scale_layer.cpp
17.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2016, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Implementation of Scale layer.
*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/scale_shift.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
namespace cv
{
namespace dnn
{
class ScaleLayerImpl CV_FINAL : public ScaleLayer
{
public:
ScaleLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
hasBias = params.get<bool>("bias_term", false);
axis = params.get<int>("axis", 1);
hasWeights = false;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
outputs.assign(1, inputs[0]);
return true;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays) CV_OVERRIDE
{
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
hasWeights = blobs.size() == 2 || (blobs.size() <= 1 && !hasBias);
CV_Assert((inputs.size() == 2 && blobs.empty()) || blobs.size() == (int)hasWeights + (int)hasBias);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && axis == 1 && !blobs.empty()) ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && axis > 0);
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert_N(outputs.size() == 1, !blobs.empty() || inputs.size() == 2);
Mat &inpBlob = inputs[0];
Mat &outBlob = outputs[0];
// There is a mode when we multiply a first blob by a second one
// instead of trainable weights.
Mat weights = hasWeights ? (blobs.empty() ? inputs[1] : blobs[0]).reshape(1, 1) : Mat();;
Mat bias = hasBias ? (blobs.empty() ? inputs[1] : blobs.back()).reshape(1, 1) : Mat();
MatShape inpShape = shape(inpBlob);
const int numWeights = !weights.empty() ? weights.total() : bias.total();
CV_Assert(numWeights != 0);
if (hasWeights && hasBias)
CV_CheckEQ(weights.total(), bias.total(), "Incompatible weights/bias blobs");
int endAxis;
for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis)
{
if (total(inpShape, axis, endAxis) == numWeights)
break;
}
CV_Assert(total(inpShape, axis, endAxis) == numWeights);
CV_Assert(!hasBias || numWeights == bias.total());
CV_CheckTypeEQ(inpBlob.type(), CV_32FC1, ""); CV_CheckTypeEQ(outBlob.type(), CV_32FC1, "");
int numSlices = total(inpShape, 0, axis);
float* inpData = (float*)inpBlob.data;
float* outData = (float*)outBlob.data;
if (endAxis != inpBlob.dims)
{
float* weightsData = !weights.empty() ? (float*)weights.data : 0;
float* biasesData = hasBias ? (float*)bias.data : 0;
int spatialSize = total(inpShape, endAxis); // spatialSize != 1
for (int i = 0; i < numSlices; ++i)
{
for (int j = 0; j < numWeights; ++j)
{
float w = weightsData ? weightsData[j] : 1;
float b = biasesData ? biasesData[j] : 0;
Mat inpSlice(1, spatialSize, CV_32F, inpData);
Mat outSlice(1, spatialSize, CV_32F, outData);
inpSlice.convertTo(outSlice, CV_32F, w, b);
inpData += spatialSize;
outData += spatialSize;
}
}
}
else
{
for (int i = 0; i < numSlices; ++i)
{
Mat inpSlice(1, numWeights, CV_32F, inpData);
Mat outSlice(1, numWeights, CV_32F, outData);
if (!weights.empty())
{
multiply(inpSlice, weights, outSlice);
if (hasBias)
add(outSlice, bias, outSlice);
}
else if (hasBias)
add(inpSlice, bias, outSlice);
inpData += numWeights;
outData += numWeights;
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
CV_Assert(!blobs.empty() || inputs.size() == 2);
auto weightsMat = Mat(), biasMat = Mat();
cuda4dnn::ScaleShiftConfiguration config;
if (hasWeights)
{
if (blobs.empty())
{
config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::UNTRAINABLE;
}
else
{
weightsMat = blobs[0];
config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::TRAINABLE;
}
}
else
{
config.scaleMode = cuda4dnn::ScaleShiftConfiguration::OpMode::NONE;
}
if (hasBias)
{
if(blobs.empty())
{
config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::UNTRAINABLE;
}
else
{
/* if the weights are provided, bias will be in blobs[1]; otherwise, it will be in blobs[0]
* in either case, it is at the end of the blobs vector => bias = blobs.back()
*/
biasMat = blobs.back();
config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::TRAINABLE;
}
}
else
{
config.shiftMode = cuda4dnn::ScaleShiftConfiguration::OpMode::NONE;
}
config.axis = axis;
return make_cuda_node<cuda4dnn::ScaleShiftOp>(preferableTarget, std::move(context->stream), config, weightsMat, biasMat);
}
#endif
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node) CV_OVERRIDE
{
switch (node->backendId)
{
case DNN_BACKEND_HALIDE:
{
#ifdef HAVE_HALIDE
auto base = node.dynamicCast<HalideBackendNode>();
Halide::Func& input = base->funcs.back();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif // HAVE_HALIDE
break;
}
}
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> input = halideBuffer(inputs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = attachHalide(input(x, y, c, n));
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_HALIDE
// attachHalide can work both with Halide::Buffer and Halide::Func. In the
// second case it will be a fusion.
Halide::Func attachHalide(const Halide::Expr& input)
{
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Var x("x"), y("y"), c("c"), n("n");
const int numChannels = blobs[0].total();
Halide::Expr topExpr = input;
if (hasWeights)
{
auto weights = wrapToHalideBuffer(blobs[0], {numChannels});
topExpr *= weights(c);
}
if (hasBias)
{
auto bias = wrapToHalideBuffer(blobs.back(), {numChannels});
topExpr += bias(c);
}
top(x, y, c, n) = topExpr;
return top;
}
#endif // HAVE_HALIDE
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
InferenceEngine::Builder::Layer l = InferenceEngine::Builder::ScaleShiftLayer(name);
CV_Assert(!blobs.empty());
const size_t numChannels = blobs[0].total();
if (hasWeights)
{
addConstantData("weights", wrapToInfEngineBlob(blobs[0], {numChannels}, InferenceEngine::Layout::C), l);
}
else
{
auto weights = InferenceEngine::make_shared_blob<float>({
InferenceEngine::Precision::FP32, {(size_t)numChannels},
InferenceEngine::Layout::C
});
weights->allocate();
float* buf = weights->buffer().as<float*>();
std::fill(buf, buf + numChannels, 1);
addConstantData("weights", weights, l);
}
if (hasBias)
addConstantData("biases", wrapToInfEngineBlob(blobs.back(), {numChannels}, InferenceEngine::Layout::C), l);
return Ptr<BackendNode>(new InfEngineBackendNode(l));
}
#endif // HAVE_DNN_IE_NN_BUILDER_2019
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto ieInpNode0 = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
auto ieInpNode1 = nodes.size() > 1 ? nodes[1].dynamicCast<InfEngineNgraphNode>()->node : nullptr;
size_t numChannels = 1;
if (blobs.empty())
for (const size_t& dim : ieInpNode1->get_shape())
numChannels *= dim;
else
numChannels = blobs[0].total();
std::vector<size_t> shape(ieInpNode0->get_shape().size(), 1);
int cAxis = normalize_axis(axis, shape.size());
shape[cAxis] = numChannels;
auto node = ieInpNode0;
if (hasWeights)
{
auto weight = blobs.empty() ? ieInpNode1 :
std::make_shared<ngraph::op::Constant>(ngraph::element::f32, ngraph::Shape(shape), blobs[0].data);
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2021_2)
node = std::make_shared<ngraph::op::v1::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
#else
node = std::make_shared<ngraph::op::v0::Multiply>(node, weight, ngraph::op::AutoBroadcastType::NUMPY);
#endif
}
if (hasBias || !hasWeights)
{
std::shared_ptr<ngraph::Node> bias;
if (hasBias)
{
bias = blobs.empty() ? ieInpNode1 :
std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
ngraph::Shape(shape), blobs.back().data);
}
else
bias = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
ngraph::Shape(shape), std::vector<float>(numChannels, 0).data());
node = std::make_shared<ngraph::op::v1::Add>(node, bias, ngraph::op::AutoBroadcastType::NUMPY);
}
return Ptr<BackendNode>(new InfEngineNgraphNode(node));
}
#endif // HAVE_DNN_NGRAPH
void getScaleShift(Mat& scale, Mat& shift) const CV_OVERRIDE
{
scale = (hasWeights && !blobs.empty()) ? blobs[0] : Mat();
shift = (hasBias && !blobs.empty()) ? blobs.back() : Mat();
}
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
params.set("input_scales", DictValue::arrayReal(scales[0].data(), scales[0].size()));
params.set("input_zeropoints", DictValue::arrayInt(zeropoints[0].data(), zeropoints[0].size()));
return true;
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
long flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
flops += 2*total(inputs[i]);
}
return flops;
}
private:
bool hasWeights;
};
Ptr<ScaleLayer> ScaleLayer::create(const LayerParams& params)
{
return Ptr<ScaleLayer>(new ScaleLayerImpl(params));
}
Ptr<Layer> ShiftLayer::create(const LayerParams& params)
{
LayerParams scaleParams;
scaleParams.name = params.name;
scaleParams.type = "Scale";
scaleParams.blobs = params.blobs;
scaleParams.set("bias_term", true);
scaleParams.set("axis", 0);
return Ptr<ScaleLayer>(new ScaleLayerImpl(scaleParams));
}
class DataAugmentationLayerImpl CV_FINAL : public DataAugmentationLayer
{
public:
DataAugmentationLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
recompute_mean = params.get<int>("recompute_mean", 1);
CV_CheckGT(recompute_mean, 0, "");
mean_per_pixel = params.get<bool>("mean_per_pixel", false);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert_N(inputs.size() == 1, blobs.size() == 3);
CV_Assert_N(blobs[0].total() == 1,
blobs[2].total() == inputs[0][1]);
outputs.assign(1, inputs[0]);
return true;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert_N(outputs.size() == 1, blobs.size() == 3, inputs.size() == 1);
int num_iter = 0;
float* inpData = inputs[0].ptr<float>();
float* outData = outputs[0].ptr<float>();
Mat data_mean_cpu = blobs[1].clone();
Mat mean_resize = Mat(inputs[0].size[3], inputs[0].size[2], CV_32FC3);
Mat mean_3d = Mat(data_mean_cpu.size[3], data_mean_cpu.size[2], CV_32FC3, data_mean_cpu.ptr<float>(0));
resize(mean_3d, mean_resize, Size(inputs[0].size[3], inputs[0].size[2]));
int new_size[] = {1, mean_resize.channels(), mean_resize.cols, mean_resize.rows};
Mat data_mean_cpu_resize = mean_resize.reshape(1, *new_size);
Mat data_mean_per_channel_cpu = blobs[2].clone();
const int numWeights = data_mean_cpu_resize.total();
CV_Assert(numWeights != 0);
++num_iter;
if (num_iter <= recompute_mean)
{
data_mean_cpu_resize *= (num_iter - 1);
const int batch = inputs[0].size[0];
float alpha = 1.0 / batch;
for (int i = 0; i < batch; ++i)
{
Mat inpSlice(1, numWeights, CV_32F, inpData);
inpSlice = alpha * inpSlice;
add(data_mean_cpu_resize.reshape(1, 1), inpSlice, data_mean_cpu_resize.reshape(1, 1));
inpData += numWeights;
}
data_mean_cpu_resize *= (1.0 / num_iter);
int newsize[] = {inputs[0].size[1], (int)inputs[0].total(2)};
reduce(data_mean_cpu_resize.reshape(1, 2, &newsize[0]), data_mean_per_channel_cpu, 1, REDUCE_SUM, CV_32F);
int area = inputs[0].total(2);
data_mean_per_channel_cpu *= (1.0 / area);
}
MatShape inpShape = shape(inputs[0]);
inpData = inputs[0].ptr<float>();
if (mean_per_pixel)
{
int numSlices = inputs[0].size[0];
for (int i = 0; i < numSlices; ++i)
{
Mat inpSlice(1, numWeights, CV_32F, inpData);
Mat outSlice(1, numWeights, CV_32F, outData);
add(inpSlice, (-1) * data_mean_cpu_resize, outSlice);
inpData += numWeights;
outData += numWeights;
}
}
else
{
int numSlices = inpShape[1];
int count = numWeights / numSlices;
for (int i = 0; i < numSlices; ++i)
{
Mat inpSlice(1, count, CV_32F, inpData);
Mat outSlice(1, count, CV_32F, outData);
float coeff = data_mean_per_channel_cpu.reshape(1, 1).at<float>(0, i);
outSlice = inpSlice - coeff;
inpData += count;
outData += count;
}
}
}
private:
int recompute_mean;
bool mean_per_pixel;
};
Ptr<DataAugmentationLayer> DataAugmentationLayer::create(const LayerParams& params)
{
return Ptr<DataAugmentationLayer>(new DataAugmentationLayerImpl(params));
}
} // namespace dnn
} // namespace cv