scale_layer.cpp 17.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.

// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.

/*
Implementation of Scale layer.
*/

#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"

#include <opencv2/imgproc.hpp>
#include <opencv2/dnn/shape_utils.hpp>

#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/scale_shift.hpp"
using namespace cv::dnn::cuda4dnn;
#endif

namespace cv
{
namespace dnn
{

class ScaleLayerImpl CV_FINAL : public ScaleLayer
{
public:
    ScaleLayerImpl(const LayerParams& params)
    {
        setParamsFrom(params);
        hasBias = params.get<bool>("bias_term", false);
        axis = params.get<int>("axis", 1);
        hasWeights = false;
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const CV_OVERRIDE
    {
        outputs.assign(1, inputs[0]);
        return true;
    }

    virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
    {
        std::vector<Mat> inputs;
        inputs_arr.getMatVector(inputs);
        hasWeights = blobs.size() == 2 || (blobs.size() <= 1 && !hasBias);
        CV_Assert((inputs.size() == 2 && blobs.empty()) || blobs.size() == (int)hasWeights + (int)hasBias);
    }

    virtual bool supportBackend(int backendId) CV_OVERRIDE
    {
        return backendId == DNN_BACKEND_OPENCV ||
               backendId == DNN_BACKEND_CUDA ||
               backendId == DNN_BACKEND_HALIDE ||
               (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && axis == 1 && !blobs.empty()) ||
               (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && axis > 0);
    }

    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        if (inputs_arr.depth() == CV_16S)
        {
            forward_fallback(inputs_arr, outputs_arr, internals_arr);
            return;
        }

        std::vector<Mat> inputs, outputs;
        inputs_arr.getMatVector(inputs);
        outputs_arr.getMatVector(outputs);

        CV_Assert_N(outputs.size() == 1, !blobs.empty() || inputs.size() == 2);

        Mat &inpBlob = inputs[0];
        Mat &outBlob = outputs[0];
        // There is a mode when we multiply a first blob by a second one
        // instead of trainable weights.
        Mat weights = hasWeights ? (blobs.empty() ? inputs[1] : blobs[0]).reshape(1, 1) : Mat();;
        Mat bias = hasBias ? (blobs.empty() ? inputs[1] : blobs.back()).reshape(1, 1) : Mat();

        MatShape inpShape = shape(inpBlob);
        const int numWeights = !weights.empty() ? weights.total() : bias.total();
        CV_Assert(numWeights != 0);
        if (hasWeights && hasBias)
            CV_CheckEQ(weights.total(), bias.total(), "Incompatible weights/bias blobs");

        int endAxis;
        for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis)
        {
            if (total(inpShape, axis, endAxis) == numWeights)
                break;
        }
        CV_Assert(total(inpShape, axis, endAxis) == numWeights);
        CV_Assert(!hasBias || numWeights == bias.total());
        CV_CheckTypeEQ(inpBlob.type(), CV_32FC1, ""); CV_CheckTypeEQ(outBlob.type(), CV_32FC1, "");

        int numSlices = total(inpShape, 0, axis);
        float* inpData = (float*)inpBlob.data;
        float* outData = (float*)outBlob.data;

        if (endAxis != inpBlob.dims)
        {
            float* weightsData = !weights.empty() ? (float*)weights.data : 0;
            float* biasesData = hasBias ? (float*)bias.data : 0;
            int spatialSize = total(inpShape, endAxis);  // spatialSize != 1
            for (int i = 0; i < numSlices; ++i)
            {
                for (int j = 0; j < numWeights; ++j)
                {
                    float w = weightsData ? weightsData[j] : 1;
                    float b = biasesData ? biasesData[j] : 0;
                    Mat inpSlice(1, spatialSize, CV_32F, inpData);
                    Mat outSlice(1, spatialSize, CV_32F, outData);
                    inpSlice.convertTo(outSlice, CV_32F, w, b);
                    inpData += spatialSize;
                    outData += spatialSize;
                }
            }
        }
        else
        {
            for (int i = 0; i < numSlices; ++i)
            {
                Mat inpSlice(1, numWeights, CV_32F, inpData);
                Mat outSlice(1, numWeights, CV_32F, outData);
                if (!weights.empty())
                {
                    multiply(inpSlice, weights, outSlice);
                    if (hasBias)
                        add(outSlice, bias, outSlice);
                }
                else if (hasBias)
                    add(inpSlice, bias, outSlice);
                inpData += numWeights;
                outData += numWeights;
            }
        }
    }

#ifdef HAVE_CUDA
    Ptr<BackendNode> initCUDA(
        void *context_,
        const std::vector<Ptr<BackendWrapper>>& inputs,
        const std::vector<Ptr<BackendWrapper>>& outputs
    ) override
    {
        auto context = reinterpret_cast<csl::CSLContext*>(context_);

        CV_Assert(!blobs.empty() || inputs.size() == 2);

        auto weightsMat = Mat(), biasMat = Mat();

        cuda4dnn::ScaleShiftConfiguration config;
        if (hasWeights)
        {
            if (blobs.empty())
            {
                config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::UNTRAINABLE;
            }
            else
            {
                weightsMat = blobs[0];
                config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::TRAINABLE;
            }
        }
        else
        {
            config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::NONE;
        }

        if (hasBias)
        {
            if(blobs.empty())
            {
                config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::UNTRAINABLE;
            }
            else
            {
                /* if the weights are provided, bias will be in blobs[1]; otherwise, it will be in blobs[0]
                 * in either case, it is at the end of the blobs vector => bias = blobs.back()
                 */
                biasMat = blobs.back();
                config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::TRAINABLE;
            }
        }
        else
        {
            config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::NONE;
        }

        config.axis = axis;

        return make_cuda_node<cuda4dnn::ScaleShiftOp>(preferableTarget, std::move(context->stream), config, weightsMat, biasMat);
    }
#endif

    virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node) CV_OVERRIDE
    {
        switch (node->backendId)
        {
            case DNN_BACKEND_HALIDE:
            {
#ifdef HAVE_HALIDE
                auto base = node.dynamicCast<HalideBackendNode>();
                Halide::Func& input = base->funcs.back();
                Halide::Var x("x"), y("y"), c("c"), n("n");
                Halide::Func top = attachHalide(input(x, y, c, n));
                return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif  // HAVE_HALIDE
                break;
            }
        }
        return Ptr<BackendNode>();
    }

    virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
    {
#ifdef HAVE_HALIDE
        Halide::Buffer<float> input = halideBuffer(inputs[0]);
        Halide::Var x("x"), y("y"), c("c"), n("n");
        Halide::Func top = attachHalide(input(x, y, c, n));
        return Ptr<BackendNode>(new HalideBackendNode(top));
#endif  // HAVE_HALIDE
        return Ptr<BackendNode>();
    }

#ifdef HAVE_HALIDE
    // attachHalide can work both with Halide::Buffer and Halide::Func. In the
    // second case it will be a fusion.
    Halide::Func attachHalide(const Halide::Expr& input)
    {
        Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
        Halide::Var x("x"), y("y"), c("c"), n("n");

        const int numChannels = blobs[0].total();

        Halide::Expr topExpr = input;
        if (hasWeights)
        {
            auto weights = wrapToHalideBuffer(blobs[0], {numChannels});
            topExpr *= weights(c);
        }
        if (hasBias)
        {
            auto bias = wrapToHalideBuffer(blobs.back(), {numChannels});
            topExpr += bias(c);
        }
        top(x, y, c, n) = topExpr;
        return top;
    }
#endif  // HAVE_HALIDE

#ifdef HAVE_DNN_IE_NN_BUILDER_2019
    virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
    {
        InferenceEngine::Builder::Layer l = InferenceEngine::Builder::ScaleShiftLayer(name);

        CV_Assert(!blobs.empty());
        const size_t numChannels = blobs[0].total();
        if (hasWeights)
        {
            addConstantData("weights", wrapToInfEngineBlob(blobs[0], {numChannels}, InferenceEngine::Layout::C), l);
        }
        else
        {
            auto weights = InferenceEngine::make_shared_blob<float>({
                               InferenceEngine::Precision::FP32, {(size_t)numChannels},
                               InferenceEngine::Layout::C
                           });
            weights->allocate();
            float* buf = weights->buffer().as<float*>();
            std::fill(buf, buf + numChannels, 1);
            addConstantData("weights", weights, l);
        }
        if (hasBias)
            addConstantData("biases", wrapToInfEngineBlob(blobs.back(), {numChannels}, InferenceEngine::Layout::C), l);
        return Ptr<BackendNode>(new InfEngineBackendNode(l));
    }
#endif  // HAVE_DNN_IE_NN_BUILDER_2019


#ifdef HAVE_DNN_NGRAPH
    virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
    {
        auto ieInpNode0 = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
        auto ieInpNode1 = nodes.size() > 1 ? nodes[1].dynamicCast<InfEngineNgraphNode>()->node : nullptr;

        size_t numChannels = 1;
        if (blobs.empty())
            for (const size_t& dim : ieInpNode1->get_shape())
                numChannels *= dim;
        else
            numChannels = blobs[0].total();

        std::vector<size_t> shape(ieInpNode0->get_shape().size(), 1);
        int cAxis = normalize_axis(axis, shape.size());
        shape[cAxis] = numChannels;

        auto node = ieInpNode0;
        if (hasWeights)
        {
            auto weight = blobs.empty() ? ieInpNode1 :
                          std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), blobs[0].data);

#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2021_2)
            node = std::make_shared<ngraph::op::v1::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
#else
            node = std::make_shared<ngraph::op::v0::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
#endif
        }
        if (hasBias || !hasWeights)
        {
            std::shared_ptr<ngraph::Node> bias;
            if (hasBias)
            {
                bias = blobs.empty() ? ieInpNode1 :
                       std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
                                                              ngraph::Shape(shape), blobs.back().data);
            }
            else
                bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
                                                              ngraph::Shape(shape), std::vector<float>(numChannels, 0).data());
            node = std::make_shared<ngraph::op::v1::Add>(node, bias, ngraph::op::AutoBroadcastType::NUMPY);
        }
        return Ptr<BackendNode>(new InfEngineNgraphNode(node));
    }
#endif  // HAVE_DNN_NGRAPH

    void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
    {
        scale = (hasWeights && !blobs.empty()) ? blobs[0] : Mat();
        shift = (hasBias && !blobs.empty()) ? blobs.back() : Mat();
    }

    virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
                             const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
    {
        params.set("input_scales", DictValue::arrayReal(scales[0].data(), scales[0].size()));
        params.set("input_zeropoints", DictValue::arrayInt(zeropoints[0].data(), zeropoints[0].size()));
        return true;
    }

    virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                           const std::vector<MatShape> &outputs) const CV_OVERRIDE
    {
        CV_UNUSED(outputs); // suppress unused variable warning
        long flops = 0;
        for(int i = 0; i < inputs.size(); i++)
        {
            flops += 2*total(inputs[i]);
        }
        return flops;
    }

private:
    bool hasWeights;
};


Ptr<ScaleLayer> ScaleLayer::create(const LayerParams& params)
{
    return Ptr<ScaleLayer>(new ScaleLayerImpl(params));
}

Ptr<Layer> ShiftLayer::create(const LayerParams& params)
{
    LayerParams scaleParams;
    scaleParams.name = params.name;
    scaleParams.type = "Scale";
    scaleParams.blobs = params.blobs;
    scaleParams.set("bias_term", true);
    scaleParams.set("axis", 0);
    return Ptr<ScaleLayer>(new ScaleLayerImpl(scaleParams));
}

class DataAugmentationLayerImpl CV_FINAL : public DataAugmentationLayer
{
public:
    DataAugmentationLayerImpl(const LayerParams& params)
    {
        setParamsFrom(params);
        recompute_mean = params.get<int>("recompute_mean", 1);
        CV_CheckGT(recompute_mean, 0, "");
        mean_per_pixel = params.get<bool>("mean_per_pixel", false);
    }

    bool getMemoryShapes(const std::vector<MatShape> &inputs,
                         const int requiredOutputs,
                         std::vector<MatShape> &outputs,
                         std::vector<MatShape> &internals) const CV_OVERRIDE
    {
        CV_Assert_N(inputs.size() == 1, blobs.size() == 3);
        CV_Assert_N(blobs[0].total() == 1,
                    blobs[2].total() == inputs[0][1]);

        outputs.assign(1, inputs[0]);
        return true;
    }

    void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
    {
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(name, "name", name.c_str());

        std::vector<Mat> inputs, outputs;
        inputs_arr.getMatVector(inputs);
        outputs_arr.getMatVector(outputs);

        CV_Assert_N(outputs.size() == 1, blobs.size() == 3, inputs.size() == 1);
        int num_iter = 0;

        float* inpData = inputs[0].ptr<float>();
        float* outData = outputs[0].ptr<float>();

        Mat data_mean_cpu = blobs[1].clone();
        Mat mean_resize = Mat(inputs[0].size[3], inputs[0].size[2], CV_32FC3);
        Mat mean_3d = Mat(data_mean_cpu.size[3], data_mean_cpu.size[2], CV_32FC3, data_mean_cpu.ptr<float>(0));
        resize(mean_3d, mean_resize, Size(inputs[0].size[3], inputs[0].size[2]));
        int new_size[] = {1, mean_resize.channels(), mean_resize.cols, mean_resize.rows};
        Mat data_mean_cpu_resize = mean_resize.reshape(1, *new_size);
        Mat data_mean_per_channel_cpu = blobs[2].clone();

        const int numWeights = data_mean_cpu_resize.total();
        CV_Assert(numWeights != 0);

        ++num_iter;
        if (num_iter <= recompute_mean)
        {
            data_mean_cpu_resize *= (num_iter - 1);
            const int batch = inputs[0].size[0];
            float alpha = 1.0 / batch;

            for (int i = 0; i < batch; ++i)
            {
                Mat inpSlice(1, numWeights, CV_32F, inpData);
                inpSlice = alpha * inpSlice;

                add(data_mean_cpu_resize.reshape(1, 1), inpSlice, data_mean_cpu_resize.reshape(1, 1));
                inpData += numWeights;
            }
            data_mean_cpu_resize *= (1.0 / num_iter);

            int newsize[] = {inputs[0].size[1], (int)inputs[0].total(2)};
            reduce(data_mean_cpu_resize.reshape(1, 2, &newsize[0]), data_mean_per_channel_cpu, 1, REDUCE_SUM, CV_32F);

            int area = inputs[0].total(2);
            data_mean_per_channel_cpu *= (1.0 / area);
        }

        MatShape inpShape = shape(inputs[0]);

        inpData = inputs[0].ptr<float>();
        if (mean_per_pixel)
        {
            int numSlices = inputs[0].size[0];
            for (int i = 0; i < numSlices; ++i)
            {
                Mat inpSlice(1, numWeights, CV_32F, inpData);
                Mat outSlice(1, numWeights, CV_32F, outData);

                add(inpSlice, (-1) * data_mean_cpu_resize, outSlice);
                inpData += numWeights;
                outData += numWeights;
            }
        }
        else
        {
            int numSlices = inpShape[1];
            int count = numWeights / numSlices;

            for (int i = 0; i < numSlices; ++i)
            {
                Mat inpSlice(1, count, CV_32F, inpData);
                Mat outSlice(1, count, CV_32F, outData);
                float coeff = data_mean_per_channel_cpu.reshape(1, 1).at<float>(0, i);
                outSlice = inpSlice - coeff;

                inpData += count;
                outData += count;
            }
        }
    }

private:
    int recompute_mean;
    bool mean_per_pixel;
};

Ptr<DataAugmentationLayer> DataAugmentationLayer::create(const LayerParams& params)
{
    return Ptr<DataAugmentationLayer>(new DataAugmentationLayerImpl(params));
}

}  // namespace dnn
}  // namespace cv