dump_dot.cpp
8.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "precomp.hpp"
#include <iostream> // cout
#include <sstream> // stringstream
#include <fstream> // ofstream
#include <map>
#include <ade/passes/check_cycles.hpp>
#include <opencv2/gapi/gproto.hpp>
#include "compiler/gmodel.hpp"
#include "compiler/gislandmodel.hpp"
#include "compiler/passes/passes.hpp"
namespace cv { namespace gimpl { namespace passes {
// TODO: FIXME: Ideally all this low-level stuff with accessing ADE APIs directly
// should be incapsulated somewhere into GModel, so here we'd operate not
// with raw nodes and edges, but with Operations and Data it produce/consume.
void dumpDot(const ade::Graph &g, std::ostream& os)
{
GModel::ConstGraph gr(g);
const std::unordered_map<cv::GShape, std::string> data_labels = {
{cv::GShape::GMAT, "GMat"},
{cv::GShape::GSCALAR, "GScalar"},
{cv::GShape::GARRAY, "GArray"},
{cv::GShape::GOPAQUE, "GOpaque"},
{cv::GShape::GFRAME, "GFrame"},
};
auto format_op_label = [&gr](ade::NodeHandle nh) -> std::string {
std::stringstream ss;
const cv::GKernel k = gr.metadata(nh).get<Op>().k;
ss << k.name << "_" << nh;
return ss.str();
};
auto format_op = [&format_op_label](ade::NodeHandle nh) -> std::string {
return "\"" + format_op_label(nh) + "\"";
};
auto format_obj = [&gr, &data_labels](ade::NodeHandle nh) -> std::string {
std::stringstream ss;
const auto &data = gr.metadata(nh).get<Data>();
ss << data_labels.at(data.shape) << "_" << data.rc;
return ss.str();
};
auto format_log = [&gr](ade::NodeHandle nh, const std::string &obj_name) {
std::stringstream ss;
const auto &msgs = gr.metadata(nh).get<Journal>().messages;
ss << "xlabel=\"";
if (!obj_name.empty()) { ss << "*** " << obj_name << " ***:\n"; };
for (const auto &msg : msgs) { ss << msg << "\n"; }
ss << "\"";
return ss.str();
};
// FIXME:
// Unify with format_log
auto format_log_e = [&gr](ade::EdgeHandle nh) {
std::stringstream ss;
const auto &msgs = gr.metadata(nh).get<Journal>().messages;
for (const auto &msg : msgs) { ss << "\n" << msg; }
return ss.str();
};
auto sorted = gr.metadata().get<ade::passes::TopologicalSortData>();
os << "digraph GAPI_Computation {\n";
// Prior to dumping the graph itself, list Data and Op nodes individually
// and put type information in labels.
// Also prepare list of nodes in islands, if any
std::map<std::string, std::vector<std::string> > islands;
for (auto &nh : sorted.nodes())
{
const auto node_type = gr.metadata(nh).get<NodeType>().t;
if (NodeType::DATA == node_type)
{
const auto obj_data = gr.metadata(nh).get<Data>();
const auto obj_name = format_obj(nh);
os << obj_name << " [label=\"" << obj_name << "\n" << obj_data.meta << "\"";
if (gr.metadata(nh).contains<Journal>()) { os << ", " << format_log(nh, obj_name); }
os << " ]\n";
if (gr.metadata(nh).contains<Island>())
islands[gr.metadata(nh).get<Island>().island].push_back(obj_name);
}
else if (NodeType::OP == gr.metadata(nh).get<NodeType>().t)
{
const auto obj_name = format_op(nh);
const auto obj_name_label = format_op_label(nh);
os << obj_name << " [label=\"" << obj_name_label << "\"";
if (gr.metadata(nh).contains<Journal>()) { os << ", " << format_log(nh, obj_name_label); }
os << " ]\n";
if (gr.metadata(nh).contains<Island>())
islands[gr.metadata(nh).get<Island>().island].push_back(obj_name);
}
}
// Then, dump Islands (only nodes, operations and data, without links)
for (const auto &isl : islands)
{
os << "subgraph \"cluster " + isl.first << "\" {\n";
for(auto isl_node : isl.second) os << isl_node << ";\n";
os << "label=\"" << isl.first << "\";";
os << "}\n";
}
// Now dump the graph
for (auto &nh : sorted.nodes())
{
// FIXME: Alan Kay probably hates me.
switch (gr.metadata(nh).get<NodeType>().t)
{
case NodeType::DATA:
{
const auto obj_name = format_obj(nh);
for (const auto &eh : nh->outEdges())
{
os << obj_name << " -> " << format_op(eh->dstNode())
<< " [ label = \"in_port: "
<< gr.metadata(eh).get<Input>().port;
if (gr.metadata(eh).contains<Journal>()) { os << format_log_e(eh); }
os << "\" ] \n";
}
}
break;
case NodeType::OP:
{
for (const auto &eh : nh->outEdges())
{
os << format_op(nh) << " -> " << format_obj(eh->dstNode())
<< " [ label = \"out_port: "
<< gr.metadata(eh).get<Output>().port
<< " \" ]; \n";
}
}
break;
default: GAPI_Assert(false);
}
}
// And finally dump a GIslandModel (not connected with GModel directly,
// but projected in the same .dot file side-by-side)
auto pIG = gr.metadata().get<IslandModel>().model;
GIslandModel::Graph gim(*pIG);
for (auto nh : gim.nodes())
{
switch (gim.metadata(nh).get<NodeKind>().k)
{
case NodeKind::ISLAND:
{
const auto island = gim.metadata(nh).get<FusedIsland>().object;
const auto isl_name = "\"" + island->name() + "\"";
for (auto out_nh : nh->outNodes())
{
os << isl_name << " -> \"slot:"
<< format_obj(gim.metadata(out_nh).get<DataSlot>()
.original_data_node)
<< "\"\n";
}
}
break;
case NodeKind::SLOT:
{
const auto obj_name = format_obj(gim.metadata(nh).get<DataSlot>()
.original_data_node);
for (auto cons_nh : nh->outNodes())
{
if (gim.metadata(cons_nh).get<NodeKind>().k == NodeKind::ISLAND) {
os << "\"slot:" << obj_name << "\" -> \""
<< gim.metadata(cons_nh).get<FusedIsland>().object->name()
<< "\"\n";
} // other data consumers -- sinks -- are processed separately
}
}
break;
case NodeKind::EMIT:
{
for (auto out_nh : nh->outNodes())
{
const auto obj_name = format_obj(gim.metadata(out_nh).get<DataSlot>()
.original_data_node);
os << "\"emit:" << nh << "\" -> \"slot:" << obj_name << "\"\n";
}
}
break;
case NodeKind::SINK:
{
for (auto in_nh : nh->inNodes())
{
const auto obj_name = format_obj(gim.metadata(in_nh).get<DataSlot>()
.original_data_node);
os << "\"slot:" << obj_name << "\" -> \"sink:" << nh << "\"\n";
}
}
break;
default:
GAPI_Assert(false);
break;
}
}
os << "}" << std::endl;
}
void dumpDot(ade::passes::PassContext &ctx, std::ostream& os)
{
dumpDot(ctx.graph, os);
}
void dumpDotStdout(ade::passes::PassContext &ctx)
{
dumpDot(ctx, std::cout);
}
void dumpDotToFile(ade::passes::PassContext &ctx, const std::string& dump_path)
{
std::ofstream dump_file(dump_path);
if (dump_file.is_open())
{
dumpDot(ctx, dump_file);
dump_file << std::endl;
}
}
void dumpGraph(ade::passes::PassContext &ctx, const std::string& dump_path)
{
dump_path.empty() ? dumpDotStdout(ctx) : dumpDotToFile(ctx, dump_path);
}
}}} // cv::gimpl::passes