opencv-onnx.proto 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
//
// WARNING: This file is automatically generated!  Please edit onnx.in.proto.
//


// Copyright (c) Facebook Inc. and Microsoft Corporation.
// Licensed under the MIT license.

syntax = "proto2";

package opencv_onnx;

// Overview
//
// ONNX is an open specification that is comprised of the following components:
//
// 1)  A definition of an extensible computation graph model.
// 2)  Definitions of standard data types.
// 3)  Definitions of built-in operators.
//
// This document describes the syntax of models and their computation graphs,
// as well as the standard data types. Together, they are referred to as the ONNX
// Intermediate Representation, or 'IR' for short.
//
// The normative semantic specification of the ONNX IR is found in docs/IR.md.
// Definitions of the built-in neural network operators may be found in docs/Operators.md.

// Notes
//
// Release
//
// We are still in the very early stage of defining ONNX. The current
// version of ONNX is a starting point. While we are actively working
// towards a complete spec, we would like to get the community involved
// by sharing our working version of ONNX.
//
// Protobuf compatibility
//
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
// that is compatible with both protobuf v2 and v3. This means that we do not use any
// protobuf features that are only available in one of the two versions.
//
// Here are the most notable contortions we have to carry out to work around
// these limitations:
//
//   - No 'map' (added protobuf 3.0). We instead represent mappings as lists
//     of key-value pairs, where order does not matter and duplicates
//     are not allowed.


// Versioning
//
// ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md
//
// To be compatible with both proto2 and proto3, we will use a version number
// that is not defined by the default value but an explicit enum number.
enum Version {
  // proto3 requires the first enum value to be zero.
  // We add this just to appease the compiler.
  _START_VERSION = 0;
  // The version field is always serialized and we will use it to store the
  // version that the  graph is generated from. This helps us set up version
  // control.
  // For the IR, we are using simple numbers starting with with 0x00000001,
  // which was the version we published on Oct 10, 2017.
  IR_VERSION_2017_10_10 = 0x0000000000000001;

  // IR_VERSION 2 published on Oct 30, 2017
  // - Added type discriminator to AttributeProto to support proto3 users
  IR_VERSION_2017_10_30 = 0x0000000000000002;

  // IR VERSION 3 published on Nov 3, 2017
  // - For operator versioning:
  //    - Added new message OperatorSetIdProto
  //    - Added opset_import in ModelProto
  // - For vendor extensions, added domain in NodeProto
  IR_VERSION = 0x0000000000000003;
}

// Attributes
//
// A named attribute containing either singular float, integer, string, graph,
// and tensor values, or repeated float, integer, string, graph, and tensor values.
// An AttributeProto MUST contain the name field, and *only one* of the
// following content fields, effectively enforcing a C/C++ union equivalent.
message AttributeProto {

  // Note: this enum is structurally identical to the OpSchema::AttrType
  // enum defined in schema.h.  If you rev one, you likely need to rev the other.
  enum AttributeType {
    UNDEFINED = 0;
    FLOAT = 1;
    INT = 2;
    STRING = 3;
    TENSOR = 4;
    GRAPH = 5;

    FLOATS = 6;
    INTS = 7;
    STRINGS = 8;
    TENSORS = 9;
    GRAPHS = 10;
  }

  // The name field MUST be present for this version of the IR.
  optional string name = 1;           // namespace Attribute

  // if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
  // In this case, this AttributeProto does not contain data, and it's a reference of attribute
  // in parent scope.
  // NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
  optional string ref_attr_name = 21;

  // A human-readable documentation for this attribute. Markdown is allowed.
  optional string doc_string = 13;

  // The type field MUST be present for this version of the IR.
  // For 0.0.1 versions of the IR, this field was not defined, and
  // implementations needed to use has_field heuristics to determine
  // which value field was in use.  For IR_VERSION 0.0.2 or later, this
  // field MUST be set and match the f|i|s|t|... field in use.  This
  // change was made to accommodate proto3 implementations.
  optional AttributeType type = 20;   // discriminator that indicates which field below is in use

  // Exactly ONE of the following fields must be present for this version of the IR
  optional float f = 2;               // float
  optional int64 i = 3;               // int
  optional bytes s = 4;               // UTF-8 string
  optional TensorProto t = 5;         // tensor value
  optional GraphProto g = 6;          // graph
  // Do not use field below, it's deprecated.
  // optional ValueProto v = 12;         // value - subsumes everything but graph

  repeated float floats = 7;          // list of floats
  repeated int64 ints = 8;            // list of ints
  repeated bytes strings = 9;         // list of UTF-8 strings
  repeated TensorProto tensors = 10;  // list of tensors
  repeated GraphProto graphs = 11;    // list of graph
}

// Defines information on value, including the name, the type, and
// the shape of the value.
message ValueInfoProto {
  // This field MUST be present in this version of the IR.
  optional string name = 1;     // namespace Value
  // This field MUST be present in this version of the IR.
  optional TypeProto type = 2;
  // A human-readable documentation for this value. Markdown is allowed.
  optional string doc_string = 3;
}

// Nodes
//
// Computation graphs are made up of a DAG of nodes, which represent what is
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
//
// For example, it can be a node of type "Conv" that takes in an image, a filter
// tensor and a bias tensor, and produces the convolved output.
message NodeProto {
  repeated string input = 1;    // namespace Value
  repeated string output = 2;   // namespace Value

  // An optional identifier for this node in a graph.
  // This field MAY be absent in this version of the IR.
  optional string name = 3;     // namespace Node

  // The symbolic identifier of the Operator to execute.
  optional string op_type = 4;  // namespace Operator
  // The domain of the OperatorSet that specifies the operator named by op_type.
  optional string domain = 7;   // namespace Domain

  // Additional named attributes.
  repeated AttributeProto attribute = 5;

  // A human-readable documentation for this node. Markdown is allowed.
  optional string doc_string = 6;
}

// Models
//
// ModelProto is a top-level file/container format for bundling a ML model and
// associating its computation graph with metadata.
//
// The semantics of the model are described by the associated GraphProto.
message ModelProto {
  // The version of the IR this model targets. See Version enum above.
  // This field MUST be present.
  optional int64 ir_version = 1;

  // The OperatorSets this model relies on.
  // All ModelProtos MUST have at least one entry that
  // specifies which version of the ONNX OperatorSet is
  // being imported.
  //
  // All nodes in the ModelProto's graph will bind against the operator
  // with the same-domain/same-op_type operator with the HIGHEST version
  // in the referenced operator sets.
  repeated OperatorSetIdProto opset_import = 8;

  // The name of the framework or tool used to generate this model.
  // This field SHOULD be present to indicate which implementation/tool/framework
  // emitted the model.
  optional string producer_name = 2;

  // The version of the framework or tool used to generate this model.
  // This field SHOULD be present to indicate which implementation/tool/framework
  // emitted the model.
  optional string producer_version = 3;

  // Domain name of the model.
  // We use reverse domain names as name space indicators. For example:
  // `com.facebook.fair` or `com.microsoft.cognitiveservices`
  //
  // Together with `model_version` and GraphProto.name, this forms the unique identity of
  // the graph.
  optional string domain = 4;

  // The version of the graph encoded. See Version enum below.
  optional int64 model_version = 5;

  // A human-readable documentation for this model. Markdown is allowed.
  optional string doc_string = 6;

  // The parameterized graph that is evaluated to execute the model.
  optional GraphProto graph = 7;

  // Named metadata values; keys should be distinct.
  repeated StringStringEntryProto metadata_props = 14;
};

// StringStringEntryProto follows the pattern for cross-proto-version maps.
// See https://developers.google.com/protocol-buffers/docs/proto3#maps
message StringStringEntryProto {
  optional string key = 1;
  optional string value= 2;
};

// Graphs
//
// A graph defines the computational logic of a model and is comprised of a parameterized
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
// This is the equivalent of the "network" or "graph" in many deep learning
// frameworks.
message GraphProto {
  // The nodes in the graph, sorted topologically.
  repeated NodeProto node = 1;

  // The name of the graph.
  optional string name = 2;   // namespace Graph

  // A list of named tensor values, used to specify constant inputs of the graph.
  // Each TensorProto entry must have a distinct name (within the list) that
  // also appears in the input list.
  repeated TensorProto initializer = 5;

  // A human-readable documentation for this graph. Markdown is allowed.
  optional string doc_string = 10;

  // The inputs and outputs of the graph.
  repeated ValueInfoProto input = 11;
  repeated ValueInfoProto output = 12;

  // Information for the values in the graph. The ValueInfoProto.name's
  // must be distinct. It is optional for a value to appear in value_info list.
  repeated ValueInfoProto value_info = 13;

  // DO NOT USE the following fields, they were deprecated from earlier versions.
  // repeated string input = 3;
  // repeated string output = 4;
  // optional int64 ir_version = 6;
  // optional int64 producer_version = 7;
  // optional string producer_tag = 8;
  // optional string domain = 9;
}

// Tensors
//
// A serialized tensor value.
message TensorProto {
  enum DataType {
    UNDEFINED = 0;
    // Basic types.
    FLOAT = 1;   // float
    UINT8 = 2;   // uint8_t
    INT8 = 3;    // int8_t
    UINT16 = 4;  // uint16_t
    INT16 = 5;   // int16_t
    INT32 = 6;   // int32_t
    INT64 = 7;   // int64_t
    STRING = 8;  // string
    BOOL = 9;    // bool

    // Advanced types
    FLOAT16 = 10;
    DOUBLE = 11;
    UINT32 = 12;
    UINT64 = 13;
    COMPLEX64 = 14;     // complex with float32 real and imaginary components
    COMPLEX128 = 15;    // complex with float64 real and imaginary components
    // Future extensions go here.
  }

  // The shape of the tensor.
  repeated int64 dims = 1;

  // The data type of the tensor.
  optional DataType data_type = 2;

  // For very large tensors, we may want to store them in chunks, in which
  // case the following fields will specify the segment that is stored in
  // the current TensorProto.
  message Segment {
    optional int64 begin = 1;
    optional int64 end = 2;
  }
  optional Segment segment = 3;

  // Tensor content must be organized in row-major order.
  //
  // Depending on the data_type field, exactly one of the fields below with
  // name ending in _data is used to store the elements of the tensor.

  // For float and complex64 values
  // Complex64 tensors are encoded as a single array of floats,
  // with the real components appearing in odd numbered positions,
  // and the corresponding imaginary component appearing in the
  // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
  // is encoded as [1.0, 2.0 ,3.0 ,4.0]
  // When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
  repeated float float_data = 4 [packed = true];

  // For int32, uint8, int8, uint16, int16, bool, and float16 values
  // float16 values must be bit-wise converted to an uint16_t prior
  // to writing to the buffer.
  // When this field is present, the data_type field MUST be
  // INT32, INT16, INT8, UINT16, INT8, BOOL, or FLOAT16
  repeated int32 int32_data = 5 [packed = true];

  // For strings.
  // Each element of string_data is a UTF-8 encoded Unicode
  // string. No trailing null, no leading BOM. The protobuf "string"
  // scalar type is not used to match ML community conventions.
  // When this field is present, the data_type field MUST be STRING
  repeated bytes string_data = 6;

  // For int64.
  // When this field is present, the data_type field MUST be INT64
  repeated int64 int64_data = 7 [packed = true];

  // Optionally, a name for the tensor.
  optional string name = 8; // namespace Value

  // A human-readable documentation for this tensor. Markdown is allowed.
  optional string doc_string = 12;

  // Serializations can either use one of the fields above, or use this
  // raw bytes field. The only exception is the string case, where one is
  // required to store the content in the repeated bytes string_data field.
  //
  // When this raw_data field is used to store tensor value, elements MUST
  // be stored in as fixed-width, little-endian order.
  // Floating-point data types MUST be stored in IEEE 754 format.
  // Complex64 elements must be written as two consecutive FLOAT values, real component first.
  // Complex128 elements must be written as two consecutive DOUBLE values, real component first.
  // Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
  //
  // Note: the advantage of specific field rather than the raw_data field is
  // that in some cases (e.g. int data), protobuf does a better packing via
  // variable length storage, and may lead to smaller binary footprint.
  // When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
  optional bytes raw_data = 9;

  // For double
  // Complex64 tensors are encoded as a single array of doubles,
  // with the real components appearing in odd numbered positions,
  // and the corresponding imaginary component appearing in the
  // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
  // is encoded as [1.0, 2.0 ,3.0 ,4.0]
  // When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
  repeated double double_data = 10 [packed = true];

  // For uint64 and uint32 values
  // When this field is present, the data_type field MUST be
  // UINT32 or UINT64
  repeated uint64 uint64_data = 11 [packed = true];
}

// Defines a tensor shape. A dimension can be either an integer value
// or a symbolic variable. A symbolic variable represents an unknown
// dimension.
message TensorShapeProto {
  message Dimension {
    oneof value {
      int64 dim_value = 1;
      string dim_param = 2;   // namespace Shape
    };
    // Standard denotation can optionally be used to denote tensor
    // dimensions with standard semantic descriptions to ensure
    // that operations are applied to the correct axis of a tensor.
    // Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition
    // for pre-defined dimension denotations.
    optional string denotation = 3;
  };
  repeated Dimension dim = 1;
}

// Types
//
// The standard ONNX data types.
message TypeProto {

  message Tensor {
    // This field MUST NOT have the value of UNDEFINED
    // This field MUST be present for this version of the IR.
    optional TensorProto.DataType elem_type = 1;
    optional TensorShapeProto shape = 2;
  }


  oneof value {
    // The type of a tensor.
    Tensor tensor_type = 1;

  }

  // An optional denotation can be used to denote the whole
  // type with a standard semantic description as to what is
  // stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition
  // for pre-defined type denotations.
  optional string denotation = 6;
}

// Operator Sets
//
// OperatorSets are uniquely identified by a (domain, opset_version) pair.
message OperatorSetIdProto {
  // The domain of the operator set being identified.
  // The empty string ("") or absence of this field implies the operator
  // set that is defined as part of the ONNX specification.
  // This field MUST be present in this version of the IR when referring to any other operator set.
  optional string domain = 1;

  // The version of the operator set being identified.
  // This field MUST be present in this version of the IR.
  optional int64 version = 2;
}