gcpubackend.cpp
10.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#include "precomp.hpp"
#include <ade/util/algorithm.hpp>
#include <ade/util/range.hpp>
#include <ade/util/zip_range.hpp>
#include <ade/util/chain_range.hpp>
#include <ade/typed_graph.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/gapi/gtype_traits.hpp>
#include "compiler/gobjref.hpp"
#include "compiler/gmodel.hpp"
#include "backends/cpu/gcpubackend.hpp"
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
#include "utils/itt.hpp"
// FIXME: Is there a way to take a typed graph (our GModel),
// and create a new typed graph _ATOP_ of that (by extending with a couple of
// new types?).
// Alternatively, is there a way to compose types graphs?
//
// If not, we need to introduce that!
using GCPUModel = ade::TypedGraph
< cv::gimpl::CPUUnit
, cv::gimpl::Protocol
>;
// FIXME: Same issue with Typed and ConstTyped
using GConstGCPUModel = ade::ConstTypedGraph
< cv::gimpl::CPUUnit
, cv::gimpl::Protocol
>;
namespace
{
class GCPUBackendImpl final: public cv::gapi::GBackend::Priv
{
virtual void unpackKernel(ade::Graph &graph,
const ade::NodeHandle &op_node,
const cv::GKernelImpl &impl) override
{
GCPUModel gm(graph);
auto cpu_impl = cv::util::any_cast<cv::GCPUKernel>(impl.opaque);
gm.metadata(op_node).set(cv::gimpl::CPUUnit{cpu_impl});
}
virtual EPtr compile(const ade::Graph &graph,
const cv::GCompileArgs &compileArgs,
const std::vector<ade::NodeHandle> &nodes) const override
{
return EPtr{new cv::gimpl::GCPUExecutable(graph, compileArgs, nodes)};
}
};
}
cv::gapi::GBackend cv::gapi::cpu::backend()
{
static cv::gapi::GBackend this_backend(std::make_shared<GCPUBackendImpl>());
return this_backend;
}
// GCPUExecutable implementation //////////////////////////////////////////////
cv::gimpl::GCPUExecutable::GCPUExecutable(const ade::Graph &g,
const cv::GCompileArgs &compileArgs,
const std::vector<ade::NodeHandle> &nodes)
: m_g(g), m_gm(m_g), m_compileArgs(compileArgs)
{
// Convert list of operations (which is topologically sorted already)
// into an execution script.
GConstGCPUModel gcm(m_g);
for (auto &nh : nodes)
{
switch (m_gm.metadata(nh).get<NodeType>().t)
{
case NodeType::OP:
{
m_script.push_back({nh, GModel::collectOutputMeta(m_gm, nh)});
// If kernel is stateful then prepare storage for its state.
GCPUKernel k = gcm.metadata(nh).get<CPUUnit>().k;
if (k.m_isStateful)
{
m_nodesToStates[nh] = GArg{ };
}
break;
}
case NodeType::DATA:
{
m_dataNodes.push_back(nh);
const auto &desc = m_gm.metadata(nh).get<Data>();
if (desc.storage == Data::Storage::CONST_VAL)
{
auto rc = RcDesc{desc.rc, desc.shape, desc.ctor};
magazine::bindInArg(m_res, rc, m_gm.metadata(nh).get<ConstValue>().arg);
}
//preallocate internal Mats in advance
if (desc.storage == Data::Storage::INTERNAL && desc.shape == GShape::GMAT)
{
const auto mat_desc = util::get<cv::GMatDesc>(desc.meta);
auto& mat = m_res.slot<cv::Mat>()[desc.rc];
createMat(mat_desc, mat);
}
break;
}
default: util::throw_error(std::logic_error("Unsupported NodeType type"));
}
}
// For each stateful kernel call 'setup' user callback to initialize state.
setupKernelStates();
}
// FIXME: Document what it does
cv::GArg cv::gimpl::GCPUExecutable::packArg(const GArg &arg)
{
// No API placeholders allowed at this point
// FIXME: this check has to be done somewhere in compilation stage.
GAPI_Assert( arg.kind != cv::detail::ArgKind::GMAT
&& arg.kind != cv::detail::ArgKind::GSCALAR
&& arg.kind != cv::detail::ArgKind::GARRAY
&& arg.kind != cv::detail::ArgKind::GOPAQUE
&& arg.kind != cv::detail::ArgKind::GFRAME);
if (arg.kind != cv::detail::ArgKind::GOBJREF)
{
// All other cases - pass as-is, with no transformations to GArg contents.
return arg;
}
GAPI_Assert(arg.kind == cv::detail::ArgKind::GOBJREF);
// Wrap associated CPU object (either host or an internal one)
// FIXME: object can be moved out!!! GExecutor faced that.
const cv::gimpl::RcDesc &ref = arg.get<cv::gimpl::RcDesc>();
switch (ref.shape)
{
case GShape::GMAT: return GArg(m_res.slot<cv::Mat>() [ref.id]);
case GShape::GSCALAR: return GArg(m_res.slot<cv::Scalar>()[ref.id]);
// Note: .at() is intentional for GArray and GOpaque as objects MUST be already there
// (and constructed by either bindIn/Out or resetInternal)
case GShape::GARRAY: return GArg(m_res.slot<cv::detail::VectorRef>().at(ref.id));
case GShape::GOPAQUE: return GArg(m_res.slot<cv::detail::OpaqueRef>().at(ref.id));
case GShape::GFRAME: return GArg(m_res.slot<cv::MediaFrame>().at(ref.id));
default:
util::throw_error(std::logic_error("Unsupported GShape type"));
break;
}
}
void cv::gimpl::GCPUExecutable::setupKernelStates()
{
GConstGCPUModel gcm(m_g);
for (auto& nodeToState : m_nodesToStates)
{
auto& kernelNode = nodeToState.first;
auto& kernelState = nodeToState.second;
const GCPUKernel& kernel = gcm.metadata(kernelNode).get<CPUUnit>().k;
kernel.m_setupF(GModel::collectInputMeta(m_gm, kernelNode),
m_gm.metadata(kernelNode).get<Op>().args,
kernelState,
m_compileArgs);
}
}
void cv::gimpl::GCPUExecutable::handleNewStream()
{
m_newStreamStarted = true;
}
void cv::gimpl::GCPUExecutable::run(std::vector<InObj> &&input_objs,
std::vector<OutObj> &&output_objs)
{
// Update resources with run-time information - what this Island
// has received from user (or from another Island, or mix...)
// FIXME: Check input/output objects against GIsland protocol
for (auto& it : input_objs) magazine::bindInArg (m_res, it.first, it.second);
for (auto& it : output_objs) magazine::bindOutArg(m_res, it.first, it.second);
// Initialize (reset) internal data nodes with user structures
// before processing a frame (no need to do it for external data structures)
GModel::ConstGraph gm(m_g);
for (auto nh : m_dataNodes)
{
const auto &desc = gm.metadata(nh).get<Data>();
if ( desc.storage == Data::Storage::INTERNAL // FIXME: to reconsider
&& !util::holds_alternative<util::monostate>(desc.ctor))
{
// FIXME: Note that compile-time constant data objects (like
// a value-initialized GArray<T>) also satisfy this condition
// and should be excluded, but now we just don't support it
magazine::resetInternalData(m_res, desc);
}
}
// In case if new video-stream happens - for each stateful kernel
// call 'setup' user callback to re-initialize state.
if (m_newStreamStarted)
{
setupKernelStates();
m_newStreamStarted = false;
}
// OpenCV backend execution is not a rocket science at all.
// Simply invoke our kernels in the proper order.
GConstGCPUModel gcm(m_g);
for (auto &op_info : m_script)
{
const auto &op = m_gm.metadata(op_info.nh).get<Op>();
// Obtain our real execution unit
// TODO: Should kernels be copyable?
GCPUKernel k = gcm.metadata(op_info.nh).get<CPUUnit>().k;
// Initialize kernel's execution context:
// - Input parameters
GCPUContext context;
context.m_args.reserve(op.args.size());
using namespace std::placeholders;
ade::util::transform(op.args,
std::back_inserter(context.m_args),
std::bind(&GCPUExecutable::packArg, this, _1));
// - Output parameters.
// FIXME: pre-allocate internal Mats, etc, according to the known meta
for (const auto out_it : ade::util::indexed(op.outs))
{
// FIXME: Can the same GArg type resolution mechanism be reused here?
const auto out_port = ade::util::index(out_it);
const auto& out_desc = ade::util::value(out_it);
context.m_results[out_port] = magazine::getObjPtr(m_res, out_desc);
}
// For stateful kernel add state to its execution context
if (k.m_isStateful)
{
context.m_state = m_nodesToStates.at(op_info.nh);
}
{
GAPI_ITT_DYNAMIC_LOCAL_HANDLE(op_hndl, op.k.name.c_str());
GAPI_ITT_AUTO_TRACE_GUARD(op_hndl);
// Now trigger the executable unit
k.m_runF(context);
}
//As Kernels are forbidden to allocate memory for (Mat) outputs,
//this code seems redundant, at least for Mats
//FIXME: unify with cv::detail::ensure_out_mats_not_reallocated
//FIXME: when it's done, remove can_describe(const GMetaArg&, const GRunArgP&)
//and descr_of(const cv::GRunArgP &argp)
for (const auto out_it : ade::util::indexed(op_info.expected_out_metas))
{
const auto out_index = ade::util::index(out_it);
const auto& expected_meta = ade::util::value(out_it);
if (!can_describe(expected_meta, context.m_results[out_index]))
{
const auto out_meta = descr_of(context.m_results[out_index]);
util::throw_error
(std::logic_error
("Output meta doesn't "
"coincide with the generated meta\n"
"Expected: " + ade::util::to_string(expected_meta) + "\n"
"Actual : " + ade::util::to_string(out_meta)));
}
}
} // for(m_script)
for (auto &it : output_objs) magazine::writeBack(m_res, it.first, it.second);
// In/Out args clean-up is mandatory now with RMat
for (auto &it : input_objs) magazine::unbind(m_res, it.first);
for (auto &it : output_objs) magazine::unbind(m_res, it.first);
}