region_layer.cpp 29.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
/*M ///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "../precomp.hpp"
#include "../op_cuda.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/all_layers.hpp>
#include "../nms.inl.hpp"

#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif

#ifdef HAVE_DNN_NGRAPH
#include "../ie_ngraph.hpp"
#endif

#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/region.hpp"
using namespace cv::dnn::cuda4dnn;
#endif


namespace cv
{
namespace dnn
{

class RegionLayerImpl CV_FINAL : public RegionLayer
{
public:
    int coords, classes, anchors, classfix;
    float thresh, scale_x_y;
    int new_coords;
    bool useSoftmax, useLogistic;
#ifdef HAVE_OPENCL
    UMat blob_umat;
#endif

    RegionLayerImpl(const LayerParams& params)
    {
        setParamsFrom(params);
        CV_Assert(blobs.size() == 1);

        thresh = params.get<float>("thresh", 0.2);
        coords = params.get<int>("coords", 4);
        classes = params.get<int>("classes", 0);
        anchors = params.get<int>("anchors", 5);
        classfix = params.get<int>("classfix", 0);
        useSoftmax = params.get<bool>("softmax", false);
        useLogistic = params.get<bool>("logistic", false);
        nmsThreshold = params.get<float>("nms_threshold", 0.4);
        scale_x_y = params.get<float>("scale_x_y", 1.0); // Yolov4
        new_coords = params.get<int>("new_coords", 0); // Yolov4x-mish

        CV_Assert(nmsThreshold >= 0.);
        CV_Assert(coords == 4);
        CV_Assert(classes >= 1);
        CV_Assert(anchors >= 1);
        CV_Assert(useLogistic || useSoftmax);
        if (params.get<bool>("softmax_tree", false))
            CV_Error(cv::Error::StsNotImplemented, "Yolo9000 is not implemented");
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const CV_OVERRIDE
    {
        CV_Assert(inputs.size() > 0);
        // channels == cell_size*anchors
        CV_Assert(inputs[0][3] == (1 + coords + classes)*anchors);
        int batch_size = inputs[0][0];
        if(batch_size > 1)
            outputs = std::vector<MatShape>(1, shape(batch_size, inputs[0][1] * inputs[0][2] * anchors, inputs[0][3] / anchors));
        else
            outputs = std::vector<MatShape>(1, shape(inputs[0][1] * inputs[0][2] * anchors, inputs[0][3] / anchors));
        return false;
    }

    virtual bool supportBackend(int backendId) CV_OVERRIDE
    {
#ifdef HAVE_DNN_NGRAPH
    if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
        return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_2) && preferableTarget != DNN_TARGET_MYRIAD && new_coords == 0;
#endif
#ifdef HAVE_CUDA
        if (backendId == DNN_BACKEND_CUDA)
            return true;
#endif
        return backendId == DNN_BACKEND_OPENCV;
    }

    float logistic_activate(float x) { return 1.F / (1.F + exp(-x)); }

    void softmax_activate(const float* input, const int n, const float temp, float* output)
    {
        int i;
        float sum = 0;
        float largest = -FLT_MAX;
        for (i = 0; i < n; ++i) {
            if (input[i] > largest) largest = input[i];
        }
        for (i = 0; i < n; ++i) {
            float e = exp((input[i] - largest) / temp);
            sum += e;
            output[i] = e;
        }
        for (i = 0; i < n; ++i) {
            output[i] /= sum;
        }
    }

#ifdef HAVE_OPENCL
    bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
    {
        if (blob_umat.empty())
            blobs[0].copyTo(blob_umat);

        std::vector<UMat> inputs;
        std::vector<UMat> outputs;

        // TODO: implement a logistic activation to classification scores.
        if (useLogistic || inps.depth() == CV_16S)
            return false;

        inps.getUMatVector(inputs);
        outs.getUMatVector(outputs);

        CV_Assert(inputs.size() >= 1);
        int const cell_size = classes + coords + 1;

        for (size_t ii = 0; ii < outputs.size(); ii++)
        {
            UMat& inpBlob = inputs[ii];
            UMat& outBlob = outputs[ii];

            int batch_size = inpBlob.size[0];
            int rows = inpBlob.size[1];
            int cols = inpBlob.size[2];

            // channels == cell_size*anchors, see l. 94
            int sample_size = cell_size*rows*cols*anchors;

            ocl::Kernel logistic_kernel("logistic_activ", ocl::dnn::region_oclsrc);
            size_t nanchors = rows*cols*anchors*batch_size;
            logistic_kernel.set(0, (int)nanchors);
            logistic_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
            logistic_kernel.set(2, (int)cell_size);
            logistic_kernel.set(3, ocl::KernelArg::PtrWriteOnly(outBlob));
            logistic_kernel.run(1, &nanchors, NULL, false);

            if (useSoftmax)
            {
                // Yolo v2
                // softmax activation for Probability, for each grid cell (X x Y x Anchor-index)
                ocl::Kernel softmax_kernel("softmax_activ", ocl::dnn::region_oclsrc);
                size_t nanchors = rows*cols*anchors*batch_size;
                softmax_kernel.set(0, (int)nanchors);
                softmax_kernel.set(1, ocl::KernelArg::PtrReadOnly(inpBlob));
                softmax_kernel.set(2, ocl::KernelArg::PtrReadOnly(blob_umat));
                softmax_kernel.set(3, (int)cell_size);
                softmax_kernel.set(4, (int)classes);
                softmax_kernel.set(5, (int)classfix);
                softmax_kernel.set(6, (int)rows);
                softmax_kernel.set(7, (int)cols);
                softmax_kernel.set(8, (int)anchors);
                softmax_kernel.set(9, (float)thresh);
                softmax_kernel.set(10, ocl::KernelArg::PtrWriteOnly(outBlob));
                if (!softmax_kernel.run(1, &nanchors, NULL, false))
                    return false;
            }

            if (nmsThreshold > 0) {
                Mat mat = outBlob.getMat(ACCESS_WRITE);
                float *dstData = mat.ptr<float>();
                for (int b = 0; b < batch_size; ++b)
                    do_nms_sort(dstData + b*sample_size, rows*cols*anchors, thresh, nmsThreshold);
            }

        }

        return true;
    }
#endif

    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
                   forward_ocl(inputs_arr, outputs_arr, internals_arr))

        if (inputs_arr.depth() == CV_16S)
        {
            forward_fallback(inputs_arr, outputs_arr, internals_arr);
            return;
        }

        std::vector<Mat> inputs, outputs, internals;
        inputs_arr.getMatVector(inputs);
        outputs_arr.getMatVector(outputs);
        internals_arr.getMatVector(internals);

        CV_Assert(inputs.size() >= 1);
        CV_Assert(outputs.size() == 1);
        int const cell_size = classes + coords + 1;

        const float* biasData = blobs[0].ptr<float>();

        for (size_t ii = 0; ii < outputs.size(); ii++)
        {
            Mat &inpBlob = inputs[ii];
            Mat &outBlob = outputs[ii];

            int batch_size = inpBlob.size[0];
            int rows = inpBlob.size[1];
            int cols = inpBlob.size[2];

            // address length for one image in batch, both for input and output
            int sample_size = cell_size*rows*cols*anchors;

            // assert that the comment above is true
            CV_Assert(sample_size*batch_size == inpBlob.total());
            CV_Assert(sample_size*batch_size == outBlob.total());

            CV_Assert(inputs.size() < 2 || inputs[1].dims == 4);
            int hNorm = inputs.size() > 1 ? inputs[1].size[2] : rows;
            int wNorm = inputs.size() > 1 ? inputs[1].size[3] : cols;

            const float *srcData = inpBlob.ptr<float>();
            float *dstData = outBlob.ptr<float>();

            if (new_coords == 0) {
                // logistic activation for t0, for each grid cell (X x Y x Anchor-index)
                for (int i = 0; i < batch_size*rows*cols*anchors; ++i) {
                    int index = cell_size*i;
                    float x = srcData[index + 4];
                    dstData[index + 4] = logistic_activate(x);	// logistic activation
                }

                if (useSoftmax) {  // Yolo v2
                    for (int i = 0; i < batch_size*rows*cols*anchors; ++i) {
                        int index = cell_size*i;
                        softmax_activate(srcData + index + 5, classes, 1, dstData + index + 5);
                    }
                }
                else if (useLogistic) {  // Yolo v3
                    for (int i = 0; i < batch_size*rows*cols*anchors; ++i){
                        int index = cell_size*i;
                        const float* input = srcData + index + 5;
                        float* output = dstData + index + 5;
                        for (int c = 0; c < classes; ++c)
                            output[c] = logistic_activate(input[c]);
                    }
                }
            }
            for (int b = 0; b < batch_size; ++b)
                for (int x = 0; x < cols; ++x)
                    for(int y = 0; y < rows; ++y)
                        for (int a = 0; a < anchors; ++a) {
                            // relative start address for image b within the batch data
                            int index_sample_offset = sample_size*b;
                            int index = (y*cols + x)*anchors + a;  // index for each grid-cell & anchor
                            int p_index = index_sample_offset + index * cell_size + 4;
                            float scale = dstData[p_index];
                            if (classfix == -1 && scale < .5)
                            {
                                scale = 0;  // if(t0 < 0.5) t0 = 0;
                            }
                            int box_index = index_sample_offset + index * cell_size;

                            if (new_coords == 1) {
                                float x_tmp = (srcData[box_index + 0] - 0.5f) * scale_x_y + 0.5f;
                                float y_tmp = (srcData[box_index + 1] - 0.5f) * scale_x_y + 0.5f;
                                dstData[box_index + 0] = (x + x_tmp) / cols;
                                dstData[box_index + 1] = (y + y_tmp) / rows;
                                dstData[box_index + 2] = (srcData[box_index + 2]) * (srcData[box_index + 2]) * 4 * biasData[2 * a] / wNorm;
                                dstData[box_index + 3] = (srcData[box_index + 3]) * (srcData[box_index + 3]) * 4 * biasData[2 * a + 1] / hNorm;

                                scale = srcData[p_index];
                                if (classfix == -1 && scale < thresh)
                                {
                                    scale = 0;  // if(t0 < 0.5) t0 = 0;
                                }

                                int class_index = index_sample_offset + index * cell_size + 5;
                                for (int j = 0; j < classes; ++j) {
                                    float prob = scale*srcData[class_index + j];  // prob = IoU(box, object) = t0 * class-probability
                                    dstData[class_index + j] = (prob > thresh) ? prob : 0;  // if (IoU < threshold) IoU = 0;
                                }
                            }
                            else
                            {
                                float x_tmp = (logistic_activate(srcData[box_index + 0]) - 0.5f) * scale_x_y + 0.5f;
                                float y_tmp = (logistic_activate(srcData[box_index + 1]) - 0.5f) * scale_x_y + 0.5f;
                                dstData[box_index + 0] = (x + x_tmp) / cols;
                                dstData[box_index + 1] = (y + y_tmp) / rows;
                                dstData[box_index + 2] = exp(srcData[box_index + 2]) * biasData[2 * a] / wNorm;
                                dstData[box_index + 3] = exp(srcData[box_index + 3]) * biasData[2 * a + 1] / hNorm;

                                int class_index = index_sample_offset + index * cell_size + 5;
                                for (int j = 0; j < classes; ++j) {
                                    float prob = scale*dstData[class_index + j];  // prob = IoU(box, object) = t0 * class-probability
                                    dstData[class_index + j] = (prob > thresh) ? prob : 0;  // if (IoU < threshold) IoU = 0;
                                }
                            }
                        }
            if (nmsThreshold > 0) {
                for (int b = 0; b < batch_size; ++b){
                    do_nms_sort(dstData+b*sample_size, rows*cols*anchors, thresh, nmsThreshold);
                }
            }
        }
    }

    void do_nms_sort(float *detections, int total, float score_thresh, float nms_thresh)
    {
        std::vector<Rect2d> boxes(total);
        std::vector<float> scores(total);

        for (int i = 0; i < total; ++i)
        {
            Rect2d &b = boxes[i];
            int box_index = i * (classes + coords + 1);
            b.width = detections[box_index + 2];
            b.height = detections[box_index + 3];
            b.x = detections[box_index + 0] - b.width / 2;
            b.y = detections[box_index + 1] - b.height / 2;
        }

        std::vector<int> indices;
        for (int k = 0; k < classes; ++k)
        {
            for (int i = 0; i < total; ++i)
            {
                int box_index = i * (classes + coords + 1);
                int class_index = box_index + 5;
                scores[i] = detections[class_index + k];
                detections[class_index + k] = 0;
            }
            NMSBoxes(boxes, scores, score_thresh, nms_thresh, indices);
            for (int i = 0, n = indices.size(); i < n; ++i)
            {
                int box_index = indices[i] * (classes + coords + 1);
                int class_index = box_index + 5;
                detections[class_index + k] = scores[indices[i]];
            }
        }
    }

#ifdef HAVE_CUDA
    Ptr<BackendNode> initCUDA(
        void *context_,
        const std::vector<Ptr<BackendWrapper>>& inputs,
        const std::vector<Ptr<BackendWrapper>>& outputs
    ) override
    {
        auto context = reinterpret_cast<csl::CSLContext*>(context_);

        if (coords != 4)
            CV_Error(Error::StsNotImplemented, "Only upright rectangular boxes are supported in RegionLayer.");

        std::size_t height_norm, width_norm;
        if (inputs.size() == 1)
        {
            auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
            auto input_shape = input_wrapper->getShape();
            height_norm = input_shape[1];
            width_norm = input_shape[2];
        }
        else
        {
            auto input_wrapper = inputs[1].dynamicCast<CUDABackendWrapper>();
            auto input_shape = input_wrapper->getShape();
            CV_Assert(input_shape.size() == 4);
            height_norm = input_shape[2];
            width_norm = input_shape[3];
        }

        cuda4dnn::SquashMethod squash_method;
        if(useLogistic)
            squash_method = cuda4dnn::SquashMethod::SIGMOID;
        else if (useSoftmax)
            squash_method = cuda4dnn::SquashMethod::SOFTMAX;

        /* exactly one must be true */
        CV_Assert((useLogistic || useSoftmax) && !(useLogistic && useSoftmax));

        cuda4dnn::RegionConfiguration<float> config;
        config.squash_method = squash_method;
        config.classes = classes;
        config.boxes_per_cell = anchors;

        config.height_norm = height_norm;
        config.width_norm = width_norm;

        config.scale_x_y = scale_x_y;

        config.object_prob_cutoff = (classfix == -1) ? thresh : 0.f;
        config.class_prob_cutoff = thresh;

        config.nms_iou_threshold = nmsThreshold;

        config.new_coords = (new_coords == 1);
        return make_cuda_node<cuda4dnn::RegionOp>(preferableTarget, std::move(context->stream), blobs[0], config);
    }
#endif

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const CV_OVERRIDE
    {
        CV_UNUSED(outputs); // suppress unused variable warning

        int64 flops = 0;
        for(int i = 0; i < inputs.size(); i++)
        {
            flops += 60*total(inputs[i]);
        }
        return flops;
    }

#ifdef HAVE_DNN_NGRAPH
    virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
                                        const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
    {
        auto& input = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
        auto parent_shape = input->get_shape();
        int64_t b = parent_shape[0];
        int64_t h = parent_shape[1];
        int64_t w = parent_shape[2];
        int64_t c = parent_shape[3];

        int64_t cols = b * h * w * anchors;
        int64_t rows = c / anchors;
        auto shape_node = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2},  std::vector<int64_t>{cols, rows});
        auto tr_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, std::vector<int64_t>{1, 0});

        std::shared_ptr<ngraph::Node> input2d;
        {
            input2d = std::make_shared<ngraph::op::v1::Reshape>(input, shape_node, true);
            input2d = std::make_shared<ngraph::op::Transpose>(input2d, tr_axes);
        }

        std::shared_ptr<ngraph::Node> region;
        {
            auto new_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{4}, std::vector<int64_t>{0, 3, 1, 2});
            auto tr_input = std::make_shared<ngraph::op::Transpose>(input, new_axes);

            std::vector<float> anchors_vec(blobs[0].ptr<float>(), blobs[0].ptr<float>() + blobs[0].total());
            std::vector<int64_t> mask(anchors, 1);
            region = std::make_shared<ngraph::op::RegionYolo>(tr_input, coords, classes, anchors, useSoftmax, mask, 1, 3, anchors_vec);

            auto tr_shape = tr_input->get_shape();
            auto shape_as_inp = std::make_shared<ngraph::op::Constant>(ngraph::element::i64,
                                                                       ngraph::Shape{tr_shape.size()},
                                                                       std::vector<int64_t>(tr_shape.begin(), tr_shape.end()));

            region = std::make_shared<ngraph::op::v1::Reshape>(region, shape_as_inp, true);
            new_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{4}, std::vector<int64_t>{0, 2, 3, 1});
            region = std::make_shared<ngraph::op::Transpose>(region, new_axes);

            region = std::make_shared<ngraph::op::v1::Reshape>(region, shape_node, true);
            region = std::make_shared<ngraph::op::Transpose>(region, tr_axes);
        }

        auto strides = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, std::vector<int64_t>{1, 1});
        std::vector<int64_t> boxes_shape{b, anchors, h, w};
        auto shape_3d = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{boxes_shape.size()}, boxes_shape.data());

        ngraph::Shape box_broad_shape{1, (size_t)anchors, (size_t)h, (size_t)w};
        auto scale_x_y_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, &scale_x_y);
        auto shift_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{0.5});

        auto axis = ngraph::op::Constant::create<int64_t>(ngraph::element::i64, ngraph::Shape{}, {0});
        auto splits = ngraph::op::Constant::create<int64_t>(ngraph::element::i64, ngraph::Shape{5}, {1, 1, 1, 1, rows - 4});
        auto split = std::make_shared<ngraph::op::v1::VariadicSplit>(input2d, axis, splits);
        std::shared_ptr<ngraph::Node> box_x;
        {
            box_x = std::make_shared<ngraph::op::Sigmoid>(split->output(0));
            box_x = std::make_shared<ngraph::op::v1::Subtract>(box_x, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
            box_x = std::make_shared<ngraph::op::v1::Multiply>(box_x, scale_x_y_node, ngraph::op::AutoBroadcastType::NUMPY);
            box_x = std::make_shared<ngraph::op::v1::Add>(box_x, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
            box_x = std::make_shared<ngraph::op::v1::Reshape>(box_x, shape_3d, true);

            std::vector<float> x_indices(w * h * anchors);
            auto begin = x_indices.begin();
            for (int i = 0; i < h; i++)
            {
                std::fill(begin + i * anchors, begin + (i + 1) * anchors, i);
            }

            for (int j = 1; j < w; j++)
            {
                std::copy(begin, begin + h * anchors, begin + j * h * anchors);
            }
            auto horiz = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, box_broad_shape, x_indices.data());
            box_x = std::make_shared<ngraph::op::v1::Add>(box_x, horiz, ngraph::op::AutoBroadcastType::NUMPY);

            auto cols_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{float(w)});
            box_x = std::make_shared<ngraph::op::v1::Divide>(box_x, cols_node, ngraph::op::AutoBroadcastType::NUMPY);
        }

        std::shared_ptr<ngraph::Node> box_y;
        {
            box_y = std::make_shared<ngraph::op::Sigmoid>(split->output(1));
            box_y = std::make_shared<ngraph::op::v1::Subtract>(box_y, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
            box_y = std::make_shared<ngraph::op::v1::Multiply>(box_y, scale_x_y_node, ngraph::op::AutoBroadcastType::NUMPY);
            box_y = std::make_shared<ngraph::op::v1::Add>(box_y, shift_node, ngraph::op::AutoBroadcastType::NUMPY);
            box_y = std::make_shared<ngraph::op::v1::Reshape>(box_y, shape_3d, true);

            std::vector<float> y_indices(h * anchors);
            for (int i = 0; i < h; i++)
            {
                std::fill(y_indices.begin() + i * anchors, y_indices.begin() + (i + 1) * anchors, i);
            }

            auto vert = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1, (size_t)anchors, (size_t)h, 1}, y_indices.data());
            box_y = std::make_shared<ngraph::op::v1::Add>(box_y, vert, ngraph::op::AutoBroadcastType::NUMPY);
            auto rows_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{float(h)});
            box_y = std::make_shared<ngraph::op::v1::Divide>(box_y, rows_node, ngraph::op::AutoBroadcastType::NUMPY);
        }

        std::shared_ptr<ngraph::Node> box_w, box_h;
        {
            int hNorm, wNorm;
            if (nodes.size() > 1)
            {
                auto node_1_shape = nodes[1].dynamicCast<InfEngineNgraphNode>()->node->get_shape();
                hNorm = node_1_shape[2];
                wNorm = node_1_shape[3];
            }
            else
            {
                hNorm = h;
                wNorm = w;
            }

            std::vector<float> anchors_w(anchors), anchors_h(anchors);
            for (size_t a = 0; a < anchors; ++a)
            {
                anchors_w[a] = blobs[0].at<float>(0, 2 * a) / wNorm;
                anchors_h[a] = blobs[0].at<float>(0, 2 * a + 1) / hNorm;
            }

            std::vector<float> bias_w(w * h * anchors), bias_h(w * h * anchors);
            for (int j = 0; j < h; j++)
            {
                std::copy(anchors_w.begin(), anchors_w.end(), bias_w.begin() + j * anchors);
                std::copy(anchors_h.begin(), anchors_h.end(), bias_h.begin() + j * anchors);
            }

            for (int i = 1; i < w; i++)
            {
                std::copy(bias_w.begin(), bias_w.begin() + h * anchors, bias_w.begin() + i * h * anchors);
                std::copy(bias_h.begin(), bias_h.begin() + h * anchors, bias_h.begin() + i * h * anchors);
            }

            box_w = std::make_shared<ngraph::op::v0::Exp>(split->output(2));
            box_w = std::make_shared<ngraph::op::v1::Reshape>(box_w, shape_3d, true);
            auto anchor_w_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, box_broad_shape, bias_w.data());
            box_w = std::make_shared<ngraph::op::v1::Multiply>(box_w, anchor_w_node, ngraph::op::AutoBroadcastType::NUMPY);

            box_h = std::make_shared<ngraph::op::v0::Exp>(split->output(3));
            box_h = std::make_shared<ngraph::op::v1::Reshape>(box_h, shape_3d, true);
            auto anchor_h_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, box_broad_shape, bias_h.data());
            box_h = std::make_shared<ngraph::op::v1::Multiply>(box_h, anchor_h_node, ngraph::op::AutoBroadcastType::NUMPY);
        }

        auto region_splits = ngraph::op::Constant::create<int64_t>(ngraph::element::i64, ngraph::Shape{3}, {4, 1, rows - 5});
        auto region_split = std::make_shared<ngraph::op::v1::VariadicSplit>(region, axis, region_splits);

        std::shared_ptr<ngraph::Node> scale;
        {
            float thr = classfix == -1 ? 0.5 : 0;
            auto thresh_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, std::vector<float>{thr});
            auto mask = std::make_shared<ngraph::op::v1::Less>(region_split->output(1), thresh_node);
            auto zero_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, mask->get_shape(), std::vector<float>(cols, 0));
            scale = std::make_shared<ngraph::op::v1::Select>(mask, zero_node, region_split->output(1));
        }

        std::shared_ptr<ngraph::Node> probs;
        {
            probs = std::make_shared<ngraph::op::v1::Multiply>(region_split->output(2), scale, ngraph::op::AutoBroadcastType::NUMPY);
            auto thresh_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape{1}, &thresh);
            auto mask = std::make_shared<ngraph::op::v1::Greater>(probs, thresh_node);
            auto zero_node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32, mask->get_shape(), std::vector<float>((rows - 5) * cols, 0));
            probs = std::make_shared<ngraph::op::v1::Select>(mask, probs, zero_node);
        }


        auto concat_shape = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{2}, std::vector<int64_t>{1, cols});
        box_x = std::make_shared<ngraph::op::v1::Reshape>(box_x, concat_shape, true);
        box_y = std::make_shared<ngraph::op::v1::Reshape>(box_y, concat_shape, true);
        box_w = std::make_shared<ngraph::op::v1::Reshape>(box_w, concat_shape, true);
        box_h = std::make_shared<ngraph::op::v1::Reshape>(box_h, concat_shape, true);

        ngraph::NodeVector inp_nodes{box_x, box_y, box_w, box_h, scale, probs};
        std::shared_ptr<ngraph::Node> result = std::make_shared<ngraph::op::Concat>(inp_nodes, 0);
        result = std::make_shared<ngraph::op::Transpose>(result, tr_axes);
        if (b > 1)
        {
            std::vector<int64_t> sizes{b, static_cast<int64_t>(result->get_shape()[0]) / b, static_cast<int64_t>(result->get_shape()[1])};
            auto shape_node = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{sizes.size()}, sizes.data());
            result = std::make_shared<ngraph::op::v1::Reshape>(result, shape_node, true);
        }

        return Ptr<BackendNode>(new InfEngineNgraphNode(result));
    }
#endif  // HAVE_DNN_NGRAPH

};

Ptr<RegionLayer> RegionLayer::create(const LayerParams& params)
{
    return Ptr<RegionLayer>(new RegionLayerImpl(params));
}

}  // namespace dnn
}  // namespace cv