ocl4dnn.hpp 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef _OPENCV_LIBDNN_HPP_
#define _OPENCV_LIBDNN_HPP_
#include <iomanip>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "common.hpp"

namespace cv { namespace dnn { namespace ocl4dnn {

struct OCL4DNNConvConfig
{
    OCL4DNNConvConfig() :
        kernel(1, 1),
        pad(0, 0),
        stride(1, 1),
        dilation(1, 1),
        group(1),
        bias_term(false),
        use_half(false)
    {}
    MatShape in_shape;
    MatShape out_shape;
    Size kernel;
    Size pad;
    Size stride;
    Size dilation;
    int group; // = 1;
    bool bias_term; // = false;
    bool use_half; // = false;
};

typedef enum {
    OCL4DNN_CONV_FUSED_ACTIV_NONE                 = 0,
    OCL4DNN_CONV_FUSED_ACTIV_RELU                 = 1,
    OCL4DNN_CONV_FUSED_ACTIV_PRELU                = 2,
    OCL4DNN_CONV_FUSED_ACTIV_POWER                = 3,
    OCL4DNN_CONV_FUSED_ACTIV_TANH                 = 4,
    OCL4DNN_CONV_FUSED_ACTIV_RELU6                = 5
} ocl4dnnFusedActiv_t;

template<typename Dtype>
class OCL4DNNConvSpatial
{
    public:
        explicit OCL4DNNConvSpatial(OCL4DNNConvConfig config);
        ~OCL4DNNConvSpatial();
        bool Forward(const UMat& bottom_data,
                     const UMat& bottom_data2,
                     const UMat& weight,
                     const UMat& bias,
                     UMat& top_data, int32_t batch_size);
        void setActivReLU(bool fuse_activ, float slope);
        void setActivPReLU(bool fuse_activ, std::vector<float> &slope);
        void setActivPower(bool fuse_activ, float power);
        void setActivTanh(bool fuse_activ);
        void setActivReLU6(bool fuse_activ, float min, float max);
        void setBias(bool bias_term);

    private:
        struct kernelConfig
        {
            std::string kernelName;
            float executionTime;
            size_t local_work_size[3];
            size_t global_work_size[3];
            int32_t workItem_output[3];
            bool verified;
            bool tested;
            bool swizzle_weights;
            bool use_null_local;
            int32_t kernelType;

            kernelConfig()
            {}

            kernelConfig(const std::string& name, const size_t* global_size, const size_t* local_size,
                         const int32_t* workItem,
                         bool swizzle,
                         int32_t type = 0)
                : executionTime(0)
            {
                kernelName = name;
                for (int32_t x = 0; x < 3; x++)
                {
                    local_work_size[x] = local_size ? local_size[x] : 1;
                    global_work_size[x] = global_size[x];
                    workItem_output[x] = workItem[x];
                }
                swizzle_weights = swizzle;
                use_null_local = local_size == NULL;
                verified = false;
                tested = false;
                kernelType = type;
            }
        };

        struct tunerParam
        {
           int kernelType;
           int blockWidth;
           int blockHeight;
           int blockDepth;

           tunerParam(int type, int w, int h, int d)
           {
               kernelType = type;
               blockWidth = w;
               blockHeight= h;
               blockDepth = d;
           }
        };

        inline void addDef(const char* name)
        {
            options_ << " -D " << name;
        }

        inline void addDef(const char* name, const int value)
        {
            options_ << " -D " << name << "=" << value;
        }

        inline void addDef(const char* name, const float value)
        {
            options_ << " -D " << name << "=(float)" << value;
        }

        inline void addDef(const char* name, const double value)
        {
            options_ << " -D " << name << "=(double)" << value;
        }

        inline void addDef(const char* name, const char* value)
        {
            options_ << " -D " << name << "=" << value;
        }

        void useFirstAvailable(const UMat &bottom,
                               UMat &top,
                               const UMat &weight,
                               const UMat &bias,
                               int32_t numImages,
                               UMat &verifyTop);
        void setupKernel();
        void collectCommonInformation();
        void setupKernelDetails(int32_t kernelType,
                                int32_t blockM,
                                int32_t blockK,
                                int32_t blockN);

        ocl::Program compileKernel();
        typedef std::map<std::string, ocl::Program> phash_t;
        phash_t phash;
        void calculateBenchmark(const UMat &bottom, UMat &verifyTop,
                                const UMat &weight, const UMat &bias,
                                int32_t numImages);


        void setupConvolution(const UMat &bottom,
                              UMat &top,
                              const UMat &weight,
                              const UMat &bias,
                              int32_t numImags,
                              UMat &verifyTop);
        bool createConvolutionKernel(int32_t kernelType,
                                     int32_t blockWidth,
                                     int32_t blockHeight,
                                     int32_t blockDepth);
        bool createIDLFKernel(int32_t blockWidth,
                              int32_t blockHeight,
                              int32_t blockDepth);
        bool createBasicKernel(int32_t blockWidth,
                               int32_t blockHeight,
                               int32_t blockDepth);
        bool createGEMMLikeConvKernel(int32_t blockWidth,
                                      int32_t blockHeight,
                                      int32_t blockDepth);
        bool createDWConvKernel(int32_t blockWidth,
                                int32_t blockHeight,
                                int32_t blockDepth);
        bool convolve(const UMat &bottom, UMat &top,
                      const UMat &weight, const UMat &bias,
                      int32_t numImages,
                      kernelConfig* config);
        float timedConvolve(const UMat &bottom, UMat &top,
                            const UMat &weight, const UMat &bias,
                            int32_t numImages, kernelConfig* config);

        bool verifyResult(const UMat &bottom,
                          UMat &top,
                          const UMat &weight,
                          const UMat &bias,
                          int32_t numImages,
                          kernelConfig* config,
                          UMat &verifyTop);

        bool swizzleWeight(const UMat &weight,
                           int32_t swizzled_factor,
                           bool interleave = false);

        void generateKey();
        std::string generateSpecificKey(int32_t type, int32_t blockWidth,
                                          int32_t blockHeight,
                                          int32_t blockDepth);
        void cacheTunedConfig();
        bool loadTunedConfig();

        void saveTunedConfig();
        bool loadCachedConfig();

        void unloadProgram(const std::string& kernelName);
        void prepareKernel(const UMat &bottom, UMat &top,
                           const UMat &weight, const UMat &bias,
                           int32_t numImages);
        bool setupKernelByConfig(int x, int y, int z, int type,
                                 int lx, int ly, int lz,
                                 bool swizzle, bool nullLocal);
        void generateTunerItems(std::vector< cv::Ptr<tunerParam> > &tunerItems);
        void generate_dwconv_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
                                        int blockM, int blockK, int blockN);
        void generate_gemmlike_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
                                          int blockM, int blockK, int blockN);
        void generate_idlf_tuneritems(std::vector< cv::Ptr<tunerParam> > &tunerItems,
                                      int blockM, int blockK, int simd_size);
        void setFusionDefine(ocl4dnnFusedActiv_t fused_activ, bool fused_eltwise);
        void setFusionArg(ocl4dnnFusedActiv_t fused_activ, bool fused_eltwise, int fused_eltwise_offset, ocl::Kernel &kernel, cl_uint &argIdx);

        int32_t group_;
        bool bias_term_;
        UMat swizzled_weights_umat;
        UMat bottom_data2_;

        int32_t bottom_index_;
        int32_t output_h_;
        int32_t output_w_;
        int32_t kernel_h_;
        int32_t kernel_w_;
        int32_t height_;
        int32_t width_;
        int32_t pad_h_;
        int32_t pad_w_;
        int32_t pad_bottom_;
        int32_t pad_right_;
        int32_t stride_h_;
        int32_t stride_w_;
        int32_t dilation_h_;
        int32_t dilation_w_;

        /// M_ is the channel dimension of the output for a single group, which is the
        /// leading dimension of the filter matrix.
        int32_t M_;

        bool tuned_;
        bool dwconv_;

        std::string key_, key_sanitized_;
        std::string short_key_;
        std::string kernel_name_;
        std::string cache_path_;
        bool use_cache_path_; // true if cache_path_ directory exists
        bool run_auto_tuning_;
        bool force_auto_tuning_;
        int32_t kernel_index_;
        std::vector< cv::Ptr<kernelConfig> > kernelQueue;
        cv::Ptr<kernelConfig> bestKernelConfig;

        int32_t bottom_dim_;
        int32_t top_dim_;
        int32_t num_;
        int32_t channels_;
        int32_t num_output_;

        int32_t kernelType_;
        int32_t blockM_;
        int32_t blockK_;
        int32_t blockN_;
        std::stringstream options_;
        cv::ocl::ProgramSource src_;
        int32_t prev_kernel_type_;
        float negative_slope_;
        float min_value_;
        float max_value_;
        UMat negative_slope_umat_;
        ocl4dnnFusedActiv_t fused_activ_;
        float power_;
        bool fused_eltwise_;
        bool use_half_;
};

typedef enum {
    LIBDNN_POOLING_METHOD_MAX                 = 0,
    LIBDNN_POOLING_METHOD_AVE                 = 1,
    LIBDNN_POOLING_METHOD_STO                 = 2
} ocl4dnnPoolingMethod_t;

struct OCL4DNNPoolConfig
{
    OCL4DNNPoolConfig() :
        kernel(1, 1),
        pad_l(0), pad_t(0), pad_r(0), pad_b(0),
        stride(1, 1),
        dilation(1, 1),
        channels(0),
        pool_method(LIBDNN_POOLING_METHOD_MAX),
        global_pooling(false),
        avePoolPaddedArea(true),
        computeMaxIdx(true),
        use_half(false)
    {}
    MatShape in_shape;
    MatShape out_shape;
    Size kernel;
    int pad_l, pad_t, pad_r, pad_b;
    Size stride;
    Size dilation;

    int channels;
    ocl4dnnPoolingMethod_t pool_method; // = LIBDNN_POOLING_METHOD_MAX;
    bool global_pooling; // = false;
    bool avePoolPaddedArea;
    bool computeMaxIdx;
    bool use_half;
};

template<typename Dtype>
class OCL4DNNPool
{
    public:
        explicit OCL4DNNPool(OCL4DNNPoolConfig config);
        ~OCL4DNNPool();
        bool Forward(const UMat& bottom_data,
                     UMat& top_data,
                     UMat& top_mask);
    private:
        // Pooling parameters
        std::vector<int32_t> stride_;
        std::vector<int32_t> kernel_shape_;
        std::vector<int32_t> im_in_shape_;
        std::vector<int32_t> im_out_shape_;

        ocl4dnnPoolingMethod_t pool_method_;
        int32_t count_;
        int32_t channels_;
        int32_t kernel_h_;
        int32_t kernel_w_;
        int32_t stride_h_;
        int32_t stride_w_;
        int32_t pad_t_;
        int32_t pad_l_;
        int32_t pad_b_;
        int32_t pad_r_;
        int32_t height_;
        int32_t width_;
        int32_t pooled_height_;
        int32_t pooled_width_;
        bool avePoolPaddedArea;
        bool computeMaxIdx;
        bool use_half;
};

struct OCL4DNNInnerProductConfig
{
    OCL4DNNInnerProductConfig() :
        num_output(0), M(0), K(0),
        bias_term(false), transpose(false), phase_test(true), use_half(false)
    {}
    int num_output;
    int M;
    int K;
    bool bias_term;
    bool transpose; // = false;
    bool phase_test; // = true;
    bool use_half; // = false;
};

template<typename Dtype>
class OCL4DNNInnerProduct
{
    public:
        explicit OCL4DNNInnerProduct(OCL4DNNInnerProductConfig config);
        ~OCL4DNNInnerProduct();
        bool Forward(const UMat& bottom_data,
                     const UMat& weight,
                     const UMat& bias,
                     UMat& top_data);
    private:
        OCL4DNNInnerProductConfig config_;
        //int32_t axis_;
        int32_t num_output_;
        int32_t M_;
        int32_t N_;
        int32_t K_;
        bool bias_term_;
        bool transpose_;
        bool image_copied_;
        bool phase_test_;
        bool use_half_;
};

typedef enum {
    LRNParameter_NormRegion_ACROSS_CHANNELS = 0,
    LRNParameter_NormRegion_WITHIN_CHANNEL = 1
} LRNParameter_NormRegion_WITHIN_CHANNEL_t;

struct OCL4DNNLRNConfig
{
    OCL4DNNLRNConfig() :
        lrn_type(LRNParameter_NormRegion_ACROSS_CHANNELS),
        phase_test(true),
        local_size(0), alpha(0.f), beta(0.f), k(0.f), norm_by_size(false),
        batch_size(0), channels(0), height(0), width(0), use_half(false)
    {}
    MatShape in_shape;
    LRNParameter_NormRegion_WITHIN_CHANNEL_t lrn_type;
    bool phase_test; // = true;
    int local_size;
    float alpha;
    float beta;
    float k;
    bool norm_by_size;
    int32_t batch_size;
    int32_t channels;
    int32_t height;
    int32_t width;
    bool use_half;
};

template<typename Dtype>
class OCL4DNNLRN
{
    public:
        explicit OCL4DNNLRN(OCL4DNNLRNConfig config);
        bool Forward(const UMat& bottom_data, UMat& top_data);

    private:
        bool crossChannelForward(const UMat& bottom_data, UMat& top_data);
        LRNParameter_NormRegion_WITHIN_CHANNEL_t lrn_type_;
        bool phase_test_;
        int32_t size_;
        Dtype alpha_;
        Dtype beta_;
        Dtype k_;
        int32_t num_;
        int32_t channels_;
        int32_t height_;
        int32_t width_;
        bool norm_by_size_;
        bool use_half_;
};

struct OCL4DNNSoftmaxConfig
{
    OCL4DNNSoftmaxConfig() : axis(0), channels(0), logsoftmax(false), use_half(false)
    {}
    MatShape in_shape;
    int axis;
    int channels;
    bool logsoftmax;
    bool use_half;
};

template<typename Dtype>
class OCL4DNNSoftmax
{
    public:
        explicit OCL4DNNSoftmax(OCL4DNNSoftmaxConfig config);
        ~OCL4DNNSoftmax();
        bool Forward(const UMat& bottom_data, UMat& top_data);

    private:
        int32_t softmax_axis_;
        int32_t inner_num_;
        int32_t outer_num_;
        int32_t channels_;
        int32_t count_;
        bool use_slm_;
        bool log_softmax_;
        UMat scale_data_;
        bool use_half_;
};

}}} // namespace cv::dnn::ocl4dnn

#endif