nldiffusion_functions.cpp
18 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
//=============================================================================
//
// nldiffusion_functions.cpp
// Author: Pablo F. Alcantarilla
// Institution: University d'Auvergne
// Address: Clermont Ferrand, France
// Date: 27/12/2011
// Email: pablofdezalc@gmail.com
//
// KAZE Features Copyright 2012, Pablo F. Alcantarilla
// All Rights Reserved
// See LICENSE for the license information
//=============================================================================
/**
* @file nldiffusion_functions.cpp
* @brief Functions for non-linear diffusion applications:
* 2D Gaussian Derivatives
* Perona and Malik conductivity equations
* Perona and Malik evolution
* @date Dec 27, 2011
* @author Pablo F. Alcantarilla
*/
#include "../precomp.hpp"
#include "nldiffusion_functions.h"
#include <iostream>
// Namespaces
/* ************************************************************************* */
namespace cv
{
using namespace std;
/* ************************************************************************* */
/**
* @brief This function smoothes an image with a Gaussian kernel
* @param src Input image
* @param dst Output image
* @param ksize_x Kernel size in X-direction (horizontal)
* @param ksize_y Kernel size in Y-direction (vertical)
* @param sigma Kernel standard deviation
*/
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma) {
int ksize_x_ = 0, ksize_y_ = 0;
// Compute an appropriate kernel size according to the specified sigma
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) {
ksize_x_ = cvCeil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f)));
ksize_y_ = ksize_x_;
}
// The kernel size must be and odd number
if ((ksize_x_ % 2) == 0) {
ksize_x_ += 1;
}
if ((ksize_y_ % 2) == 0) {
ksize_y_ += 1;
}
// Perform the Gaussian Smoothing with border replication
GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, BORDER_REPLICATE);
}
/* ************************************************************************* */
/**
* @brief This function computes image derivatives with Scharr kernel
* @param src Input image
* @param dst Output image
* @param xorder Derivative order in X-direction (horizontal)
* @param yorder Derivative order in Y-direction (vertical)
* @note Scharr operator approximates better rotation invariance than
* other stencils such as Sobel. See Weickert and Scharr,
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance,
* Journal of Visual Communication and Image Representation 2002
*/
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder) {
Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT);
}
/* ************************************************************************* */
/**
* @brief This function computes the Perona and Malik conductivity coefficient g1
* g1 = exp(-|dL|^2/k^2)
* @param Lx First order image derivative in X-direction (horizontal)
* @param Ly First order image derivative in Y-direction (vertical)
* @param dst Output image
* @param k Contrast factor parameter
*/
void pm_g1(InputArray _Lx, InputArray _Ly, OutputArray _dst, float k) {
_dst.create(_Lx.size(), _Lx.type());
Mat Lx = _Lx.getMat();
Mat Ly = _Ly.getMat();
Mat dst = _dst.getMat();
Size sz = Lx.size();
float inv_k = 1.0f / (k*k);
for (int y = 0; y < sz.height; y++) {
const float* Lx_row = Lx.ptr<float>(y);
const float* Ly_row = Ly.ptr<float>(y);
float* dst_row = dst.ptr<float>(y);
for (int x = 0; x < sz.width; x++) {
dst_row[x] = (-inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x]));
}
}
exp(dst, dst);
}
/* ************************************************************************* */
/**
* @brief This function computes the Perona and Malik conductivity coefficient g2
* g2 = 1 / (1 + dL^2 / k^2)
* @param Lx First order image derivative in X-direction (horizontal)
* @param Ly First order image derivative in Y-direction (vertical)
* @param dst Output image
* @param k Contrast factor parameter
*/
void pm_g2(InputArray _Lx, InputArray _Ly, OutputArray _dst, float k) {
CV_INSTRUMENT_REGION();
_dst.create(_Lx.size(), _Lx.type());
Mat Lx = _Lx.getMat();
Mat Ly = _Ly.getMat();
Mat dst = _dst.getMat();
Size sz = Lx.size();
dst.create(sz, Lx.type());
float k2inv = 1.0f / (k * k);
for(int y = 0; y < sz.height; y++) {
const float *Lx_row = Lx.ptr<float>(y);
const float *Ly_row = Ly.ptr<float>(y);
float* dst_row = dst.ptr<float>(y);
for(int x = 0; x < sz.width; x++) {
dst_row[x] = 1.0f / (1.0f + ((Lx_row[x] * Lx_row[x] + Ly_row[x] * Ly_row[x]) * k2inv));
}
}
}
/* ************************************************************************* */
/**
* @brief This function computes Weickert conductivity coefficient gw
* @param Lx First order image derivative in X-direction (horizontal)
* @param Ly First order image derivative in Y-direction (vertical)
* @param dst Output image
* @param k Contrast factor parameter
* @note For more information check the following paper: J. Weickert
* Applications of nonlinear diffusion in image processing and computer vision,
* Proceedings of Algorithmy 2000
*/
void weickert_diffusivity(InputArray _Lx, InputArray _Ly, OutputArray _dst, float k) {
_dst.create(_Lx.size(), _Lx.type());
Mat Lx = _Lx.getMat();
Mat Ly = _Ly.getMat();
Mat dst = _dst.getMat();
Size sz = Lx.size();
float inv_k = 1.0f / (k*k);
for (int y = 0; y < sz.height; y++) {
const float* Lx_row = Lx.ptr<float>(y);
const float* Ly_row = Ly.ptr<float>(y);
float* dst_row = dst.ptr<float>(y);
for (int x = 0; x < sz.width; x++) {
float dL = inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x]);
dst_row[x] = -3.315f/(dL*dL*dL*dL);
}
}
exp(dst, dst);
dst = 1.0 - dst;
}
/* ************************************************************************* */
/**
* @brief This function computes Charbonnier conductivity coefficient gc
* gc = 1 / sqrt(1 + dL^2 / k^2)
* @param Lx First order image derivative in X-direction (horizontal)
* @param Ly First order image derivative in Y-direction (vertical)
* @param dst Output image
* @param k Contrast factor parameter
* @note For more information check the following paper: J. Weickert
* Applications of nonlinear diffusion in image processing and computer vision,
* Proceedings of Algorithmy 2000
*/
void charbonnier_diffusivity(InputArray _Lx, InputArray _Ly, OutputArray _dst, float k) {
_dst.create(_Lx.size(), _Lx.type());
Mat Lx = _Lx.getMat();
Mat Ly = _Ly.getMat();
Mat dst = _dst.getMat();
Size sz = Lx.size();
float inv_k = 1.0f / (k*k);
for (int y = 0; y < sz.height; y++) {
const float* Lx_row = Lx.ptr<float>(y);
const float* Ly_row = Ly.ptr<float>(y);
float* dst_row = dst.ptr<float>(y);
for (int x = 0; x < sz.width; x++) {
float den = sqrt(1.0f+inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x]));
dst_row[x] = 1.0f / den;
}
}
}
/* ************************************************************************* */
/**
* @brief This function computes a good empirical value for the k contrast factor
* given an input image, the percentile (0-1), the gradient scale and the number of
* bins in the histogram
* @param img Input image
* @param perc Percentile of the image gradient histogram (0-1)
* @param gscale Scale for computing the image gradient histogram
* @param nbins Number of histogram bins
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel
* @return k contrast factor
*/
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y) {
CV_INSTRUMENT_REGION();
int nbin = 0, nelements = 0, nthreshold = 0, k = 0;
float kperc = 0.0, modg = 0.0;
float npoints = 0.0;
float hmax = 0.0;
// Create the array for the histogram
std::vector<int> hist(nbins, 0);
// Create the matrices
Mat gaussian = Mat::zeros(img.rows, img.cols, CV_32F);
Mat Lx = Mat::zeros(img.rows, img.cols, CV_32F);
Mat Ly = Mat::zeros(img.rows, img.cols, CV_32F);
// Perform the Gaussian convolution
gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale);
// Compute the Gaussian derivatives Lx and Ly
Scharr(gaussian, Lx, CV_32F, 1, 0, 1, 0, cv::BORDER_DEFAULT);
Scharr(gaussian, Ly, CV_32F, 0, 1, 1, 0, cv::BORDER_DEFAULT);
// Skip the borders for computing the histogram
for (int i = 1; i < gaussian.rows - 1; i++) {
const float *lx = Lx.ptr<float>(i);
const float *ly = Ly.ptr<float>(i);
for (int j = 1; j < gaussian.cols - 1; j++) {
modg = lx[j]*lx[j] + ly[j]*ly[j];
// Get the maximum
if (modg > hmax) {
hmax = modg;
}
}
}
hmax = sqrt(hmax);
// Skip the borders for computing the histogram
for (int i = 1; i < gaussian.rows - 1; i++) {
const float *lx = Lx.ptr<float>(i);
const float *ly = Ly.ptr<float>(i);
for (int j = 1; j < gaussian.cols - 1; j++) {
modg = lx[j]*lx[j] + ly[j]*ly[j];
// Find the correspondent bin
if (modg != 0.0) {
nbin = (int)floor(nbins*(sqrt(modg) / hmax));
if (nbin == nbins) {
nbin--;
}
hist[nbin]++;
npoints++;
}
}
}
// Now find the perc of the histogram percentile
nthreshold = (int)(npoints*perc);
for (k = 0; nelements < nthreshold && k < nbins; k++) {
nelements = nelements + hist[k];
}
if (nelements < nthreshold) {
kperc = 0.03f;
}
else {
kperc = hmax*((float)(k) / (float)nbins);
}
return kperc;
}
/* ************************************************************************* */
/**
* @brief This function computes Scharr image derivatives
* @param src Input image
* @param dst Output image
* @param xorder Derivative order in X-direction (horizontal)
* @param yorder Derivative order in Y-direction (vertical)
* @param scale Scale factor for the derivative size
*/
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) {
Mat kx, ky;
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
sepFilter2D(src, dst, CV_32F, kx, ky);
}
/* ************************************************************************* */
/**
* @brief Compute derivative kernels for sizes different than 3
* @param _kx Horizontal kernel ues
* @param _ky Vertical kernel values
* @param dx Derivative order in X-direction (horizontal)
* @param dy Derivative order in Y-direction (vertical)
* @param scale_ Scale factor or derivative size
*/
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale) {
CV_INSTRUMENT_REGION();
int ksize = 3 + 2 * (scale - 1);
// The standard Scharr kernel
if (scale == 1) {
getDerivKernels(_kx, _ky, dx, dy, 0, true, CV_32F);
return;
}
_kx.create(ksize, 1, CV_32F, -1, true);
_ky.create(ksize, 1, CV_32F, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
std::vector<float> kerI;
float w = 10.0f / 3.0f;
float norm = 1.0f / (2.0f*scale*(w + 2.0f));
for (int k = 0; k < 2; k++) {
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
kerI.assign(ksize, 0.0f);
if (order == 0) {
kerI[0] = norm, kerI[ksize / 2] = w*norm, kerI[ksize - 1] = norm;
}
else if (order == 1) {
kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1;
}
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]);
temp.copyTo(*kernel);
}
}
class Nld_Step_Scalar_Invoker : public cv::ParallelLoopBody
{
public:
Nld_Step_Scalar_Invoker(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float _stepsize)
: _Ld(&Ld)
, _c(&c)
, _Lstep(&Lstep)
, stepsize(_stepsize)
{
}
virtual ~Nld_Step_Scalar_Invoker()
{
}
void operator()(const cv::Range& range) const CV_OVERRIDE
{
cv::Mat& Ld = *_Ld;
const cv::Mat& c = *_c;
cv::Mat& Lstep = *_Lstep;
for (int i = range.start; i < range.end; i++)
{
const float *c_prev = c.ptr<float>(i - 1);
const float *c_curr = c.ptr<float>(i);
const float *c_next = c.ptr<float>(i + 1);
const float *ld_prev = Ld.ptr<float>(i - 1);
const float *ld_curr = Ld.ptr<float>(i);
const float *ld_next = Ld.ptr<float>(i + 1);
float *dst = Lstep.ptr<float>(i);
for (int j = 1; j < Lstep.cols - 1; j++)
{
float xpos = (c_curr[j] + c_curr[j+1])*(ld_curr[j+1] - ld_curr[j]);
float xneg = (c_curr[j-1] + c_curr[j]) *(ld_curr[j] - ld_curr[j-1]);
float ypos = (c_curr[j] + c_next[j]) *(ld_next[j] - ld_curr[j]);
float yneg = (c_prev[j] + c_curr[j]) *(ld_curr[j] - ld_prev[j]);
dst[j] = 0.5f*stepsize*(xpos - xneg + ypos - yneg);
}
}
}
private:
cv::Mat * _Ld;
const cv::Mat * _c;
cv::Mat * _Lstep;
float stepsize;
};
/* ************************************************************************* */
/**
* @brief This function performs a scalar non-linear diffusion step
* @param Ld2 Output image in the evolution
* @param c Conductivity image
* @param Lstep Previous image in the evolution
* @param stepsize The step size in time units
* @note Forward Euler Scheme 3x3 stencil
* The function c is a scalar value that depends on the gradient norm
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy
*/
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) {
CV_INSTRUMENT_REGION();
cv::parallel_for_(cv::Range(1, Lstep.rows - 1), Nld_Step_Scalar_Invoker(Ld, c, Lstep, stepsize), (double)Ld.total()/(1 << 16));
float xneg, xpos, yneg, ypos;
float* dst = Lstep.ptr<float>(0);
const float* cprv = NULL;
const float* ccur = c.ptr<float>(0);
const float* cnxt = c.ptr<float>(1);
const float* ldprv = NULL;
const float* ldcur = Ld.ptr<float>(0);
const float* ldnxt = Ld.ptr<float>(1);
for (int j = 1; j < Lstep.cols - 1; j++) {
xpos = (ccur[j] + ccur[j+1]) * (ldcur[j+1] - ldcur[j]);
xneg = (ccur[j-1] + ccur[j]) * (ldcur[j] - ldcur[j-1]);
ypos = (ccur[j] + cnxt[j]) * (ldnxt[j] - ldcur[j]);
dst[j] = 0.5f*stepsize*(xpos - xneg + ypos);
}
dst = Lstep.ptr<float>(Lstep.rows - 1);
ccur = c.ptr<float>(Lstep.rows - 1);
cprv = c.ptr<float>(Lstep.rows - 2);
ldcur = Ld.ptr<float>(Lstep.rows - 1);
ldprv = Ld.ptr<float>(Lstep.rows - 2);
for (int j = 1; j < Lstep.cols - 1; j++) {
xpos = (ccur[j] + ccur[j+1]) * (ldcur[j+1] - ldcur[j]);
xneg = (ccur[j-1] + ccur[j]) * (ldcur[j] - ldcur[j-1]);
yneg = (cprv[j] + ccur[j]) * (ldcur[j] - ldprv[j]);
dst[j] = 0.5f*stepsize*(xpos - xneg - yneg);
}
ccur = c.ptr<float>(1);
ldcur = Ld.ptr<float>(1);
cprv = c.ptr<float>(0);
ldprv = Ld.ptr<float>(0);
int r0 = Lstep.cols - 1;
int r1 = Lstep.cols - 2;
for (int i = 1; i < Lstep.rows - 1; i++) {
cnxt = c.ptr<float>(i + 1);
ldnxt = Ld.ptr<float>(i + 1);
dst = Lstep.ptr<float>(i);
xpos = (ccur[0] + ccur[1]) * (ldcur[1] - ldcur[0]);
ypos = (ccur[0] + cnxt[0]) * (ldnxt[0] - ldcur[0]);
yneg = (cprv[0] + ccur[0]) * (ldcur[0] - ldprv[0]);
dst[0] = 0.5f*stepsize*(xpos + ypos - yneg);
xneg = (ccur[r1] + ccur[r0]) * (ldcur[r0] - ldcur[r1]);
ypos = (ccur[r0] + cnxt[r0]) * (ldnxt[r0] - ldcur[r0]);
yneg = (cprv[r0] + ccur[r0]) * (ldcur[r0] - ldprv[r0]);
dst[r0] = 0.5f*stepsize*(-xneg + ypos - yneg);
cprv = ccur;
ccur = cnxt;
ldprv = ldcur;
ldcur = ldnxt;
}
Ld += Lstep;
}
/* ************************************************************************* */
/**
* @brief This function downsamples the input image using OpenCV resize
* @param img Input image to be downsampled
* @param dst Output image with half of the resolution of the input image
*/
void halfsample_image(const cv::Mat& src, cv::Mat& dst) {
// Make sure the destination image is of the right size
CV_Assert(src.cols / 2 == dst.cols);
CV_Assert(src.rows / 2 == dst.rows);
resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA);
}
/* ************************************************************************* */
/**
* @brief This function checks if a given pixel is a maximum in a local neighbourhood
* @param img Input image where we will perform the maximum search
* @param dsize Half size of the neighbourhood
* @param value Response value at (x,y) position
* @param row Image row coordinate
* @param col Image column coordinate
* @param same_img Flag to indicate if the image value at (x,y) is in the input image
* @return 1->is maximum, 0->otherwise
*/
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img) {
bool response = true;
for (int i = row - dsize; i <= row + dsize; i++) {
for (int j = col - dsize; j <= col + dsize; j++) {
if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) {
if (same_img == true) {
if (i != row || j != col) {
if ((*(img.ptr<float>(i)+j)) > value) {
response = false;
return response;
}
}
}
else {
if ((*(img.ptr<float>(i)+j)) > value) {
response = false;
return response;
}
}
}
}
}
return response;
}
}