gfluidbackend.cpp
60.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#include "precomp.hpp"
#include <functional>
#include <iostream>
#include <iomanip> // std::fixed, std::setprecision
#include <set>
#include <unordered_set>
#include <stack>
#include <ade/util/algorithm.hpp>
#include <ade/util/chain_range.hpp>
#include <ade/util/iota_range.hpp>
#include <ade/util/range.hpp>
#include <ade/util/zip_range.hpp>
#include <ade/typed_graph.hpp>
#include <ade/execution_engine/execution_engine.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include "logger.hpp"
#include <opencv2/gapi/gmat.hpp> //for version of descr_of
// PRIVATE STUFF!
#include "compiler/gobjref.hpp"
#include "compiler/gmodel.hpp"
#include "backends/fluid/gfluidbuffer_priv.hpp"
#include "backends/fluid/gfluidbackend.hpp"
#include "api/gbackend_priv.hpp" // FIXME: Make it part of Backend SDK!
// FIXME: Is there a way to take a typed graph (our GModel),
// and create a new typed graph _ATOP_ of that (by extending with a couple of
// new types?).
// Alternatively, is there a way to compose types graphs?
//
// If not, we need to introduce that!
using GFluidModel = ade::TypedGraph
< cv::gimpl::FluidUnit
, cv::gimpl::FluidData
, cv::gimpl::Protocol
, cv::gimpl::FluidUseOwnBorderBuffer
>;
// FIXME: Same issue with Typed and ConstTyped
using GConstFluidModel = ade::ConstTypedGraph
< cv::gimpl::FluidUnit
, cv::gimpl::FluidData
, cv::gimpl::Protocol
, cv::gimpl::FluidUseOwnBorderBuffer
>;
// FluidBackend middle-layer implementation ////////////////////////////////////
namespace
{
class GFluidBackendImpl final: public cv::gapi::GBackend::Priv
{
virtual void unpackKernel(ade::Graph &graph,
const ade::NodeHandle &op_node,
const cv::GKernelImpl &impl) override
{
GFluidModel fm(graph);
auto fluid_impl = cv::util::any_cast<cv::GFluidKernel>(impl.opaque);
fm.metadata(op_node).set(cv::gimpl::FluidUnit{fluid_impl, {}, 0, -1, {}, 0.0});
}
virtual EPtr compile(const ade::Graph &graph,
const cv::GCompileArgs &args,
const std::vector<ade::NodeHandle> &nodes) const override
{
using namespace cv::gimpl;
GModel::ConstGraph g(graph);
auto isl_graph = g.metadata().get<IslandModel>().model;
GIslandModel::Graph gim(*isl_graph);
const auto num_islands = std::count_if
(gim.nodes().begin(), gim.nodes().end(),
[&](const ade::NodeHandle &nh) {
return gim.metadata(nh).get<NodeKind>().k == NodeKind::ISLAND;
});
const auto out_rois = cv::gapi::getCompileArg<cv::GFluidOutputRois>(args);
if (num_islands > 1 && out_rois.has_value())
cv::util::throw_error(std::logic_error("GFluidOutputRois feature supports only one-island graphs"));
auto rois = out_rois.value_or(cv::GFluidOutputRois());
auto graph_data = fluidExtractInputDataFromGraph(graph, nodes);
const auto parallel_out_rois = cv::gapi::getCompileArg<cv::GFluidParallelOutputRois>(args);
const auto gpfor = cv::gapi::getCompileArg<cv::GFluidParallelFor>(args);
#if !defined(GAPI_STANDALONE)
auto default_pfor = [](std::size_t count, std::function<void(std::size_t)> f){
struct Body : cv::ParallelLoopBody {
decltype(f) func;
Body( decltype(f) && _f) : func(_f){}
virtual void operator() (const cv::Range& r) const CV_OVERRIDE
{
for (std::size_t i : ade::util::iota(r.start, r.end))
{
func(i);
}
}
};
cv::parallel_for_(cv::Range{0,static_cast<int>(count)}, Body{std::move(f)});
};
#else
auto default_pfor = [](std::size_t count, std::function<void(std::size_t)> f){
for (auto i : ade::util::iota(count)){
f(i);
}
};
#endif
auto pfor = gpfor.has_value() ? gpfor.value().parallel_for : default_pfor;
return parallel_out_rois.has_value() ?
EPtr{new cv::gimpl::GParallelFluidExecutable (graph, graph_data, std::move(parallel_out_rois.value().parallel_rois), pfor)}
: EPtr{new cv::gimpl::GFluidExecutable (graph, graph_data, std::move(rois.rois))}
;
}
virtual void addMetaSensitiveBackendPasses(ade::ExecutionEngineSetupContext &ectx) override;
};
}
cv::gapi::GBackend cv::gapi::fluid::backend()
{
static cv::gapi::GBackend this_backend(std::make_shared<GFluidBackendImpl>());
return this_backend;
}
// FluidAgent implementation ///////////////////////////////////////////////////
namespace cv { namespace gimpl {
struct FluidMapper
{
FluidMapper(double ratio, int lpi) : m_ratio(ratio), m_lpi(lpi) {}
virtual ~FluidMapper() = default;
virtual int firstWindow(int outCoord, int lpi) const = 0;
virtual std::pair<int,int> linesReadAndNextWindow(int outCoord, int lpi) const = 0;
protected:
double m_ratio = 0.0;
int m_lpi = 0;
};
struct FluidDownscaleMapper : public FluidMapper
{
virtual int firstWindow(int outCoord, int lpi) const override;
virtual std::pair<int,int> linesReadAndNextWindow(int outCoord, int lpi) const override;
using FluidMapper::FluidMapper;
};
struct FluidUpscaleMapper : public FluidMapper
{
virtual int firstWindow(int outCoord, int lpi) const override;
virtual std::pair<int,int> linesReadAndNextWindow(int outCoord, int lpi) const override;
FluidUpscaleMapper(double ratio, int lpi, int inHeight) : FluidMapper(ratio, lpi), m_inHeight(inHeight) {}
private:
int m_inHeight = 0;
};
struct FluidFilterAgent : public FluidAgent
{
private:
virtual int firstWindow(std::size_t inPort) const override;
virtual std::pair<int,int> linesReadAndnextWindow(std::size_t inPort) const override;
virtual void setRatio(double) override { /* nothing */ }
public:
using FluidAgent::FluidAgent;
int m_window;
FluidFilterAgent(const ade::Graph &g, ade::NodeHandle nh)
: FluidAgent(g, nh)
, m_window(GConstFluidModel(g).metadata(nh).get<FluidUnit>().window)
{}
};
struct FluidResizeAgent : public FluidAgent
{
private:
virtual int firstWindow(std::size_t inPort) const override;
virtual std::pair<int,int> linesReadAndnextWindow(std::size_t inPort) const override;
virtual void setRatio(double ratio) override;
std::unique_ptr<FluidMapper> m_mapper;
public:
using FluidAgent::FluidAgent;
};
struct Fluid420toRGBAgent : public FluidAgent
{
private:
virtual int firstWindow(std::size_t inPort) const override;
virtual std::pair<int,int> linesReadAndnextWindow(std::size_t inPort) const override;
virtual void setRatio(double) override { /* nothing */ }
public:
using FluidAgent::FluidAgent;
};
}} // namespace cv::gimpl
cv::gimpl::FluidAgent::FluidAgent(const ade::Graph &g, ade::NodeHandle nh)
: k(GConstFluidModel(g).metadata(nh).get<FluidUnit>().k) // init(0)
, op_handle(nh) // init(1)
, op_name(GModel::ConstGraph(g).metadata(nh).get<Op>().k.name) // init(2)
{
std::set<int> out_w;
std::set<int> out_h;
GModel::ConstGraph cm(g);
for (auto out_data : nh->outNodes())
{
const auto &d = cm.metadata(out_data).get<Data>();
cv::GMatDesc d_meta = cv::util::get<cv::GMatDesc>(d.meta);
out_w.insert(d_meta.size.width);
out_h.insert(d_meta.size.height);
}
// Different output sizes are not supported
GAPI_Assert(out_w.size() == 1 && out_h.size() == 1);
}
void cv::gimpl::FluidAgent::reset()
{
m_producedLines = 0;
for (const auto it : ade::util::indexed(in_views))
{
auto& v = ade::util::value(it);
if (v)
{
auto idx = ade::util::index(it);
auto lines = firstWindow(idx);
v.priv().reset(lines);
}
}
}
namespace {
static int calcGcd (int n1, int n2)
{
return (n2 == 0) ? n1 : calcGcd (n2, n1 % n2);
}
// This is an empiric formula and this is not 100% guaranteed
// that it produces correct results in all possible cases
// FIXME:
// prove correctness or switch to some trusted method
//
// When performing resize input/output pixels form a cyclic
// pattern where inH/gcd input pixels are mapped to outH/gcd
// output pixels (pattern repeats gcd times).
//
// Output pixel can partually cover some of the input pixels.
// There are 3 possible cases:
//
// :___ ___: :___ _:_ ___: :___ __: ___ :__ ___:
// |___|___| |___|_:_|___| |___|__:|___|:__|___|
// : : : : : : : : :
//
// 1) No partial coverage, max window = scaleFactor;
// 2) Partial coverage occurs on the one side of the output pixel,
// max window = scaleFactor + 1;
// 3) Partial coverage occurs at both sides of the output pixel,
// max window = scaleFactor + 2;
//
// Type of the coverage is determined by remainder of
// inPeriodH/outPeriodH division, but it's an heuristic
// (howbeit didn't found the proof of the opposite so far).
static int calcResizeWindow(int inH, int outH)
{
GAPI_Assert(inH >= outH);
auto gcd = calcGcd(inH, outH);
int inPeriodH = inH/gcd;
int outPeriodH = outH/gcd;
int scaleFactor = inPeriodH / outPeriodH;
switch ((inPeriodH) % (outPeriodH))
{
case 0: return scaleFactor; break;
case 1: return scaleFactor + 1; break;
default: return scaleFactor + 2;
}
}
static int maxLineConsumption(const cv::GFluidKernel::Kind kind, int window, int inH, int outH, int lpi, std::size_t inPort)
{
switch (kind)
{
case cv::GFluidKernel::Kind::Filter: return window + lpi - 1; break;
case cv::GFluidKernel::Kind::Resize:
{
if (inH >= outH)
{
// FIXME:
// This is a suboptimal value, can be reduced
return calcResizeWindow(inH, outH) * lpi;
}
else
{
// FIXME:
// This is a suboptimal value, can be reduced
return (inH == 1) ? 1 : 2 + lpi - 1;
}
} break;
case cv::GFluidKernel::Kind::YUV420toRGB: return inPort == 0 ? 2 : 1; break;
default: GAPI_Assert(false); return 0;
}
}
static int borderSize(const cv::GFluidKernel::Kind kind, int window)
{
switch (kind)
{
case cv::GFluidKernel::Kind::Filter: return (window - 1) / 2; break;
// Resize never reads from border pixels
case cv::GFluidKernel::Kind::Resize: return 0; break;
case cv::GFluidKernel::Kind::YUV420toRGB: return 0; break;
default: GAPI_Assert(false); return 0;
}
}
inline double inCoord(int outIdx, double ratio)
{
return outIdx * ratio;
}
inline int windowStart(int outIdx, double ratio)
{
return static_cast<int>(inCoord(outIdx, ratio) + 1e-3);
}
inline int windowEnd(int outIdx, double ratio)
{
return static_cast<int>(std::ceil(inCoord(outIdx + 1, ratio) - 1e-3));
}
inline double inCoordUpscale(int outCoord, double ratio)
{
// Calculate the projection of output pixel's center
return (outCoord + 0.5) * ratio - 0.5;
}
inline int upscaleWindowStart(int outCoord, double ratio)
{
int start = static_cast<int>(inCoordUpscale(outCoord, ratio));
GAPI_DbgAssert(start >= 0);
return start;
}
inline int upscaleWindowEnd(int outCoord, double ratio, int inSz)
{
int end = static_cast<int>(std::ceil(inCoordUpscale(outCoord, ratio)) + 1);
if (end > inSz)
{
end = inSz;
}
return end;
}
} // anonymous namespace
int cv::gimpl::FluidDownscaleMapper::firstWindow(int outCoord, int lpi) const
{
return windowEnd(outCoord + lpi - 1, m_ratio) - windowStart(outCoord, m_ratio);
}
std::pair<int,int> cv::gimpl::FluidDownscaleMapper::linesReadAndNextWindow(int outCoord, int lpi) const
{
auto nextStartIdx = outCoord + 1 + m_lpi - 1;
auto nextEndIdx = nextStartIdx + lpi - 1;
auto currStart = windowStart(outCoord, m_ratio);
auto nextStart = windowStart(nextStartIdx, m_ratio);
auto nextEnd = windowEnd(nextEndIdx, m_ratio);
auto lines_read = nextStart - currStart;
auto next_window = nextEnd - nextStart;
return std::make_pair(lines_read, next_window);
}
int cv::gimpl::FluidUpscaleMapper::firstWindow(int outCoord, int lpi) const
{
return upscaleWindowEnd(outCoord + lpi - 1, m_ratio, m_inHeight) - upscaleWindowStart(outCoord, m_ratio);
}
std::pair<int,int> cv::gimpl::FluidUpscaleMapper::linesReadAndNextWindow(int outCoord, int lpi) const
{
auto nextStartIdx = outCoord + 1 + m_lpi - 1;
auto nextEndIdx = nextStartIdx + lpi - 1;
auto currStart = upscaleWindowStart(outCoord, m_ratio);
auto nextStart = upscaleWindowStart(nextStartIdx, m_ratio);
auto nextEnd = upscaleWindowEnd(nextEndIdx, m_ratio, m_inHeight);
auto lines_read = nextStart - currStart;
auto next_window = nextEnd - nextStart;
return std::make_pair(lines_read, next_window);
}
int cv::gimpl::FluidFilterAgent::firstWindow(std::size_t) const
{
int lpi = std::min(k.m_lpi, m_outputLines - m_producedLines);
return m_window + lpi - 1;
}
std::pair<int,int> cv::gimpl::FluidFilterAgent::linesReadAndnextWindow(std::size_t) const
{
int lpi = std::min(k.m_lpi, m_outputLines - m_producedLines - k.m_lpi);
return std::make_pair(k.m_lpi, m_window - 1 + lpi);
}
int cv::gimpl::FluidResizeAgent::firstWindow(std::size_t) const
{
auto outIdx = out_buffers[0]->priv().y();
auto lpi = std::min(m_outputLines - m_producedLines, k.m_lpi);
return m_mapper->firstWindow(outIdx, lpi);
}
std::pair<int,int> cv::gimpl::FluidResizeAgent::linesReadAndnextWindow(std::size_t) const
{
auto outIdx = out_buffers[0]->priv().y();
auto lpi = std::min(m_outputLines - m_producedLines - k.m_lpi, k.m_lpi);
return m_mapper->linesReadAndNextWindow(outIdx, lpi);
}
int cv::gimpl::Fluid420toRGBAgent::firstWindow(std::size_t inPort) const
{
// 2 lines for Y, 1 for UV
return inPort == 0 ? 2 : 1;
}
std::pair<int,int> cv::gimpl::Fluid420toRGBAgent::linesReadAndnextWindow(std::size_t inPort) const
{
// 2 lines for Y, 1 for UV
return inPort == 0 ? std::make_pair(2, 2) : std::make_pair(1, 1);
}
void cv::gimpl::FluidResizeAgent::setRatio(double ratio)
{
if (ratio >= 1.0)
{
m_mapper.reset(new FluidDownscaleMapper(ratio, k.m_lpi));
}
else
{
m_mapper.reset(new FluidUpscaleMapper(ratio, k.m_lpi, in_views[0].meta().size.height));
}
}
bool cv::gimpl::FluidAgent::canRead() const
{
// An agent can work if every input buffer have enough data to start
for (const auto& in_view : in_views)
{
if (in_view)
{
if (!in_view.ready())
return false;
}
}
return true;
}
bool cv::gimpl::FluidAgent::canWrite() const
{
// An agent can work if there is space to write in its output
// allocated buffers
GAPI_DbgAssert(!out_buffers.empty());
auto out_begin = out_buffers.begin();
auto out_end = out_buffers.end();
if (k.m_scratch) out_end--;
for (auto it = out_begin; it != out_end; ++it)
{
if ((*it)->priv().full())
{
return false;
}
}
return true;
}
bool cv::gimpl::FluidAgent::canWork() const
{
return canRead() && canWrite();
}
void cv::gimpl::FluidAgent::doWork()
{
GAPI_DbgAssert(m_outputLines > m_producedLines);
for (auto& in_view : in_views)
{
if (in_view) in_view.priv().prepareToRead();
}
k.m_f(in_args, out_buffers);
for (const auto it : ade::util::indexed(in_views))
{
auto& in_view = ade::util::value(it);
if (in_view)
{
auto idx = ade::util::index(it);
auto pair = linesReadAndnextWindow(idx);
in_view.priv().readDone(pair.first, pair.second);
};
}
for (auto* out_buf : out_buffers)
{
out_buf->priv().writeDone();
// FIXME WARNING: Scratch buffers rotated here too!
}
m_producedLines += k.m_lpi;
}
bool cv::gimpl::FluidAgent::done() const
{
// m_producedLines is a multiple of LPI, while original
// height may be not.
return m_producedLines >= m_outputLines;
}
void cv::gimpl::FluidAgent::debug(std::ostream &os)
{
os << "Fluid Agent " << std::hex << this
<< " (" << op_name << ") --"
<< " canWork=" << std::boolalpha << canWork()
<< " canRead=" << std::boolalpha << canRead()
<< " canWrite=" << std::boolalpha << canWrite()
<< " done=" << done()
<< " lines=" << std::dec << m_producedLines << "/" << m_outputLines
<< " {{\n";
for (auto out_buf : out_buffers)
{
out_buf->debug(os);
}
std::cout << "}}" << std::endl;
}
// GCPUExcecutable implementation //////////////////////////////////////////////
void cv::gimpl::GFluidExecutable::initBufferRois(std::vector<int>& readStarts,
std::vector<cv::Rect>& rois,
const std::vector<cv::Rect>& out_rois)
{
GConstFluidModel fg(m_g);
auto proto = m_gm.metadata().get<Protocol>();
std::stack<ade::NodeHandle> nodesToVisit;
// FIXME?
// There is possible case when user pass the vector full of default Rect{}-s,
// Can be diagnosed and handled appropriately
if (proto.outputs.size() != out_rois.size())
{
GAPI_Assert(out_rois.size() == 0);
// No inference required, buffers will obtain roi from meta
return;
}
// First, initialize rois for output nodes, add them to traversal stack
for (const auto it : ade::util::indexed(proto.out_nhs))
{
const auto idx = ade::util::index(it);
const auto& nh = ade::util::value(it);
const auto &d = m_gm.metadata(nh).get<Data>();
// This is not our output
if (m_id_map.count(d.rc) == 0)
{
continue;
}
if (d.shape == GShape::GMAT)
{
auto desc = util::get<GMatDesc>(d.meta);
auto id = m_id_map.at(d.rc);
readStarts[id] = 0;
const auto& out_roi = out_rois[idx];
if (out_roi == cv::Rect{})
{
rois[id] = cv::Rect{ 0, 0, desc.size.width, desc.size.height };
}
else
{
GAPI_Assert(out_roi.height > 0);
GAPI_Assert(out_roi.y + out_roi.height <= desc.size.height);
// Only slices are supported at the moment
GAPI_Assert(out_roi.x == 0);
GAPI_Assert(out_roi.width == desc.size.width);
rois[id] = out_roi;
}
nodesToVisit.push(nh);
}
}
// Perform a wide search from each of the output nodes
// And extend roi of buffers by border_size
// Each node can be visited multiple times
// (if node has been already visited, the check that inferred rois are the same is performed)
while (!nodesToVisit.empty())
{
const auto startNode = nodesToVisit.top();
nodesToVisit.pop();
if (!startNode->inNodes().empty())
{
GAPI_Assert(startNode->inNodes().size() == 1);
const auto& oh = startNode->inNodes().front();
const auto& data = m_gm.metadata(startNode).get<Data>();
// only GMats participate in the process so it's valid to obtain GMatDesc
const auto& meta = util::get<GMatDesc>(data.meta);
for (const auto& in_edge : oh->inEdges())
{
const auto& in_node = in_edge->srcNode();
const auto& in_data = m_gm.metadata(in_node).get<Data>();
if (in_data.shape == GShape::GMAT && fg.metadata(in_node).contains<FluidData>())
{
const auto& in_meta = util::get<GMatDesc>(in_data.meta);
const auto& fd = fg.metadata(in_node).get<FluidData>();
auto adjFilterRoi = [](cv::Rect produced, int b, int max_height) {
// Extend with border roi which should be produced, crop to logical image size
cv::Rect roi = {produced.x, produced.y - b, produced.width, produced.height + 2*b};
cv::Rect fullImg{ 0, 0, produced.width, max_height };
return roi & fullImg;
};
auto adjResizeRoi = [](cv::Rect produced, cv::Size inSz, cv::Size outSz) {
auto map = [](int outCoord, int producedSz, int inSize, int outSize) {
double ratio = (double)inSize / outSize;
int w0 = 0, w1 = 0;
if (ratio >= 1.0)
{
w0 = windowStart(outCoord, ratio);
w1 = windowEnd (outCoord + producedSz - 1, ratio);
}
else
{
w0 = upscaleWindowStart(outCoord, ratio);
w1 = upscaleWindowEnd(outCoord + producedSz - 1, ratio, inSize);
}
return std::make_pair(w0, w1);
};
auto mapY = map(produced.y, produced.height, inSz.height, outSz.height);
auto y0 = mapY.first;
auto y1 = mapY.second;
auto mapX = map(produced.x, produced.width, inSz.width, outSz.width);
auto x0 = mapX.first;
auto x1 = mapX.second;
cv::Rect roi = {x0, y0, x1 - x0, y1 - y0};
return roi;
};
auto adj420Roi = [&](cv::Rect produced, std::size_t port) {
GAPI_Assert(produced.x % 2 == 0);
GAPI_Assert(produced.y % 2 == 0);
GAPI_Assert(produced.width % 2 == 0);
GAPI_Assert(produced.height % 2 == 0);
cv::Rect roi;
switch (port) {
case 0: roi = produced; break;
case 1:
case 2: roi = cv::Rect{ produced.x/2, produced.y/2, produced.width/2, produced.height/2 }; break;
default: GAPI_Assert(false);
}
return roi;
};
cv::Rect produced = rois[m_id_map.at(data.rc)];
// Apply resize-specific roi transformations
cv::Rect resized;
switch (fg.metadata(oh).get<FluidUnit>().k.m_kind)
{
case GFluidKernel::Kind::Filter: resized = produced; break;
case GFluidKernel::Kind::Resize: resized = adjResizeRoi(produced, in_meta.size, meta.size); break;
case GFluidKernel::Kind::YUV420toRGB: resized = adj420Roi(produced, m_gm.metadata(in_edge).get<Input>().port); break;
default: GAPI_Assert(false);
}
// All below transformations affect roi of the writer, preserve read start position here
int readStart = resized.y;
// Extend required input roi (both y and height) to be even if it's produced by CS420toRGB
if (!in_node->inNodes().empty()) {
auto in_data_producer = in_node->inNodes().front();
if (fg.metadata(in_data_producer).get<FluidUnit>().k.m_kind == GFluidKernel::Kind::YUV420toRGB) {
if (resized.y % 2 != 0) {
resized.y--;
resized.height++;
}
if (resized.height % 2 != 0) {
resized.height++;
}
}
}
// Apply filter-specific roi transformations, clip to image size
// Note: done even for non-filter kernels as applies border-related transformations
// (required in the case when there are multiple readers with different border requirements)
auto roi = adjFilterRoi(resized, fd.border_size, in_meta.size.height);
auto in_id = m_id_map.at(in_data.rc);
if (rois[in_id] == cv::Rect{})
{
readStarts[in_id] = readStart;
rois[in_id] = roi;
// Continue traverse on internal (w.r.t Island) data nodes only.
if (fd.internal) nodesToVisit.push(in_node);
}
else
{
GAPI_Assert(readStarts[in_id] == readStart);
GAPI_Assert(rois[in_id] == roi);
}
} // if (in_data.shape == GShape::GMAT)
} // for (const auto& in_edge : oh->inEdges())
} // if (!startNode->inNodes().empty())
} // while (!nodesToVisit.empty())
}
cv::gimpl::FluidGraphInputData cv::gimpl::fluidExtractInputDataFromGraph(const ade::Graph &g, const std::vector<ade::NodeHandle> &nodes)
{
decltype(FluidGraphInputData::m_agents_data) agents_data;
decltype(FluidGraphInputData::m_scratch_users) scratch_users;
decltype(FluidGraphInputData::m_id_map) id_map;
decltype(FluidGraphInputData::m_all_gmat_ids) all_gmat_ids;
std::size_t mat_count = 0;
GConstFluidModel fg(g);
GModel::ConstGraph m_gm(g);
// Initialize vector of data buffers, build list of operations
// FIXME: There _must_ be a better way to [query] count number of DATA nodes
auto grab_mat_nh = [&](ade::NodeHandle nh) {
auto rc = m_gm.metadata(nh).get<Data>().rc;
if (id_map.count(rc) == 0)
{
all_gmat_ids[mat_count] = nh;
id_map[rc] = mat_count++;
}
};
std::size_t last_agent = 0;
for (const auto &nh : nodes)
{
switch (m_gm.metadata(nh).get<NodeType>().t)
{
case NodeType::DATA:
if (m_gm.metadata(nh).get<Data>().shape == GShape::GMAT)
grab_mat_nh(nh);
break;
case NodeType::OP:
{
const auto& fu = fg.metadata(nh).get<FluidUnit>();
agents_data.push_back({fu.k.m_kind, nh, {}, {}});
// NB.: in_buffer_ids size is equal to Arguments size, not Edges size!!!
agents_data.back().in_buffer_ids.resize(m_gm.metadata(nh).get<Op>().args.size(), -1);
for (auto eh : nh->inEdges())
{
// FIXME Only GMats are currently supported (which can be represented
// as fluid buffers
if (m_gm.metadata(eh->srcNode()).get<Data>().shape == GShape::GMAT)
{
const auto in_port = m_gm.metadata(eh).get<Input>().port;
const int in_buf = m_gm.metadata(eh->srcNode()).get<Data>().rc;
agents_data.back().in_buffer_ids[in_port] = in_buf;
grab_mat_nh(eh->srcNode());
}
}
// FIXME: Assumption that all operation outputs MUST be connected
agents_data.back().out_buffer_ids.resize(nh->outEdges().size(), -1);
for (auto eh : nh->outEdges())
{
const auto& data = m_gm.metadata(eh->dstNode()).get<Data>();
const auto out_port = m_gm.metadata(eh).get<Output>().port;
const int out_buf = data.rc;
agents_data.back().out_buffer_ids[out_port] = out_buf;
if (data.shape == GShape::GMAT) grab_mat_nh(eh->dstNode());
}
if (fu.k.m_scratch)
scratch_users.push_back(last_agent);
last_agent++;
break;
}
default: GAPI_Assert(false);
}
}
// Check that IDs form a continiuos set (important for further indexing)
GAPI_Assert(id_map.size() > 0);
GAPI_Assert(id_map.size() == static_cast<size_t>(mat_count));
return FluidGraphInputData {std::move(agents_data), std::move(scratch_users), std::move(id_map), std::move(all_gmat_ids), mat_count};
}
cv::gimpl::GFluidExecutable::GFluidExecutable(const ade::Graph &g,
const cv::gimpl::FluidGraphInputData &traverse_res,
const std::vector<cv::Rect> &outputRois)
: m_g(g), m_gm(m_g),
m_num_int_buffers (traverse_res.m_mat_count),
m_scratch_users (traverse_res.m_scratch_users),
m_id_map (traverse_res.m_id_map),
m_all_gmat_ids (traverse_res.m_all_gmat_ids),
m_buffers(m_num_int_buffers + m_scratch_users.size())
{
GConstFluidModel fg(m_g);
auto create_fluid_agent = [&g](agent_data_t const& agent_data) -> std::unique_ptr<FluidAgent> {
std::unique_ptr<FluidAgent> agent_ptr;
switch (agent_data.kind)
{
case GFluidKernel::Kind::Filter: agent_ptr.reset(new FluidFilterAgent(g, agent_data.nh)); break;
case GFluidKernel::Kind::Resize: agent_ptr.reset(new FluidResizeAgent(g, agent_data.nh)); break;
case GFluidKernel::Kind::YUV420toRGB: agent_ptr.reset(new Fluid420toRGBAgent(g, agent_data.nh)); break;
default: GAPI_Assert(false);
}
std::tie(agent_ptr->in_buffer_ids, agent_ptr->out_buffer_ids) = std::tie(agent_data.in_buffer_ids, agent_data.out_buffer_ids);
return agent_ptr;
};
for (auto const& agent_data : traverse_res.m_agents_data){
m_agents.push_back(create_fluid_agent(agent_data));
}
// Actually initialize Fluid buffers
GAPI_LOG_INFO(NULL, "Initializing " << m_num_int_buffers << " fluid buffer(s)" << std::endl);
// After buffers are allocated, repack: ...
for (auto &agent : m_agents)
{
// a. Agent input parameters with View pointers (creating Views btw)
const auto &op = m_gm.metadata(agent->op_handle).get<Op>();
const auto &fu = fg.metadata(agent->op_handle).get<FluidUnit>();
agent->in_args.resize(op.args.size());
agent->in_views.resize(op.args.size());
for (auto it : ade::util::indexed(ade::util::toRange(agent->in_buffer_ids)))
{
auto in_idx = ade::util::index(it);
auto buf_idx = ade::util::value(it);
if (buf_idx >= 0)
{
// IF there is input buffer, register a view (every unique
// reader has its own), and store it in agent Args
gapi::fluid::Buffer &buffer = m_buffers.at(m_id_map.at(buf_idx));
auto inEdge = GModel::getInEdgeByPort(m_g, agent->op_handle, in_idx);
auto ownStorage = fg.metadata(inEdge).get<FluidUseOwnBorderBuffer>().use;
// NB: It is safe to keep ptr as view lifetime is buffer lifetime
agent->in_views[in_idx] = buffer.mkView(fu.border_size, ownStorage);
agent->in_args[in_idx] = GArg(&agent->in_views[in_idx]);
buffer.addView(&agent->in_views[in_idx]);
}
else
{
// Copy(FIXME!) original args as is
agent->in_args[in_idx] = op.args[in_idx];
}
}
// b. Agent output parameters with Buffer pointers.
agent->out_buffers.resize(agent->op_handle->outEdges().size(), nullptr);
for (auto it : ade::util::indexed(ade::util::toRange(agent->out_buffer_ids)))
{
auto out_idx = ade::util::index(it);
auto buf_idx = m_id_map.at(ade::util::value(it));
agent->out_buffers.at(out_idx) = &m_buffers.at(buf_idx);
}
}
// After parameters are there, initialize scratch buffers
const std::size_t num_scratch = m_scratch_users.size();
if (num_scratch)
{
GAPI_LOG_INFO(NULL, "Initializing " << num_scratch << " scratch buffer(s)" << std::endl);
std::size_t last_scratch_id = 0;
for (auto i : m_scratch_users)
{
auto &agent = m_agents.at(i);
GAPI_Assert(agent->k.m_scratch);
const std::size_t new_scratch_idx = m_num_int_buffers + last_scratch_id;
agent->out_buffers.emplace_back(&m_buffers[new_scratch_idx]);
last_scratch_id++;
}
}
makeReshape(outputRois);
GAPI_LOG_INFO(NULL, "Internal buffers: " << std::fixed << std::setprecision(2) << static_cast<float>(total_buffers_size())/1024 << " KB\n");
}
std::size_t cv::gimpl::GFluidExecutable::total_buffers_size() const
{
GConstFluidModel fg(m_g);
std::size_t total_size = 0;
for (const auto i : ade::util::indexed(m_buffers))
{
// Check that all internal and scratch buffers are allocated
const auto idx = ade::util::index(i);
const auto& b = ade::util::value(i);
if (idx >= m_num_int_buffers ||
fg.metadata(m_all_gmat_ids.at(idx)).get<FluidData>().internal == true)
{
GAPI_Assert(b.priv().size() > 0);
}
// Buffers which will be bound to real images may have size of 0 at this moment
// (There can be non-zero sized const border buffer allocated in such buffers)
total_size += b.priv().size();
}
return total_size;
}
namespace
{
void resetFluidData(ade::Graph& graph)
{
using namespace cv::gimpl;
GModel::Graph g(graph);
GFluidModel fg(graph);
for (const auto& node : g.nodes())
{
if (g.metadata(node).get<NodeType>().t == NodeType::DATA)
{
auto& fd = fg.metadata(node).get<FluidData>();
fd.latency = 0;
fd.skew = 0;
fd.max_consumption = 0;
}
GModel::log_clear(g, node);
}
}
void initFluidUnits(ade::Graph& graph)
{
using namespace cv::gimpl;
GModel::Graph g(graph);
GFluidModel fg(graph);
auto sorted = g.metadata().get<ade::passes::TopologicalSortData>().nodes();
for (auto node : sorted)
{
if (fg.metadata(node).contains<FluidUnit>())
{
std::set<int> in_hs, out_ws, out_hs;
for (const auto& in : node->inNodes())
{
const auto& d = g.metadata(in).get<Data>();
if (d.shape == cv::GShape::GMAT)
{
const auto& meta = cv::util::get<cv::GMatDesc>(d.meta);
in_hs.insert(meta.size.height);
}
}
for (const auto& out : node->outNodes())
{
const auto& d = g.metadata(out).get<Data>();
if (d.shape == cv::GShape::GMAT)
{
const auto& meta = cv::util::get<cv::GMatDesc>(d.meta);
out_ws.insert(meta.size.width);
out_hs.insert(meta.size.height);
}
}
auto &fu = fg.metadata(node).get<FluidUnit>();
GAPI_Assert((out_ws.size() == 1 && out_hs.size() == 1) &&
((in_hs.size() == 1) ||
((in_hs.size() == 2) && fu.k.m_kind == cv::GFluidKernel::Kind::YUV420toRGB)));
const auto &op = g.metadata(node).get<Op>();
fu.line_consumption.resize(op.args.size(), 0);
auto in_h = *in_hs .cbegin();
auto out_h = *out_hs.cbegin();
fu.ratio = (double)in_h / out_h;
// Set line consumption for each image (GMat) input
for (const auto& in_edge : node->inEdges())
{
const auto& d = g.metadata(in_edge->srcNode()).get<Data>();
if (d.shape == cv::GShape::GMAT)
{
auto port = g.metadata(in_edge).get<Input>().port;
fu.line_consumption[port] = maxLineConsumption(fu.k.m_kind, fu.window, in_h, out_h, fu.k.m_lpi, port);
GModel::log(g, node, "Line consumption (port " + std::to_string(port) + "): "
+ std::to_string(fu.line_consumption[port]));
}
}
fu.border_size = borderSize(fu.k.m_kind, fu.window);
GModel::log(g, node, "Border size: " + std::to_string(fu.border_size));
}
}
}
// FIXME!
// Split into initLineConsumption and initBorderSizes,
// call only consumption related stuff during reshape
void initLineConsumption(ade::Graph& graph)
{
using namespace cv::gimpl;
GModel::Graph g(graph);
GFluidModel fg(graph);
for (const auto &node : g.nodes())
{
if (fg.metadata(node).contains<FluidUnit>())
{
const auto &fu = fg.metadata(node).get<FluidUnit>();
for (const auto &in_edge : node->inEdges())
{
const auto &in_data_node = in_edge->srcNode();
auto port = g.metadata(in_edge).get<Input>().port;
auto &fd = fg.metadata(in_data_node).get<FluidData>();
// Update (not Set) fields here since a single data node may be
// accessed by multiple consumers
fd.max_consumption = std::max(fu.line_consumption[port], fd.max_consumption);
fd.border_size = std::max(fu.border_size, fd.border_size);
GModel::log(g, in_data_node, "Line consumption: " + std::to_string(fd.max_consumption)
+ " (upd by " + std::to_string(fu.line_consumption[port]) + ")", node);
GModel::log(g, in_data_node, "Border size: " + std::to_string(fd.border_size), node);
}
}
}
}
void calcLatency(ade::Graph& graph)
{
using namespace cv::gimpl;
GModel::Graph g(graph);
GFluidModel fg(graph);
auto sorted = g.metadata().get<ade::passes::TopologicalSortData>().nodes();
for (const auto &node : sorted)
{
if (fg.metadata(node).contains<FluidUnit>())
{
const auto &fu = fg.metadata(node).get<FluidUnit>();
GModel::log(g, node, "LPI: " + std::to_string(fu.k.m_lpi));
// Output latency is max(input_latency) + own_latency
int out_latency = 0;
for (const auto &in_edge: node->inEdges())
{
// FIXME: ASSERT(DATA), ASSERT(FLUIDDATA)
const auto port = g.metadata(in_edge).get<Input>().port;
const auto own_latency = fu.line_consumption[port] - fu.border_size;
const auto in_latency = fg.metadata(in_edge->srcNode()).get<FluidData>().latency;
out_latency = std::max(out_latency, in_latency + own_latency);
}
for (const auto &out_data_node : node->outNodes())
{
// FIXME: ASSERT(DATA), ASSERT(FLUIDDATA)
auto &fd = fg.metadata(out_data_node).get<FluidData>();
// If fluid node is external, it will be bound to a real image without
// fluid buffer allocation, so set its latency to 0 not to confuse later latency propagation.
// Latency is used in fluid buffer allocation process and is not used by the scheduler
// so latency doesn't affect the execution and setting it to 0 is legal
fd.latency = fd.internal ? out_latency : 0;
fd.lpi_write = fu.k.m_lpi;
GModel::log(g, out_data_node, "Latency: " + std::to_string(fd.latency));
}
}
}
}
void calcSkew(ade::Graph& graph)
{
using namespace cv::gimpl;
GModel::Graph g(graph);
GFluidModel fg(graph);
auto sorted = g.metadata().get<ade::passes::TopologicalSortData>().nodes();
for (const auto &node : sorted)
{
if (fg.metadata(node).contains<FluidUnit>())
{
int max_latency = 0;
for (const auto &in_data_node : node->inNodes())
{
// FIXME: ASSERT(DATA), ASSERT(FLUIDDATA)
max_latency = std::max(max_latency, fg.metadata(in_data_node).get<FluidData>().latency);
}
for (const auto &in_data_node : node->inNodes())
{
// FIXME: ASSERT(DATA), ASSERT(FLUIDDATA)
auto &fd = fg.metadata(in_data_node).get<FluidData>();
// Update (not Set) fields here since a single data node may be
// accessed by multiple consumers
fd.skew = std::max(fd.skew, max_latency - fd.latency);
GModel::log(g, in_data_node, "Skew: " + std::to_string(fd.skew), node);
}
}
}
}
}
void cv::gimpl::GFluidExecutable::makeReshape(const std::vector<cv::Rect> &out_rois)
{
GConstFluidModel fg(m_g);
// Calculate rois for each fluid buffer
std::vector<int> readStarts(m_num_int_buffers);
std::vector<cv::Rect> rois(m_num_int_buffers);
initBufferRois(readStarts, rois, out_rois);
// NB: Allocate ALL buffer object at once, and avoid any further reallocations
// (since raw pointers-to-elements are taken)
for (const auto &it : m_all_gmat_ids)
{
auto id = it.first;
auto nh = it.second;
const auto & d = m_gm.metadata(nh).get<Data>();
const auto &fd = fg.metadata(nh).get<FluidData>();
const auto meta = cv::util::get<GMatDesc>(d.meta);
m_buffers[id].priv().init(meta, fd.lpi_write, readStarts[id], rois[id]);
// TODO:
// Introduce Storage::INTERNAL_GRAPH and Storage::INTERNAL_ISLAND?
if (fd.internal == true)
{
// FIXME: do max_consumption calculation properly (e.g. in initLineConsumption)
int max_consumption = 0;
if (nh->outNodes().empty()) {
// nh is always a DATA node, so it is safe to get inNodes().front() since there's
// always a single writer (OP node)
max_consumption = fg.metadata(nh->inNodes().front()).get<FluidUnit>().k.m_lpi;
} else {
max_consumption = fd.max_consumption;
}
m_buffers[id].priv().allocate(fd.border, fd.border_size, max_consumption, fd.skew);
std::stringstream stream;
m_buffers[id].debug(stream);
GAPI_LOG_INFO(NULL, stream.str());
}
}
// Allocate views, initialize agents
for (auto &agent : m_agents)
{
const auto &fu = fg.metadata(agent->op_handle).get<FluidUnit>();
for (auto it : ade::util::indexed(ade::util::toRange(agent->in_buffer_ids)))
{
auto in_idx = ade::util::index(it);
auto buf_idx = ade::util::value(it);
if (buf_idx >= 0)
{
agent->in_views[in_idx].priv().allocate(fu.line_consumption[in_idx], fu.border);
}
}
agent->setRatio(fu.ratio);
agent->m_outputLines = agent->out_buffers.front()->priv().outputLines();
}
// Initialize scratch buffers
if (m_scratch_users.size())
{
for (auto i : m_scratch_users)
{
auto &agent = m_agents.at(i);
GAPI_Assert(agent->k.m_scratch);
// Trigger Scratch buffer initialization method
agent->k.m_is(GModel::collectInputMeta(m_gm, agent->op_handle), agent->in_args, *agent->out_buffers.back());
std::stringstream stream;
agent->out_buffers.back()->debug(stream);
GAPI_LOG_INFO(NULL, stream.str());
}
}
// FIXME: calculate the size (lpi * ..)
m_script.clear();
m_script.reserve(10000);
}
void cv::gimpl::GFluidExecutable::reshape(ade::Graph &g, const GCompileArgs &args)
{
// FIXME: Probably this needs to be integrated into common pass re-run routine
// Backends may want to mark with passes to re-run on reshape and framework could
// do it system-wide (without need in every backend handling reshape() directly).
// This design needs to be analyzed for implementation.
resetFluidData(g);
initFluidUnits(g);
initLineConsumption(g);
calcLatency(g);
calcSkew(g);
const auto out_rois = cv::gapi::getCompileArg<cv::GFluidOutputRois>(args).value_or(cv::GFluidOutputRois());
makeReshape(out_rois.rois);
}
// FIXME: Document what it does
void cv::gimpl::GFluidExecutable::bindInArg(const cv::gimpl::RcDesc &rc, const GRunArg &arg)
{
magazine::bindInArg(m_res, rc, arg);
if (rc.shape == GShape::GMAT) {
auto& mat = m_res.slot<cv::Mat>()[rc.id];
// fluid::Buffer::bindTo() is not connected to magazine::bindIn/OutArg and unbind() calls,
// it's simply called each run() without any requirement to call some fluid-specific
// unbind() at the end of run()
m_buffers[m_id_map.at(rc.id)].priv().bindTo(mat, true);
}
}
void cv::gimpl::GFluidExecutable::bindOutArg(const cv::gimpl::RcDesc &rc, const GRunArgP &arg)
{
// Only GMat is supported as return type
if (rc.shape != GShape::GMAT) {
util::throw_error(std::logic_error("Unsupported return GShape type"));
}
magazine::bindOutArg(m_res, rc, arg);
auto& mat = m_res.slot<cv::Mat>()[rc.id];
m_buffers[m_id_map.at(rc.id)].priv().bindTo(mat, false);
}
void cv::gimpl::GFluidExecutable::packArg(cv::GArg &in_arg, const cv::GArg &op_arg)
{
GAPI_Assert(op_arg.kind != cv::detail::ArgKind::GMAT
&& op_arg.kind != cv::detail::ArgKind::GSCALAR
&& op_arg.kind != cv::detail::ArgKind::GARRAY
&& op_arg.kind != cv::detail::ArgKind::GOPAQUE);
if (op_arg.kind == cv::detail::ArgKind::GOBJREF)
{
const cv::gimpl::RcDesc &ref = op_arg.get<cv::gimpl::RcDesc>();
if (ref.shape == GShape::GSCALAR)
{
in_arg = GArg(m_res.slot<cv::Scalar>()[ref.id]);
}
else if (ref.shape == GShape::GARRAY)
{
in_arg = GArg(m_res.slot<cv::detail::VectorRef>()[ref.id]);
}
else if (ref.shape == GShape::GOPAQUE)
{
in_arg = GArg(m_res.slot<cv::detail::OpaqueRef>()[ref.id]);
}
}
}
void cv::gimpl::GFluidExecutable::run(std::vector<InObj> &&input_objs,
std::vector<OutObj> &&output_objs)
{
run(input_objs, output_objs);
}
void cv::gimpl::GFluidExecutable::run(std::vector<InObj> &input_objs,
std::vector<OutObj> &output_objs)
{
// Bind input buffers from parameters
for (auto& it : input_objs) bindInArg(it.first, it.second);
for (auto& it : output_objs) bindOutArg(it.first, it.second);
// Reset Buffers and Agents state before we go
for (auto &buffer : m_buffers)
buffer.priv().reset();
for (auto &agent : m_agents)
{
agent->reset();
// Pass input cv::Scalar's to agent argument
const auto& op = m_gm.metadata(agent->op_handle).get<Op>();
for (const auto it : ade::util::indexed(op.args))
{
const auto& arg = ade::util::value(it);
packArg(agent->in_args[ade::util::index(it)], arg);
}
}
// Explicitly reset Scratch buffers, if any
for (auto scratch_i : m_scratch_users)
{
auto &agent = m_agents[scratch_i];
GAPI_DbgAssert(agent->k.m_scratch);
agent->k.m_rs(*agent->out_buffers.back());
}
// Now start executing our stuff!
// Fluid execution is:
// - run through list of Agents from Left to Right
// - for every Agent:
// - if all input Buffers have enough data to fulfill
// Agent's window - trigger Agent
// - on trigger, Agent takes all input lines from input buffers
// and produces a single output line
// - once Agent finishes, input buffers get "readDone()",
// and output buffers get "writeDone()"
// - if there's not enough data, Agent is skipped
// Yes, THAT easy!
if (m_script.empty())
{
bool complete = true;
do {
complete = true;
bool work_done=false;
for (auto &agent : m_agents)
{
// agent->debug(std::cout);
if (!agent->done())
{
if (agent->canWork())
{
agent->doWork(); work_done=true;
m_script.push_back(agent.get());
}
if (!agent->done()) complete = false;
}
}
GAPI_Assert(work_done || complete);
} while (!complete); // FIXME: number of iterations can be calculated statically
}
else
{
for (auto &agent : m_script)
{
agent->doWork();
}
}
// In/Out args clean-up is mandatory now with RMat
for (auto &it : input_objs) magazine::unbind(m_res, it.first);
for (auto &it : output_objs) magazine::unbind(m_res, it.first);
}
cv::gimpl::GParallelFluidExecutable::GParallelFluidExecutable(const ade::Graph &g,
const FluidGraphInputData &graph_data,
const std::vector<GFluidOutputRois> ¶llelOutputRois,
const decltype(parallel_for) &pfor)
: parallel_for(pfor)
{
for (auto&& rois : parallelOutputRois){
tiles.emplace_back(new GFluidExecutable(g, graph_data, rois.rois));
}
}
void cv::gimpl::GParallelFluidExecutable::reshape(ade::Graph&, const GCompileArgs& )
{
//TODO: implement ?
GAPI_Assert(false && "Not Implemented;");
}
void cv::gimpl::GParallelFluidExecutable::run(std::vector<InObj> &&input_objs,
std::vector<OutObj> &&output_objs)
{
parallel_for(tiles.size(), [&, this](std::size_t index){
GAPI_Assert((bool)tiles[index]);
tiles[index]->run(input_objs, output_objs);
});
}
// FIXME: these passes operate on graph global level!!!
// Need to fix this for heterogeneous (island-based) processing
void GFluidBackendImpl::addMetaSensitiveBackendPasses(ade::ExecutionEngineSetupContext &ectx)
{
using namespace cv::gimpl;
// FIXME: all passes were moved to "exec" stage since Fluid
// should check Islands configuration first (which is now quite
// limited), and only then continue with all other passes.
//
// The passes/stages API must be streamlined!
ectx.addPass("exec", "init_fluid_data", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
auto isl_graph = g.metadata().get<IslandModel>().model;
GIslandModel::Graph gim(*isl_graph);
GFluidModel fg(ctx.graph);
const auto setFluidData = [&](ade::NodeHandle nh, bool internal) {
FluidData fd;
fd.internal = internal;
fg.metadata(nh).set(fd);
};
for (const auto& nh : gim.nodes())
{
switch (gim.metadata(nh).get<NodeKind>().k)
{
case NodeKind::ISLAND:
{
const auto isl = gim.metadata(nh).get<FusedIsland>().object;
if (isl->backend() == cv::gapi::fluid::backend())
{
// Add FluidData to all data nodes inside island,
// set internal = true if node is not a slot in terms of higher-level GIslandModel
for (const auto& node : isl->contents())
{
if (g.metadata(node).get<NodeType>().t == NodeType::DATA &&
!fg.metadata(node).contains<FluidData>())
setFluidData(node, true);
}
} // if (fluid backend)
} break; // case::ISLAND
case NodeKind::SLOT:
{
// add FluidData to slot if it's read/written by fluid
// regardless if it is one fluid island (both writing to and reading from this object)
// or two distinct islands (both fluid)
auto isFluidIsland = [&](const ade::NodeHandle& node) {
// With Streaming, Emitter islands may have no FusedIsland thing in meta.
// FIXME: Probably this is a concept misalignment
if (!gim.metadata(node).contains<FusedIsland>()) {
const auto kind = gim.metadata(node).get<NodeKind>().k;
GAPI_Assert(kind == NodeKind::EMIT || kind == NodeKind::SINK);
return false;
}
const auto isl = gim.metadata(node).get<FusedIsland>().object;
return isl->backend() == cv::gapi::fluid::backend();
};
if (ade::util::any_of(ade::util::chain(nh->inNodes(), nh->outNodes()), isFluidIsland))
{
auto data_node = gim.metadata(nh).get<DataSlot>().original_data_node;
setFluidData(data_node, false);
}
} break; // case::SLOT
case NodeKind::EMIT:
case NodeKind::SINK:
break; // do nothing for Streaming nodes
default: GAPI_Assert(false);
} // switch
} // for (gim.nodes())
});
// FIXME:
// move to unpackKernel method
// when https://gitlab-icv.inn.intel.com/G-API/g-api/merge_requests/66 is merged
ectx.addPass("exec", "init_fluid_unit_windows_and_borders", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
GFluidModel fg(ctx.graph);
auto sorted = g.metadata().get<ade::passes::TopologicalSortData>().nodes();
for (auto node : sorted)
{
if (fg.metadata(node).contains<FluidUnit>())
{
// FIXME: check that op has only one data node on input
auto &fu = fg.metadata(node).get<FluidUnit>();
const auto &op = g.metadata(node).get<Op>();
auto inputMeta = GModel::collectInputMeta(fg, node);
// Trigger user-defined "getWindow" callback
fu.window = fu.k.m_gw(inputMeta, op.args);
// Trigger user-defined "getBorder" callback
fu.border = fu.k.m_b(inputMeta, op.args);
}
}
});
ectx.addPass("exec", "init_fluid_units", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
initFluidUnits(ctx.graph);
});
ectx.addPass("exec", "init_line_consumption", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
initLineConsumption(ctx.graph);
});
ectx.addPass("exec", "calc_latency", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
calcLatency(ctx.graph);
});
ectx.addPass("exec", "calc_skew", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
calcSkew(ctx.graph);
});
ectx.addPass("exec", "init_buffer_borders", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
GFluidModel fg(ctx.graph);
auto sorted = g.metadata().get<ade::passes::TopologicalSortData>().nodes();
for (auto node : sorted)
{
if (fg.metadata(node).contains<FluidData>())
{
auto &fd = fg.metadata(node).get<FluidData>();
// Assign border stuff to FluidData
// In/out data nodes are bound to user data directly,
// so cannot be extended with a border
if (fd.internal == true)
{
// For now border of the buffer's storage is the border
// of the first reader whose border size is the same.
// FIXME: find more clever strategy of border picking
// (it can be a border which is common for majority of the
// readers, also we can calculate the number of lines which
// will be copied by views on each iteration and base our choice
// on this criteria)
auto readers = node->outNodes();
// There can be a situation when __internal__ nodes produced as part of some
// operation are unused later in the graph:
//
// in -> OP1
// |------> internal_1 // unused node
// |------> internal_2 -> OP2
// |------> out
//
// To allow graphs like the one above, skip nodes with empty outNodes()
if (readers.empty()) {
continue;
}
const auto &candidate = ade::util::find_if(readers, [&](ade::NodeHandle nh) {
return fg.metadata(nh).contains<FluidUnit>() &&
fg.metadata(nh).get<FluidUnit>().border_size == fd.border_size;
});
GAPI_Assert(candidate != readers.end());
const auto &fu = fg.metadata(*candidate).get<FluidUnit>();
fd.border = fu.border;
}
if (fd.border)
{
GModel::log(g, node, "Border type: " + std::to_string(fd.border->type), node);
}
}
}
});
ectx.addPass("exec", "init_view_borders", [](ade::passes::PassContext &ctx)
{
GModel::Graph g(ctx.graph);
if (!GModel::isActive(g, cv::gapi::fluid::backend())) // FIXME: Rearchitect this!
return;
GFluidModel fg(ctx.graph);
for (auto node : g.nodes())
{
if (fg.metadata(node).contains<FluidData>())
{
auto &fd = fg.metadata(node).get<FluidData>();
for (auto out_edge : node->outEdges())
{
const auto dstNode = out_edge->dstNode();
if (fg.metadata(dstNode).contains<FluidUnit>())
{
const auto &fu = fg.metadata(dstNode).get<FluidUnit>();
// There is no need in own storage for view if it's border is
// the same as the buffer's (view can have equal or smaller border
// size in this case)
if (fu.border_size == 0 ||
(fu.border && fd.border && (*fu.border == *fd.border)))
{
GAPI_Assert(fu.border_size <= fd.border_size);
fg.metadata(out_edge).set(FluidUseOwnBorderBuffer{false});
}
else
{
fg.metadata(out_edge).set(FluidUseOwnBorderBuffer{true});
GModel::log(g, out_edge, "OwnBufferStorage: true");
}
}
}
}
}
});
}