onnx_graph_simplifier.cpp
24.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include "../graph_simplifier.hpp"
#include "onnx_graph_simplifier.hpp"
#include <opencv2/core/utils/logger.hpp>
#include <queue>
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
extern bool DNN_DIAGNOSTICS_RUN;
// This wrapper can behave differently for fake input nodes and real graph nodes.
class ONNXNodeWrapper : public ImportNodeWrapper
{
public:
ONNXNodeWrapper(opencv_onnx::NodeProto* _node = 0) : node(_node) {}
virtual int getNumInputs() const CV_OVERRIDE
{
return node ? node->input_size() : 0;
}
virtual std::string getInputName(int idx) const CV_OVERRIDE
{
CV_Assert_N(node, idx < node->input_size());
return node->input(idx);
}
virtual std::string getType() const CV_OVERRIDE
{
return node ? node->op_type() : "";
}
virtual void setType(const std::string& type) CV_OVERRIDE
{
CV_Assert(node);
node->set_op_type(type);
}
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
{
CV_Assert(node);
node->clear_input();
for (int i = 0; i < inputs.size(); ++i)
node->add_input(inputs[i]);
}
opencv_onnx::NodeProto* node;
};
// ONNX graph's inputs are separate from nodes so we index them before the rest of nodes.
class ONNXGraphWrapper : public ImportGraphWrapper
{
public:
ONNXGraphWrapper(opencv_onnx::GraphProto& _net) : net(_net)
{
numInputs = net.input_size();
numInitializers = net.initializer_size();
}
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
{
opencv_onnx::NodeProto* node = 0;
if (idx >= numInputs + numInitializers)
node = net.mutable_node(idx - numInputs - numInitializers);
return makePtr<ONNXNodeWrapper>(node);
}
virtual int getNumNodes() const CV_OVERRIDE
{
return numInputs + numInitializers + net.node_size();
}
virtual int getNumOutputs(int nodeId) const CV_OVERRIDE
{
if (nodeId < numInputs + numInitializers)
return 1;
else
return net.node(nodeId - numInputs - numInitializers).output_size();
}
virtual std::string getOutputName(int nodeId, int outId) const CV_OVERRIDE
{
CV_Assert(outId < getNumOutputs(nodeId));
if (nodeId < numInputs)
return net.input(nodeId).name();
else if (nodeId < numInputs + numInitializers)
return net.initializer(nodeId - numInputs).name();
else
return net.node(nodeId - numInputs - numInitializers).output(outId);
}
virtual void removeNode(int idx) CV_OVERRIDE
{
CV_Assert(idx >= numInputs + numInitializers);
net.mutable_node()->DeleteSubrange(idx - numInputs - numInitializers, 1);
}
private:
int numInputs, numInitializers;
opencv_onnx::GraphProto& net;
};
class SoftMaxSubgraph : public Subgraph
{
public:
SoftMaxSubgraph() : axis(1)
{
int input = addNodeToMatch("");
int inpExp = addNodeToMatch("Exp", input);
int sum = addNodeToMatch("ReduceSum", inpExp);
addNodeToMatch("Div", inpExp, sum);
setFusedNode("Softmax", input);
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
Ptr<ImportNodeWrapper> sum = net->getNode(matchedNodesIds[1]);
opencv_onnx::NodeProto* node = sum.dynamicCast<ONNXNodeWrapper>()->node;
for (int i = 0; i < node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = node->attribute(i);
if (attr.name() != "axes")
continue;
if (attr.ints_size() != 1)
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size()));
axis = attr.ints(0);
return true;
}
CV_Error(Error::StsNotImplemented, "Missed axes attribute");
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* attr = node->add_attribute();
attr->set_name("axis");
attr->set_i(axis);
}
private:
int axis;
};
class NormalizeSubgraphBase : public Subgraph
{
public:
NormalizeSubgraphBase(int _normNodeOrder = 0) : axis(1), normNodeOrder(_normNodeOrder) {}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
Ptr<ImportNodeWrapper> norm = net->getNode(matchedNodesIds[normNodeOrder]);
opencv_onnx::NodeProto* node = norm.dynamicCast<ONNXNodeWrapper>()->node;
for (int i = 0; i < node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = node->attribute(i);
if (attr.name() != "axes")
continue;
if (attr.ints_size() != 1)
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size()));
axis = attr.ints(0);
return true;
}
CV_Error(Error::StsNotImplemented, "Missed axes attribute");
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* axis_attr = node->add_attribute();
axis_attr->set_name("axis");
axis_attr->set_i(axis);
opencv_onnx::AttributeProto* end_axis_attr = node->add_attribute();
end_axis_attr->set_name("end_axis");
end_axis_attr->set_i(axis);
}
protected:
int axis, normNodeOrder;
};
class NormalizeSubgraph1 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph1()
{
int input = addNodeToMatch("");
int norm = addNodeToMatch("ReduceL2", input);
addNodeToMatch("Div", input, norm);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph2 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph2()
{
int input = addNodeToMatch("");
int norm = addNodeToMatch("ReduceL2", input);
int clip = addNodeToMatch("Clip", norm);
int shape = addNodeToMatch("Shape", input);
int expand = addNodeToMatch("Expand", clip, shape);
addNodeToMatch("Div", input, expand);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph2_2 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph2_2()
{
int input = addNodeToMatch("");
int norm = addNodeToMatch("ReduceL2", input);
int min = addNodeToMatch("");
int max = addNodeToMatch("");
int clip = addNodeToMatch("Clip", norm, min, max);
int shape = addNodeToMatch("");
int expand = addNodeToMatch("Expand", clip, shape);
addNodeToMatch("Div", input, expand);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph3 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph3() : NormalizeSubgraphBase(1)
{
int input = addNodeToMatch("");
int power = addNodeToMatch("Constant");
int squared = addNodeToMatch("Pow", input, power);
int sum = addNodeToMatch("ReduceSum", squared);
int sqrtNode = addNodeToMatch("Sqrt", sum);
int eps = addNodeToMatch("Constant");
int add = addNodeToMatch("Add", sqrtNode, eps);
addNodeToMatch("Div", input, add);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph4 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph4() : NormalizeSubgraphBase(1)
{
int input = addNodeToMatch("");
int mul = addNodeToMatch("Mul", input, input);
int sum = addNodeToMatch("ReduceSum", mul);
int eps = addNodeToMatch("");
int max = addNodeToMatch("Max", sum, eps);
int sqrt = addNodeToMatch("Sqrt", max);
int reciprocal = addNodeToMatch("Reciprocal", sqrt);
addNodeToMatch("Mul", input, reciprocal);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph5 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph5() : NormalizeSubgraphBase(1)
{
int input = addNodeToMatch("");
int mul = addNodeToMatch("Mul", input, input);
int sum = addNodeToMatch("ReduceSum", mul);
int clip = addNodeToMatch("Clip", sum);
int sqrt = addNodeToMatch("Sqrt", clip);
int one = addNodeToMatch("Constant");
int div = addNodeToMatch("Div", one, sqrt);
addNodeToMatch("Mul", input, div);
setFusedNode("Normalize", input);
}
};
class GatherCastSubgraph : public Subgraph
{
public:
GatherCastSubgraph()
{
int input = addNodeToMatch("");
int index = addNodeToMatch("Constant");
int gather = addNodeToMatch("Gather", input, index);
addNodeToMatch("Cast", gather);
setFusedNode("Gather", input, index);
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
bool retVal = Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds);
size_t matchedNodesNum = matchedNodesIds.size();
// Now we check if merging can be made for these Gather and Cast nodes
if (!retVal || matchedNodesNum < 2)
return retVal;
else {
int nodeToMatch = matchedNodesIds[matchedNodesNum - 1];
const Ptr<ImportNodeWrapper> node = net->getNode(nodeToMatch);
if (node->getType() == "Cast") {
int inpNodeId = matchedNodesIds[matchedNodesNum - 2];
const Ptr<ImportNodeWrapper> inpNode = net->getNode(inpNodeId);
if (inpNode->getType() == "Gather") {
int numNodes = net->getNumNodes();
std::string inpNodeName = node->getInputName(0);
for (int i = 0; i < numNodes; ++i) {
const Ptr<ImportNodeWrapper> node_to_check = net->getNode(i);
int numInp = node_to_check->getNumInputs();
for (int inp = 0; inp < numInp; ++inp) {
if (i != nodeToMatch && inpNodeName == node_to_check->getInputName(0)) {
// Another node has the same input node, so it cannot be merged.
return false;
}
}
}
}
}
}
return retVal;
}
};
class ExpandSubgraph : public Subgraph
{
public:
ExpandSubgraph()
{
int input = addNodeToMatch("");
int values = addNodeToMatch("");
int init = addNodeToMatch("ConstantOfShape", values);
int coeff = addNodeToMatch("Constant");
int mul = addNodeToMatch("Mul", init, coeff);
int shape = addNodeToMatch("Constant");
int condition = addNodeToMatch("Equal", shape, mul);
int where = addNodeToMatch("Where", condition, init, addNodeToMatch("Constant"));
addNodeToMatch("Expand", input, where);
setFusedNode("Expand", input, shape);
}
};
class MishSubgraph : public Subgraph
{
public:
MishSubgraph()
{
int input = addNodeToMatch("");
int softplus = addNodeToMatch("Softplus", input);
int tanh = addNodeToMatch("Tanh", softplus);
addNodeToMatch("Mul", input, tanh);
setFusedNode("Mish", input);
}
};
class MulCastSubgraph : public Subgraph
{
public:
MulCastSubgraph()
{
int input = addNodeToMatch("");
int scaleNode = addNodeToMatch("Constant");
int mul = addNodeToMatch("Mul", input, scaleNode);
addNodeToMatch("Cast", mul);
setFusedNode("Mul", input, scaleNode);
}
};
class ExtractScalesSubgraph : public Subgraph
{
public:
ExtractScalesSubgraph()
{
input = addNodeToMatch("");
int indexH = addNodeToMatch("Constant");
int shape1 = addNodeToMatch("Shape", input);
int gather1 = addNodeToMatch("Gather", shape1, indexH);
scaleHNode = addNodeToMatch("Constant");
int mul1 = addNodeToMatch("Mul", gather1, scaleHNode);
int floor1 = addNodeToMatch("Floor", mul1);
int indexW = addNodeToMatch("Constant");
int shape2 = addNodeToMatch("Shape", input);
int gather2 = addNodeToMatch("Gather", shape2, indexW);
scaleWNode = addNodeToMatch("Constant");
int mul2 = addNodeToMatch("Mul", gather2, scaleWNode);
int floor2 = addNodeToMatch("Floor", mul2);
int unsqueeze1 = addNodeToMatch("Unsqueeze", floor1);
int unsqueeze2 = addNodeToMatch("Unsqueeze", floor2);
concatId = addNodeToMatch("Concat", unsqueeze1, unsqueeze2);
}
void finalize(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE
{
opencv_onnx::NodeProto* constant_node = inputs[1].dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto tensor_proto = constant_node->attribute(0).t();
Mat scaleW = getMatFromTensor(tensor_proto);
CV_Assert(scaleW.total() == 1);
scaleW.convertTo(scaleW, CV_32F);
constant_node = inputs[2].dynamicCast<ONNXNodeWrapper>()->node;
tensor_proto = constant_node->attribute(0).t();
Mat scaleH = getMatFromTensor(tensor_proto);
CV_Assert(scaleH.total() == 1);
scaleH.convertTo(scaleH, CV_32F);
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* attrH = node->add_attribute();
attrH->set_name("height_scale");
attrH->set_i(scaleH.at<float>(0));
opencv_onnx::AttributeProto* attrW = node->add_attribute();
attrW->set_name("width_scale");
attrW->set_i(scaleW.at<float>(0));
node->mutable_input()->DeleteSubrange(1, 2); // Remove two last inputs
}
protected:
int input, concatId;
int scaleHNode, scaleWNode;
};
class UpsampleSubgraph : public ExtractScalesSubgraph
{
public:
UpsampleSubgraph() : ExtractScalesSubgraph()
{
int shape = addNodeToMatch("Shape", input);
int slice = addNodeToMatch("Slice", shape);
int castConcat = addNodeToMatch("Cast", concatId);
int castSlice = addNodeToMatch("Cast", slice);
int divide = addNodeToMatch("Div", castConcat, castSlice);
int constant = addNodeToMatch("Constant");
int concat = addNodeToMatch("Concat", constant, divide);
addNodeToMatch("Upsample", input, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class ResizeSubgraph1 : public ExtractScalesSubgraph
{
public:
ResizeSubgraph1() : ExtractScalesSubgraph()
{
int shape = addNodeToMatch("Shape", input);
int slice = addNodeToMatch("Slice", shape, addNodeToMatch("Constant"), addNodeToMatch("Constant"), addNodeToMatch("Constant"));
int castConcat = addNodeToMatch("Cast", concatId);
int concat = addNodeToMatch("Concat", slice, castConcat);
int constant = addNodeToMatch("Constant");
addNodeToMatch("Resize", input, constant, constant, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class ResizeSubgraph2 : public ExtractScalesSubgraph
{
public:
ResizeSubgraph2() : ExtractScalesSubgraph()
{
int constantConcat = addNodeToMatch("Constant");
int castConcat = addNodeToMatch("Cast", concatId);
int concat = addNodeToMatch("Concat", constantConcat, castConcat);
int constant = addNodeToMatch("Constant");
addNodeToMatch("Resize", input, constant, constant, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class BatchNormalizationSubgraphBase : public Subgraph
{
public:
BatchNormalizationSubgraphBase()
{
input = addNodeToMatch("");
var = addNodeToMatch("");
mean = addNodeToMatch("");
weight = addNodeToMatch("");
bias = addNodeToMatch("");
A = addNodeToMatch("");
shape1 = addNodeToMatch("");
shape2 = addNodeToMatch("");
}
protected:
int input, var, mean, weight, bias, A, shape1, shape2;
};
class BatchNormalizationSubgraph1 : public BatchNormalizationSubgraphBase
{
public:
BatchNormalizationSubgraph1()
{
int reshape1 = addNodeToMatch("Reshape", weight, shape1);
int reshape2 = addNodeToMatch("Reshape", bias, shape2);
int shape3 = addNodeToMatch("Constant");
int reshape3 = addNodeToMatch("Reshape", var, shape3);
int shape4 = addNodeToMatch("Constant");
int reshape4 = addNodeToMatch("Reshape", mean, shape4);
int sqrtNode = addNodeToMatch("Sqrt", reshape3);
int divNode = addNodeToMatch("Div", A, sqrtNode);
int mul1 = addNodeToMatch("Mul", reshape1, divNode);
int mul2 = addNodeToMatch("Mul", reshape4, mul1);
int sub = addNodeToMatch("Sub", reshape2, mul2);
int mul3 = addNodeToMatch("Mul", input, mul1);
addNodeToMatch("Add", mul3, sub);
setFusedNode("BatchNormalization", input, weight, bias, mean, var);
}
};
class BatchNormalizationSubgraph2 : public BatchNormalizationSubgraphBase
{
public:
BatchNormalizationSubgraph2()
{
int sqrtNode = addNodeToMatch("Sqrt", var);
int divNode = addNodeToMatch("Div", A, sqrtNode);
int mul1 = addNodeToMatch("Mul", weight, divNode);
int reshape2 = addNodeToMatch("Reshape", mul1, shape2);
int mulMean = addNodeToMatch("Mul", mean, mul1);
int sub = addNodeToMatch("Sub", bias, mulMean);
int reshape1 = addNodeToMatch("Reshape", sub, shape1);
int mulInput = addNodeToMatch("Mul", input, reshape2);
addNodeToMatch("Add", mulInput, reshape1);
setFusedNode("BatchNormalization", input, weight, bias, mean, var);
}
};
void simplifySubgraphs(opencv_onnx::GraphProto& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(makePtr<GatherCastSubgraph>());
subgraphs.push_back(makePtr<MulCastSubgraph>());
subgraphs.push_back(makePtr<UpsampleSubgraph>());
subgraphs.push_back(makePtr<ResizeSubgraph1>());
subgraphs.push_back(makePtr<ResizeSubgraph2>());
subgraphs.push_back(makePtr<SoftMaxSubgraph>());
subgraphs.push_back(makePtr<NormalizeSubgraph1>());
subgraphs.push_back(makePtr<NormalizeSubgraph2>());
subgraphs.push_back(makePtr<NormalizeSubgraph2_2>());
subgraphs.push_back(makePtr<NormalizeSubgraph3>());
subgraphs.push_back(makePtr<BatchNormalizationSubgraph1>());
subgraphs.push_back(makePtr<BatchNormalizationSubgraph2>());
subgraphs.push_back(makePtr<ExpandSubgraph>());
subgraphs.push_back(makePtr<MishSubgraph>());
subgraphs.push_back(makePtr<NormalizeSubgraph4>());
subgraphs.push_back(makePtr<NormalizeSubgraph5>());
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
}
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
{
if (tensor_proto.raw_data().empty() && tensor_proto.float_data().empty() &&
tensor_proto.double_data().empty() && tensor_proto.int64_data().empty() &&
tensor_proto.int32_data().empty())
return Mat();
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type();
Mat blob;
std::vector<int> sizes;
for (int i = 0; i < tensor_proto.dims_size(); i++) {
sizes.push_back(tensor_proto.dims(i));
}
if (sizes.empty())
sizes.assign(1, 1);
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) {
if (!tensor_proto.float_data().empty()) {
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data();
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob);
}
else {
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32FC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE)
{
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data();
CV_Assert(!field.empty());
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1);
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT32)
{
if (!tensor_proto.int32_data().empty())
{
const ::google::protobuf::RepeatedField<int32_t> field = tensor_proto.int32_data();
Mat(sizes, CV_32SC1, (void*)field.data()).copyTo(blob);
}
else
{
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32SC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
{
blob.create(sizes, CV_32SC1);
int32_t* dst = reinterpret_cast<int32_t*>(blob.data);
if (!tensor_proto.int64_data().empty()) {
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data();
convertInt64ToInt32(src, dst, blob.total());
}
else
{
const char* val = tensor_proto.raw_data().c_str();
#if CV_STRONG_ALIGNMENT
// Aligned pointer is required: https://github.com/opencv/opencv/issues/16373
// this doesn't work: typedef int64_t CV_DECL_ALIGNED(1) unaligned_int64_t;
AutoBuffer<int64_t, 16> aligned_val;
if (!isAligned<sizeof(int64_t)>(val))
{
size_t sz = tensor_proto.raw_data().size();
aligned_val.allocate(divUp(sz, sizeof(int64_t)));
memcpy(aligned_val.data(), val, sz);
val = (const char*)aligned_val.data();
}
#endif
const int64_t* src = reinterpret_cast<const int64_t*>(val);
convertInt64ToInt32(src, dst, blob.total());
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT8 ||
datatype == opencv_onnx::TensorProto_DataType_UINT8)
{
// TODO : Add support for uint8 weights and acitvations. For now, converting uint8 tensors to int8.
int offset = datatype == opencv_onnx::TensorProto_DataType_INT8 ? 0 : -128;
int depth = datatype == opencv_onnx::TensorProto_DataType_INT8 ? CV_8S : CV_8U;
if (!tensor_proto.int32_data().empty())
{
const ::google::protobuf::RepeatedField<int32_t> field = tensor_proto.int32_data();
Mat(sizes, CV_32SC1, (void*)field.data()).convertTo(blob, CV_8S, 1.0, offset);
}
else
{
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, depth, val).convertTo(blob, CV_8S, 1.0, offset);
}
}
else
{
std::string errorMsg = "Unsupported data type: " +
opencv_onnx::TensorProto_DataType_Name(datatype);
if (!DNN_DIAGNOSTICS_RUN)
{
CV_Error(Error::StsUnsupportedFormat, errorMsg);
}
CV_LOG_ERROR(NULL, errorMsg);
return blob;
}
if (tensor_proto.dims_size() == 0)
blob.dims = 1; // To force 1-dimensional cv::Mat for scalars.
return blob;
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn