatShape>(1, shape(batch_size, inputs[0][1] * inputs[0][2] * anchors, inputs[0][3] / anchors));
else
outputs = std::vector<MatShape>(1, shape(inputs[0][1] * inputs[0][2] * anchors, inputs[0][3] / anchors));
return false;
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
#ifdef HAVE_DNN_NGRAPH
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_2) && preferableTarget != DNN_TARGET_MYRIAD && new_coords == 0;
#endif
#ifdef HAVE_CUDA
if (backendId == DNN_BACKEND_CUDA)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV;
}
float logistic_activate(float x) { return 1.F / (1.F + exp(-x)); }
void softmax_activate(const float* input, const int n, const float temp, float* output)
{
int i;
float sum = 0;
float largest = -FLT_MAX;
for (i = 0; i < n; ++i) {
if (input[i] > largest) largest = input[i];
}
for (i = 0; i < n; ++i) {
float e = exp((input[i] - largest) / temp);
sum += e;
output[i] = e;
}
for (i = 0; i < n; ++i) {
output[i] /= sum;
}
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
if (blob_umat.empty())
blobs[0].copyTo(blob_umat);
std::vector<UMat> inputs;
std::vector<UMat> outputs;
// TODO: implement a logistic activation to classification scores.
if (useLogistic || inps.depth() == CV_16S)
return false;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
CV_Assert(inputs.size() >= 1);
int const cell_size = classes + coords + 1;
for (size_t ii = 0; ii < outputs.size(); ii++)
{
UMat& inpBlob = inputs[ii];
UMat& outBlob = outputs[ii];
int batch_size = inpBlob.size[0];
int rows = inpBlob.size[1];
int cols = inpBlob.size[2];
// channels == cell_size*anchors, see l. 94
int sample_size = cell_size*rows*cols*anchors;
ocl::Kernel logistic_kernel("logistic_activ", ocl::dnn::region_oclsrc);
size_t nanchors = rows*cols*anchors*batch_size;
logistic_kernel.set(0, (int)nanchors);
logistic_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
logistic_kernel.set(2, (int)cell_size);
logistic_kernel.set(3, ocl::KernelArg::PtrWriteOnly(outBlob));
logistic_kernel.run(1, &nanchors, NULL, false);
if (useSoftmax)
{
// Yolo v2
// softmax activation for Probability, for each grid cell (X x Y x Anchor-index)
ocl::Kernel softmax_kernel("softmax_activ", ocl::dnn::region_oclsrc);
size_t nanchors = rows*cols*anchors*batch_size;
softmax_kernel.set(0, (int)nanchors);
softmax_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
softmax_kernel.set(2, ocl::KernelArg::PtrReadOnly(blob_umat));
softmax_kernel.set(3, (int)cell_size);
softmax_kernel.set(4, (int)classes);
softmax_kernel.set(5, (int)classfix);
softmax_kernel.set(6, (int)rows);
softmax_kernel.set(7, (int)cols);
softmax_kernel.set(8, (int)anchors);
softmax_kernel.set(9, (float)thresh);
softmax_kernel.set(10, ocl::KernelArg::PtrWriteOnly(outBlob));
if (!softmax_kernel.run(1, &nanchors, NULL, false))
return false;
}
if (nmsThreshold > 0) {
Mat mat = outBlob.getMat(ACCESS_WRITE);
float *dstData = mat.ptr<float>();
for (int b = 0; b < batch_size; ++b)
do_nms_sort(dstData + b*sample_size, rows*cols*anchors, thresh, nmsThreshold);
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs, internals;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
internals_arr.getMatVector(internals);
CV_Assert(inputs.size() >= 1);
CV_Assert(outputs.size() == 1);
int const cell_size = classes + coords + 1;
const float* biasData = blobs[0].ptr<float>();
for (size_t ii = 0; ii < outputs.size(); ii++)
{
Mat &inpBlob = inputs[ii];
Mat &outBlob = outputs[ii];
int batch_size = inpBlob.size[0];
int rows = inpBlob.size[1];
int cols = inpBlob.size[2];
// address length for one image in batch, both for input and output
int sample_size = cell_size*rows*cols*anchors;
// assert that the comment above is true
CV_Assert(sample_size*batch_size == inpBlob.total());
CV_Assert(sample_size*batch_size == outBlob.total());
CV_Assert(inputs.size() < 2 || inputs[1].dims == 4);
int hNorm = inputs.size() > 1 ? inputs[1].size[2] : rows;
int wNorm = inputs.size() > 1 ? inputs[1].size[3] : cols;
const float *srcData = inpBlob.ptr<float>();
float *dstData = outBlob.ptr<float>();
if (new_coords == 0) {
// logistic activation for t0, for each grid cell (X x Y x Anchor-index)
for (int i = 0; i < batch_size*rows*cols*anchors; ++i) {
int index = cell_size*i;
float x = srcData[index + 4];
dstData[index + 4] = logistic_activate(x); // logistic activation
}
if (useSoftmax) { // Yolo v2
for (int i = 0; i < batch_size*rows*cols*anchors; ++i) {
int index = cell_size*i;
softmax_activate(srcData + index + 5, classes, 1, dstData + index + 5);
}
}
else if (useLogistic) { // Yolo v3
for (int i = 0; i < batch_size*rows*cols*anchors; ++i){
int index = cell_size*i;
const float* input = srcData + index + 5;
float* output = dstData + index + 5;
for (int c = 0; c < classes; ++c)
output[c] = logistic_activate(input[c]);
}
}
}
for (int b = 0; b < batch_size; ++b)
for (int x = 0; x < cols; ++x)
for(int y = 0; y < rows; ++y)
for (int a = 0; a < anchors; ++a) {
// relative start address for image b within the batch data
int index_sample_offset = sample_size*b;
int index = (y*cols + x)*anchors + a; // index for each grid-cell & anchor
int p_index = index_sample_offset + index * cell_size + 4;
float scale = dstData[p_index];
if (classfix == -1 && scale < .5)
{
scale = 0; // if(t0 < 0.5) t0 = 0;
}
int box_index = index_sample_offset + index * cell_size;
if (new_coords == 1) {
float x_tmp = (srcData[box_index + 0] - 0.5f) * scale_x_y + 0.5f;
float y_tmp = (srcData[box_index + 1] - 0.5f) * scale_x_y + 0.5f;
dstData[box_index + 0] = (x + x_tmp) / cols;
dstData[box_index + 1] = (y + y_tmp) / rows;
dstData[box_index + 2] = (srcData[box_index + 2]) * (srcData[box_index + 2]) * 4 * biasData[2 * a] / wNorm;
dstData[box_index + 3] = (srcData[box_index + 3]) * (srcData[box_index + 3]) * 4 * biasData[2 * a + 1] / hNorm;
scale = srcData[p_index];
if (classfix == -1 && scale < thresh)
{
scale = 0; // if(t0 < 0.5) t0 = 0;
}
int class_index = index_sample_offset + index * cell_size + 5;
for (int j = 0; j < classes; ++j) {
float prob = scale*srcData[class_index + j]; // prob = IoU(box, object) = t0 * class-probability
dstData[class_index + j] = (prob > thresh) ? prob : 0; // if (IoU < threshold) IoU = 0;
}
}
else
{
float x_tmp = (logistic_activate(srcData[box_index + 0]) - 0.5f) * scale_x_y + 0.5f;
float y_tmp = (logistic_activate(srcData[box_index + 1]) - 0.5f) * scale_x_y + 0.5f;
dstData[box_index + 0] = (x + x_tmp) / cols;
dstData[box_index + 1] = (y + y_tmp) / rows;
dstData[box_index + 2] = exp(srcData[box_index + 2]) * biasData[2 * a] / wNorm;
dstData[box_index + 3] = exp(srcData[box_index + 3]) * biasData[2 * a + 1] / hNorm;
int class_index = index_sample_offset + index * cell_size + 5;
for (int j = 0; j < classes; ++j) {
float prob = scale*dstData[class_index + j]; // prob = IoU(box, object) = t0 * class-probability
dstData[class_index + j] = (prob > thresh) ? prob : 0; // if (IoU < threshold) IoU = 0;
}
}
}
if (nmsThreshold > 0) {
for (int b = 0; b < batch_size; ++b){
do_nms_sort(dstData+b*sample_size, rows*cols*anchors, thresh, nmsThreshold);
}
}
}
}
void do_nms_sort(float *detections, int total, float score_thresh, float nms_thresh)
{
std::vector<Rect2d> boxes(total);
std::vector<float> scores(total);
for (int i = 0; i < total; ++i)
{
Rect2d &b = boxes[i];
int box_index = i * (classes + coords + 1);
b.width = detections[box_index + 2];
b.height = detections[box_index + 3];
b.x = detections[box_index + 0] - b.width / 2;
b.y = detections[box_index + 1] - b.height / 2;
}
std::vector<int> indices;
for (int k = 0; k < classes; ++k)
{
for (int i = 0; i < total; ++i)
{
int box_index = i * (classes + coords + 1);
int class_index = box_index + 5;
scores[i] = detections[class_index + k];
detections[class_index + k] = 0;
}
NMSBoxes(boxes, scores, score_thresh, nms_thresh, indices);
for (int i = 0, n = indices.size(); i < n; ++i)
{
int box_index = indices[i] * (classes + coords + 1);
int class_index = box_index + 5;
detections[class_index + k] = scores[indices[i]];
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
if (coords != 4)
CV_Error(Error::StsNotImplemented, "Only upright rectangular boxes are supported in RegionLayer.");
std::size_t height_norm, width_norm;
if (inputs.size() == 1)
{
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
auto input_shape = input_wrapper->getShape();
height_norm = input_shape[1];
width_norm = input_shape[2];
}
else
{
auto input_wrapper = inputs[1].dynamicCast<CUDABackendWrapper>();
auto input_shape = input_wrapper->getShape();
CV_Assert(input_shape.size() == 4);
height_norm = input_shape[2];
width_norm = input_shape[3];
}
cuda4dnn::SquashMethod squash_method;
if(useLogistic)
squash_method = cuda4dnn::SquashMethod::SIGMOID;
else if (useSoftmax)
squash_method = cuda4dnn::SquashMethod::SOFTMAX;
/* exactly one must be true */
CV_Assert((useLogistic || useSoftmax) && !(useLogistic && useSoftmax));
cuda4dnn::RegionConfiguration<float> config;
config.squash_method = squash_method;
config.classes = classes;
config.boxes_per_cell = anchors;
config.height_norm = height_norm;
config.width_norm = width_norm;
config.scale_x_y = scale_x_y;
config.object_prob_cutoff = (classfix == -1) ? thresh : 0.f;
config.class_prob_cutoff = thresh;
config.nms_iou_threshold = nmsThreshold;
config.new_coords = (new_coords == 1);
return make_cuda_node<cuda4dnn::RegionOp>(preferableTarget, std::move(context->stream), blobs[0], config);
}
#endif
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
flops += 60*total(inputs[i]);
}
return flops;
}
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& input = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
auto parent_shape = input->get_shape();
int64_t b = parent_shape[0];
int64_t h = parent_shape[1];
int64_t w = parent_shape[2];
int64_t c = parent_shape[3];
int64_t cols = b * h * w * anchors;
int64_t rows = c / anchors;
auto shape_node = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, std::vector<int64_t>{cols, rows});
auto tr_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, std::vector<int64_t>{1, 0});
std::shared_ptr<ngraph::Node> input2d;
{
input2d = std::make_shared<ngraph::op::v1::Reshape>(input, shape_node, true);
input2d = std::make_shared<ngraph::op::Transpose>(input2d, tr_axes);
}
std::shared_ptr<ngraph::Node> region;
{
auto new_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{4}, std::vector<int64_t>{0, 3, 1, 2});
auto tr_input = std::make_shared<ngraph::op::Transpose>(input, new_axes);
std::vector<float> anchors_vec(blobs[0].ptr<float>(), blobs[0].ptr<float>() + blobs[0].total());
std::vector<int64_t> mask(anchors, 1);
region = std::make_shared<ngraph::op::RegionYolo>(tr_input, coords, classes, anchors, useSoftmax, mask, 1, 3, anchors_vec);
auto tr_shape = tr_input->get_shape();
auto shape_as_inp = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
ngraph::Shape{tr_shape.size()},
std::vector<int64_t>(tr_shape.begin(), tr_shape.end()));
region = std::make_shared<ngraph::op::v1::Reshape>(region, shape_as_inp, true);
new_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{4}, std::vector<int64_t>{0, 2, 3, 1});
region = std::make_shared<ngraph::op::Transpose>(region, new_axes);
region = std::make_shared<ngraph::op::v1::Reshape>(region, shape_node, true);
region = std::make_shared<ngraph::op::Transpose>(region, tr_axes);
}
auto strides = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, std::vector<int64_t>{1, 1});
std::vector<int64_t> boxes_shape{b, anchors, h, w};
auto shape_3d = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{boxes_shape.size()}, boxes_shape.data());
ngraph::Shape box_broad_shape{1, (size_t)anchors, (size_t)h, (size_t)w};
auto scale_x_y_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, &scale_x_y);
auto shift_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{0.5});
auto axis = ngraph::op::Constant::create<int64_t>(ngraph::element::i64, ngraph::Shape{}, {0});
auto splits = ngraph::op::Constant::create<int64_t>(ngraph::element::i64, ngraph::Shape{5}, {1, 1, 1, 1, rows - 4});
auto split = std::make_shared<ngraph::op::v1::VariadicSplit>(input2d, axis, splits);
std::shared_ptr<ngraph::Node> box_x;
{
box_x = std::make_shared<ngraph::op::Sigmoid>(split->output(0));
box_x = std::make_shared<ngraph::op::v1::Subtract>(box_x, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
box_x = std::make_shared<ngraph::op::v1::Multiply>(box_x, scale_x_y_node, ngraph::op::AutoBroadcastType::NUMPY);
box_x = std::make_shared<ngraph::op::v1::Add>(box_x, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
box_x = std::make_shared<ngraph::op::v1::Reshape>(box_x, shape_3d, true);
std::vector<float> x_indices(w * h * anchors);
auto begin = x_indices.begin();
for (int i = 0; i < h; i++)
{
std::fill(begin + i * anchors, begin + (i + 1) * anchors, i);
}
for (int j = 1; j < w; j++)
{
std::copy(begin, begin + h * anchors, begin + j * h * anchors);
}
auto horiz = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, box_broad_shape, x_indices.data());
box_x = std::make_shared<ngraph::op::v1::Add>(box_x, horiz, ngraph::op::AutoBroadcastType::NUMPY);
auto cols_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{float(w)});
box_x = std::make_shared<ngraph::op::v1::Divide>(box_x, cols_node, ngraph::op::AutoBroadcastType::NUMPY);
}
std::shared_ptr<ngraph::Node> box_y;
{
box_y = std::make_shared<ngraph::op::Sigmoid>(split->output(1));
box_y = std::make_shared<ngraph::op::v1::Subtract>(box_y, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
box_y = std::make_shared<ngraph::op::v1::Multiply>(box_y, scale_x_y_node, ngraph::op::AutoBroadcastType::NUMPY);
box_y = std::make_shared<ngraph::op::v1::Add>(box_y, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
box_y = std::make_shared<ngraph::op::v1::Reshape>(box_y, shape_3d, true);
std::vector<float> y_indices(h * anchors);
for (int i = 0; i < h; i++)
{
std::fill(y_indices.begin() + i * anchors, y_indices.begin() + (i + 1) * anchors, i);
}
auto vert = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1, (size_t)anchors, (size_t)h, 1}, y_indices.data());
box_y = std::make_shared<ngraph::op::v1::Add>(box_y, vert, ngraph::op::AutoBroadcastType::NUMPY);
auto rows_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{float(h)});
box_y = std::make_shared<ngraph::op::v1::Divide>(box_y, rows_node, ngraph::op::AutoBroadcastType::NUMPY);
}
std::shared_ptr<ngraph::Node> box_w, box_h;
{
int hNorm, wNorm;
if (nodes.size() > 1)
{
auto node_1_shape = nodes[1].dynamicCast<InfEngineNgraphNode>()->node->get_shape();
hNorm = node_1_shape[2];
wNorm = node_1_shape[3];
}
else
{
hNorm = h;
wNorm = w;
}
std::vector<float> anchors_w(anchors), anchors_h(anchors);
for (size_t a = 0; a < anchors; ++a)
{
anchors_w[a] = blobs[0].at<float>(0, 2 * a) / wNorm;
anchors_h[a] = blobs[0].at<float>(0, 2 * a + 1) / hNorm;
}
std::vector<float> bias_w(w * h * anchors), bias_h(w * h * anchors);
for (int j = 0; j < h; j++)
{
std::copy(anchors_w.begin(), anchors_w.end(), bias_w.begin() + j * anchors);
std::copy(anchors_h.begin(), anchors_h.end(), bias_h.begin() + j * anchors);
}
for (int i = 1; i < w; i++)
{
std::copy(bias_w.begin(), bias_w.begin() + h * anchors, bias_w.begin() + i * h * anchors);
std::copy(bias_h.begin(), bias_h.begin() + h * anchors, bias_h.begin() + i * h * anchors);
}
box_w = std::make_shared<ngraph::op::v0::Exp>(split->output(2));
box_w = std::make_shared<ngraph::op::v1::Reshape>(box_w, shape_3d, true);
auto anchor_w_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, box_broad_shape, bias_w.data());
box_w = std::make_shared<ngraph::op::v1::Multiply>(box_w, anchor_w_node, ngraph::op::AutoBroadcastType::NUMPY);
box_h = std::make_shared<ngraph::op::v0::Exp>(split->output(3));
box_h = std::make_shared<ngraph::op::v1::Reshape>(box_h, shape_3d, true);
auto anchor_h_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, box_broad_shape, bias_h.data());
box_h = std::make_shared<ngraph::op::v1::Multiply>(box_h, anchor_h_node, ngraph::op::AutoBroadcastType::NUMPY);
}
auto region_splits = ngraph::op::Constant::create<int64_t>(ngraph::element::i64, ngraph::Shape{3}, {4, 1, rows - 5});
auto region_split = std::make_shared<ngraph::op::v1::VariadicSplit>(region, axis, region_splits);
std::shared_ptr<ngraph::Node> scale;
{
float thr = classfix == -1 ? 0.5 : 0;
auto thresh_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{thr});
auto mask = std::make_shared<ngraph::op::v1::Less>(region_split->output(1), thresh_node);
auto zero_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, mask->get_shape(), std::vector<float>(cols, 0));
scale = std::make_shared<ngraph::op::v1::Select>(mask, zero_node, region_split->output(1));
}
std::shared_ptr<ngraph::Node> probs;
{
probs = std::make_shared<ngraph::op::v1::Multiply>(region_split->output(2), scale, ngraph::op::AutoBroadcastType::NUMPY);
auto thresh_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, &thresh);
auto mask = std::make_shared<ngraph::op::v1::Greater>(probs, thresh_node);
auto zero_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, mask->get_shape(), std::vector<float>((rows - 5) * cols, 0));
probs = std::make_shared<ngraph::op::v1::Select>(mask, probs, zero_node);
}
auto concat_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, std::vector<int64_t>{1, cols});
box_x = std::make_shared<ngraph::op::v1::Reshape>(box_x, concat_shape, true);
box_y = std::make_shared<ngraph::op::v1::Reshape>(box_y, concat_shape, true);
box_w = std::make_shared<ngraph::op::v1::Reshape>(box_w, concat_shape, true);
box_h = std::make_shared<ngraph::op::v1::Reshape>(box_h, concat_shape, true);
ngraph::NodeVector inp_nodes{box_x, box_y, box_w, box_h, scale, probs};
std::shared_ptr<ngraph::Node> result = std::make_shared<ngraph::op::Concat>(inp_nodes, 0);
result = std::make_shared<ngraph::op::Transpose>(result, tr_axes);
if (b > 1)
{
std::vector<int64_t> sizes{b, static_cast<int64_t>(result->get_shape()[0]) / b, static_cast<int64_t>(result->get_shape()[1])};
auto shape_node = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{sizes.size()}, sizes.data());
result = std::make_shared<ngraph::op::v1::Reshape>(result, shape_node, true);
}
return Ptr<BackendNode>(new InfEngineNgraphNode(result));
}
#endif // HAVE_DNN_NGRAPH
};
Ptr<RegionLayer> RegionLayer::create(const LayerParams& params)
{
return Ptr<RegionLayer>(new RegionLayerImpl(params));
}
} // namespace dnn
} // namespace cv