gstreamingexecutor.cpp 70.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation

#include "precomp.hpp"

#include <memory> // make_shared

#include <ade/util/zip_range.hpp>

#include <opencv2/gapi/opencv_includes.hpp>

#if !defined(GAPI_STANDALONE)
#include <opencv2/gapi/core.hpp> // GCopy -- FIXME - to be removed!
#endif // GAPI_STANDALONE

#include "utils/itt.hpp"

#include "api/gproto_priv.hpp" // ptr(GRunArgP)
#include "compiler/passes/passes.hpp"
#include "backends/common/gbackend.hpp" // createMat
#include "backends/streaming/gstreamingbackend.hpp" // GCopy
#include "compiler/gcompiler.hpp" // for compileIslands

#include "executor/gstreamingexecutor.hpp"

#include <opencv2/gapi/streaming/meta.hpp>
#include <opencv2/gapi/streaming/sync.hpp>

namespace
{
using namespace cv::gimpl::stream;

#if !defined(GAPI_STANDALONE)
class VideoEmitter final: public cv::gimpl::GIslandEmitter {
    cv::gapi::wip::IStreamSource::Ptr src;

    virtual bool pull(cv::GRunArg &arg) override {
        // FIXME: probably we can maintain a pool of (then) pre-allocated
        // buffers to avoid runtime allocations.
        // Pool size can be determined given the internal queue size.
        cv::gapi::wip::Data newData;
        if (!src->pull(newData)) {
            return false;
        }
        arg = std::move(static_cast<cv::GRunArg&>(newData));
        return true;
    }
public:
    explicit VideoEmitter(const cv::GRunArg &arg) {
        src = cv::util::get<cv::gapi::wip::IStreamSource::Ptr>(arg);
    }
};
#endif // GAPI_STANDALONE

class ConstEmitter final: public cv::gimpl::GIslandEmitter {
    cv::GRunArg m_arg;

    virtual bool pull(cv::GRunArg &arg) override {
        arg = const_cast<const cv::GRunArg&>(m_arg); // FIXME: variant workaround
        return true;
    }
public:

    explicit ConstEmitter(const cv::GRunArg &arg) : m_arg(arg) {
    }
};

struct DataQueue {
    static const char *name() { return "StreamingDataQueue"; }
    enum tag { DESYNC }; // Enum of 1 element: purely a syntax sugar

    explicit DataQueue(std::size_t capacity) {
        // Note: `ptr` is shared<SyncQueue>, while the `q` is a shared<Q>
        auto ptr = std::make_shared<cv::gimpl::stream::SyncQueue>();
        if (capacity != 0) {
            ptr->set_capacity(capacity);
        }
        q = std::move(ptr);
    }
    explicit DataQueue(tag t)
        : q(new cv::gimpl::stream::DesyncQueue()) {
        GAPI_Assert(t == DESYNC);
    }

    // FIXME: ADE metadata requires types to be copiable
    std::shared_ptr<cv::gimpl::stream::Q> q;
};

struct DesyncSpecialCase {
    static const char *name() { return "DesyncSpecialCase"; }
};

std::vector<cv::gimpl::stream::Q*> reader_queues(      ade::Graph &g,
                                                 const ade::NodeHandle &obj)
{
    ade::TypedGraph<DataQueue> qgr(g);
    std::vector<cv::gimpl::stream::Q*> result;
    for (auto &&out_eh : obj->outEdges())
    {
        result.push_back(qgr.metadata(out_eh).get<DataQueue>().q.get());
    }
    return result;
}

std::vector<cv::gimpl::stream::Q*> input_queues(      ade::Graph &g,
                                                const ade::NodeHandle &obj)
{
    ade::TypedGraph<DataQueue> qgr(g);
    std::vector<cv::gimpl::stream::Q*> result;
    for (auto &&in_eh : obj->inEdges())
    {
        result.push_back(qgr.metadata(in_eh).contains<DataQueue>()
                         ? qgr.metadata(in_eh).get<DataQueue>().q.get()
                         : nullptr);
    }
    return result;
}

void sync_data(cv::GRunArgs &results, cv::GRunArgsP &outputs)
{
    for (auto && it : ade::util::zip(ade::util::toRange(outputs),
                                     ade::util::toRange(results)))
    {
        auto &out_obj = std::get<0>(it);
        auto &res_obj = std::get<1>(it);

        // FIXME: this conversion should be unified
        using T = cv::GRunArgP;
        switch (out_obj.index())
        {
        case T::index_of<cv::Mat*>():
        {
            auto out_mat_p = cv::util::get<cv::Mat*>(out_obj);
            auto view = cv::util::get<cv::RMat>(res_obj).access(cv::RMat::Access::R);
            *out_mat_p = cv::gimpl::asMat(view).clone();
        } break;
        case T::index_of<cv::RMat*>():
            *cv::util::get<cv::RMat*>(out_obj) = std::move(cv::util::get<cv::RMat>(res_obj));
            break;
        case T::index_of<cv::Scalar*>():
            *cv::util::get<cv::Scalar*>(out_obj) = std::move(cv::util::get<cv::Scalar>(res_obj));
            break;
        case T::index_of<cv::detail::VectorRef>():
            cv::util::get<cv::detail::VectorRef>(out_obj).mov(cv::util::get<cv::detail::VectorRef>(res_obj));
            break;
        case T::index_of<cv::detail::OpaqueRef>():
            cv::util::get<cv::detail::OpaqueRef>(out_obj).mov(cv::util::get<cv::detail::OpaqueRef>(res_obj));
            break;
        case T::index_of<cv::MediaFrame*>():
            *cv::util::get<cv::MediaFrame*>(out_obj) = std::move(cv::util::get<cv::MediaFrame>(res_obj));
            break;
        default:
            GAPI_Assert(false && "This value type is not supported!"); // ...maybe because of STANDALONE mode.
            break;
        }
    }
}

// FIXME: Is there a way to derive function from its GRunArgsP version?
template<class C> using O = cv::util::optional<C>;
void sync_data(cv::gimpl::stream::Result &r, cv::GOptRunArgsP &outputs)
{
    namespace own = cv::gapi::own;

    for (auto && it : ade::util::zip(ade::util::toRange(outputs),
                                     ade::util::toRange(r.args),
                                     ade::util::toRange(r.flags)))
    {
        auto &out_obj  = std::get<0>(it);
        auto &res_obj  = std::get<1>(it);
        bool available = std::get<2>(it);

        using T = cv::GOptRunArgP;
#define HANDLE_CASE(Type)                                               \
        case T::index_of<O<Type>*>():                                   \
            if (available) {                                            \
                *cv::util::get<O<Type>*>(out_obj)                       \
                    = cv::util::make_optional(std::move(cv::util::get<Type>(res_obj))); \
            } else {                                                    \
                cv::util::get<O<Type>*>(out_obj)->reset();              \
            }

        // FIXME: this conversion should be unified
        switch (out_obj.index())
        {
            HANDLE_CASE(cv::Scalar);     break;
            HANDLE_CASE(cv::RMat);       break;
            HANDLE_CASE(cv::MediaFrame); break;

        case T::index_of<O<cv::Mat>*>(): {
            // Mat: special handling.
            auto &mat_opt = *cv::util::get<O<cv::Mat>*>(out_obj);
            if (available) {
                auto q_map = cv::util::get<cv::RMat>(res_obj).access(cv::RMat::Access::R);
                // FIXME: Copy! Maybe we could do some optimization for this case!
                // e.g. don't handle RMat for last ilsand in the graph.
                // It is not always possible though.
                mat_opt = cv::util::make_optional(cv::gimpl::asMat(q_map).clone());
            } else {
                mat_opt.reset();
            }
        } break;
        case T::index_of<cv::detail::OptionalVectorRef>(): {
            // std::vector<>: special handling
            auto &vec_opt = cv::util::get<cv::detail::OptionalVectorRef>(out_obj);
            if (available) {
                vec_opt.mov(cv::util::get<cv::detail::VectorRef>(res_obj));
            } else {
                vec_opt.reset();
            }
        } break;
        case T::index_of<cv::detail::OptionalOpaqueRef>(): {
            // std::vector<>: special handling
            auto &opq_opt = cv::util::get<cv::detail::OptionalOpaqueRef>(out_obj);
            if (available) {
                opq_opt.mov(cv::util::get<cv::detail::OpaqueRef>(res_obj));
            } else {
                opq_opt.reset();
            }
        } break;
        default:
            // ...maybe because of STANDALONE mode.
            GAPI_Assert(false && "This value type is not supported!");
            break;
        }
    }
#undef HANDLE_CASE
}


// Pops an item from every input queue and combine it to the final
// result.  Blocks the current thread.  Returns true if the vector has
// been obtained successfully and false if a Stop message has been
// received. Handles Stop x-queue synchronization gracefully.
//
// In fact, the logic behind this method is a little bit more complex.
// The complexity comes from handling the pipeline termination
// messages.  This version if GStreamerExecutable is running every
// graph island in its own thread, and threads communicate via bounded
// (limited in size) queues.  Threads poll their input queues in the
// infinite loops and pass the data to their Island executables when
// the full input vector (a "stack frame") arrives.
//
// If the input stream is over or stop() is called, "Stop" messages
// are broadcasted in the graph from island to island via queues,
// starting with the emitters (sources). Since queues are bounded,
// thread may block on push() if the queue is full already and is not
// popped for some reason in the reader thread. In order to avoid
// this, once an Island gets Stop on an input, it start reading all
// other input queues until it reaches Stop messages there as well.
// Only then the thread terminates so in theory queues are left
// free'd.
//
// "Stop" messages are sent to the pipeline in these three cases:
// 1. User has called stop(): a "Stop" message is sent to every input
//    queue.
// 2. Input video stream has reached its end -- its emitter sends Stop
//    to its readers AND asks constant emitters (emitters attached to
//    const data -- infinite data generators) to push Stop messages as
//    well - in order to maintain a regular Stop procedure as defined
//    above.
// 3. "Stop" message coming from a constant emitter after triggering an
//    EOS notification -- see (2).
//
// There is a problem with (3). Sometimes it terminates the pipeline
// too early while some frames could still be produced with no issue,
// and our test fails with error like "got 99 frames, expected 100".
// This is how it reproduces:
//
//                   q1
//   [const input]   -----------------------> [ ISL2 ] --> [output]
//                   q0             q2    .->
//   [stream input]  ---> [ ISL1 ] -------'
//
// Video emitter is pushing frames to q0, and ISL1 is taking every
// frame from this queue and processes it. Meanwhile, q1 is a
// const-input-queue staffed with const data already, ISL2 already
// popped one, and is waiting for data from q2 (of ISL1) to arrive.
//
// When the stream is over, stream emitter pushes the last frame to
// q0, followed by a Stop sign, and _immediately_ notifies const
// emitters to broadcast Stop messages as well.  In the above
// configuration, the replicated Stop message via q1 may reach ISL2
// faster than the real Stop message via q2 -- moreover, somewhere in
// q1 or q2 there may be real frames awaiting processing. ISL2 gets
// Stop via q1 and _discards_ any pending data coming from q2 -- so a
// last frame or two may be lost.
//
// A working but not very elegant solution to this problem is to tag
// Stop messages. Stop got via stop() is really a hard stop, while
// broadcasted Stop from a Const input shouldn't initiate the Island
// execution termination. Instead, its associated const data should
// remain somewhere in islands' thread local storage until a real
// "Stop" is received.
//
// Queue reader is the class which encapsulates all this logic and
// provides threads with a managed storage and an easy API to obtain
// data.
class QueueReader
{
    bool m_finishing = false; // Set to true once a "soft" stop is received
    std::vector<Cmd> m_cmd;

    void rewindToStop(std::vector<Q*>   &in_queues,
                      const std::size_t  this_id);

public:
    bool getInputVector  (std::vector<Q*>   &in_queues,
                          cv::GRunArgs      &in_constants,
                          cv::GRunArgs      &isl_inputs);

    bool getResultsVector(std::vector<Q*>         &in_queues,
                          const std::vector<int>  &in_mapping,
                          const std::size_t        out_size,
                          cv::GRunArgs            &out_results);
};

void rewindToStop(std::vector<Q*> &in_queues,
                  const std::size_t  this_id)
{
    for (auto &&qit : ade::util::indexed(in_queues))
    {
        auto id2 = ade::util::index(qit);
        auto &q2 = ade::util::value(qit);
        if (this_id == id2) continue;

        Cmd cmd;
        while (q2 && !cv::util::holds_alternative<Stop>(cmd))
            q2->pop(cmd);
    }
}

// This method handles a stop sign got from some input
// island. Reiterate through all _remaining valid_ queues (some of
// them can be set to nullptr already -- see handling in
// getInputVector) and rewind data to every Stop sign per queue.
void QueueReader::rewindToStop(std::vector<Q*>   &in_queues,
                               const std::size_t  this_id)
{
    ::rewindToStop(in_queues, this_id);
}

bool QueueReader::getInputVector(std::vector<Q*> &in_queues,
                                 cv::GRunArgs    &in_constants,
                                 cv::GRunArgs    &isl_inputs)
{
    // NB: Need to release resources from the previous step, to fetch new ones.
    // On some systems it might be impossible to allocate new memory
    // until the old one is released.
    m_cmd.clear();
    // NOTE: in order to maintain the GRunArg's underlying object
    // lifetime, keep the whole cmd vector (of size == # of inputs)
    // in memory.
    m_cmd.resize(in_queues.size());
    isl_inputs.resize(in_queues.size());

    for (auto &&it : ade::util::indexed(in_queues))
    {
        auto id = ade::util::index(it);
        auto &q = ade::util::value(it);

        if (q == nullptr)
        {
            GAPI_Assert(!in_constants.empty());
            // NULL queue means a graph-constant value (like a
            // value-initialized scalar)
            // It can also hold a constant value received with
            // Stop::Kind::CNST message (see above).
            isl_inputs[id] = in_constants[id];
            continue;
        }

        q->pop(m_cmd[id]);
        if (!cv::util::holds_alternative<Stop>(m_cmd[id]))
        {
            isl_inputs[id] = cv::util::get<cv::GRunArg>(m_cmd[id]);
        }
        else // A Stop sign
        {
            const auto &stop = cv::util::get<Stop>(m_cmd[id]);
            if (stop.kind == Stop::Kind::CNST)
            {
                // We've got a Stop signal from a const source,
                // propagated as a result of real stream reaching its
                // end.  Sometimes these signals come earlier than
                // real EOS Stops so are deprioritized -- just
                // remember the Const value here and continue
                // processing other queues. Set queue pointer to
                // nullptr and update the const_val vector
                // appropriately
                m_finishing = true;
                in_queues[id] = nullptr;
                in_constants.resize(in_queues.size());
                in_constants[id] = std::move(stop.cdata);

                // NEXT time (on a next call to getInputVector()), the
                // "q==nullptr" check above will be triggered, but now
                // we need to make it manually:
                isl_inputs[id] = in_constants[id];
            }
            else
            {
                GAPI_Assert(stop.kind == Stop::Kind::HARD);
                rewindToStop(in_queues, id);
                // After queues are read to the proper indicator,
                // indicate end-of-stream
                return false;
            } // if(Cnst)
        } // if(Stop)
    } // for(in_queues)

    if (m_finishing)
    {
        // If the process is about to end (a soft Stop was received
        // already) and an island has no other inputs than constant
        // inputs, its queues may all become nullptrs. Indicate it as
        // "no data".
        return !ade::util::all_of(in_queues, [](Q *ptr){return ptr == nullptr;});
    }
    return true; // A regular case - there is data to process.
}

// This is a special method to obtain a result vector
// for the entire pipeline's outputs.
//
// After introducing desync(), the pipeline output's vector
// can be produced just partially. Also, if a desynchronized
// path has multiple outputs for the pipeline, _these_ outputs
// should still come synchronized to the end user (via pull())
//
//
// This method handles all this.
// It takes a number of input queues, which may or may not be
// equal to the number of pipeline outputs (<=).
// It also takes indexes saying which queue produces which
// output in the resulting pipeline.
//
// `out_results` is always produced with the size of full output
// vector. In the desync case, the number of in_queues will
// be less than this size and some of the items won't be produced.
// In the sync case, there will be a 1-1 mapping.
//
// In the desync case, there _will be_ multiple collector threads
// calling this method, and pushing their whole-pipeline outputs
// (_may be_ partially filled) to the same final output queue.
// The receiver part at the GStreamingExecutor level won't change
// because of that.
bool QueueReader::getResultsVector(std::vector<Q*>   &in_queues,
                                   const std::vector<int>  &in_mapping,
                                   const std::size_t  out_size,
                                   cv::GRunArgs      &out_results)
{
    m_cmd.resize(out_size);
    for (auto &&it : ade::util::indexed(in_queues))
    {
        auto ii = ade::util::index(it);
        auto oi = in_mapping[ii];
        auto &q = ade::util::value(it);
        q->pop(m_cmd[oi]);
        if (!cv::util::holds_alternative<Stop>(m_cmd[oi]))
        {
            out_results[oi] = std::move(cv::util::get<cv::GRunArg>(m_cmd[oi]));
        }
        else // A Stop sign
        {
            // In theory, the CNST should never reach here.
            // Collector thread never handles the inputs directly
            // (collector's input queues are always produced by
            // islands in the graph).
            rewindToStop(in_queues, ii);
            return false;
        } // if(Stop)
    } // for(in_queues)
    return true;
}


// This thread is a plain dump source actor. What it do is just:
// - Check input queue (the only one) for a control command
// - Depending on the state, obtains next data object and pushes it to the
//   pipeline.
void emitterActorThread(std::shared_ptr<cv::gimpl::GIslandEmitter> emitter,
                        Q& in_queue,
                        std::vector<Q*> out_queues,
                        std::function<void()> cb_completion)
{
    // Wait for the explicit Start command.
    // ...or Stop command, this also happens.
    Cmd cmd;
    in_queue.pop(cmd);
    GAPI_Assert(   cv::util::holds_alternative<Start>(cmd)
                || cv::util::holds_alternative<Stop>(cmd));
    if (cv::util::holds_alternative<Stop>(cmd))
    {
        for (auto &&oq : out_queues) oq->push(cmd);
        return;
    }

    GAPI_ITT_STATIC_LOCAL_HANDLE(emitter_hndl, "emitter");
    GAPI_ITT_STATIC_LOCAL_HANDLE(emitter_pull_hndl, "emitter_pull");
    GAPI_ITT_STATIC_LOCAL_HANDLE(emitter_push_hndl, "emitter_push");

    // Now start emitting the data from the source to the pipeline.
    while (true)
    {
        GAPI_ITT_AUTO_TRACE_GUARD(emitter_hndl);

        Cmd cancel;
        if (in_queue.try_pop(cancel))
        {
            // if we just popped a cancellation command...
            GAPI_Assert(cv::util::holds_alternative<Stop>(cancel));
            // Broadcast it to the readers and quit.
            for (auto &&oq : out_queues) oq->push(cancel);
            return;
        }

        // Try to obtain next data chunk from the source
        cv::GRunArg data;

        const bool result = [&](){
            GAPI_ITT_AUTO_TRACE_GUARD(emitter_pull_hndl);
            return emitter->pull(data);
        }();

        if (result)
        {
            GAPI_ITT_AUTO_TRACE_GUARD(emitter_push_hndl);
            // // On success, broadcast it to our readers
            for (auto &&oq : out_queues)
            {
                // FIXME: FOR SOME REASON, oq->push(Cmd{data}) doesn't work!!
                // empty mats are arrived to the receivers!
                // There may be a fatal bug in our variant!
                const auto tmp = data;
                oq->push(Cmd{tmp});
            }
        }
        else
        {
            // Otherwise, broadcast STOP message to our readers and quit.
            // This usually means end-of-stream, so trigger a callback
            for (auto &&oq : out_queues) oq->push(Cmd{Stop{}});
            if (cb_completion) cb_completion();
            return;
        }
    }
}

// This thread pulls data from the assigned input queues and makes sure that
// all input args are in sync (timestamps are equal), dropping some inputs if required.
// After getting synchronized inputs from all input queues, the thread pushes them to out queues
void syncActorThread(std::vector<Q*> in_queues,
                     std::vector<std::vector<Q*>> out_queues) {
    using timestamp_t = int64_t;
    std::vector<bool> pop_nexts(in_queues.size());
    std::vector<Cmd> cmds(in_queues.size());

    GAPI_ITT_STATIC_LOCAL_HANDLE(sync_hndl, "sync_actor");
    GAPI_ITT_STATIC_LOCAL_HANDLE(sync_pull_1_queue_hndl, "sync_actor_pull_from_1_queue");
    GAPI_ITT_STATIC_LOCAL_HANDLE(sync_push_hndl, "sync_actor_push");
    while (true) {
        GAPI_ITT_AUTO_TRACE_GUARD(sync_hndl);
        // pop_nexts indicates which queue still contains earlier timestamps and
        // needs to be popped at least one more time.
        // For each iteration (frame) we need to pull from each input queue at least once,
        // so switch all to true when start processing new frame
        for (auto&& p : pop_nexts) {
            p = true;
        }
        timestamp_t max_ts = 0u;
        // Iterate through all input queues, pop GRunArg's and compare timestamps.
        // Continue pulling from queues whose timestamps are smaller.
        // Finish when all timestamps are equal.
        do {
            for (auto&& it : ade::util::indexed(
                                 ade::util::zip(pop_nexts, in_queues, cmds))) {
                auto& val = ade::util::value(it);
                auto& pop_next = std::get<0>(val);
                if (!pop_next) {
                    continue;
                }
                auto& q   = std::get<1>(val);
                auto& cmd = std::get<2>(val);

                {
                    GAPI_ITT_AUTO_TRACE_GUARD(sync_pull_1_queue_hndl);
                    q->pop(cmd);
                }
                if (cv::util::holds_alternative<Stop>(cmd)) {
                    // We got a stop command from one of the input queues.
                    // Rewind all input queues till Stop command,
                    // Push Stop command down the graph, finish the thread
                    rewindToStop(in_queues, ade::util::index(it));
                    for (auto &&oqs : out_queues) {
                        for (auto &&oq : oqs) {
                            oq->push(Cmd{Stop{}});
                        }
                    }
                    return;
                }

                // Extract the timestamp
                auto& arg = cv::util::get<cv::GRunArg>(cmd);
                auto ts = cv::util::any_cast<int64_t>(arg.meta[cv::gapi::streaming::meta_tag::timestamp]);
                GAPI_Assert(ts >= 0u);

                // TODO: this whole drop logic can be imported via compile args
                // to give a user a way to customize it
                if (ts < max_ts) {
                    // Continue popping from this queue
                    pop_next = true;
                } else if (ts == max_ts) {
                    // Stop popping from this queue
                    pop_next = false;
                } else if (ts > max_ts) {
                    // We got a timestamp which is greater than timestamps from other queues.
                    // It means that we need to reiterate through all the queues one more time
                    // (except the current one)
                    max_ts = ts;
                    for (auto&& p : pop_nexts) {
                        p = true;
                    }
                    pop_next = false;
                }
            }
        } while (ade::util::any_of(pop_nexts, [](bool v){ return v; }));

        // Finally we got all our inputs synchronized, push them further down the graph
        {
            GAPI_ITT_AUTO_TRACE_GUARD(sync_push_hndl);
            for (auto &&it : ade::util::zip(out_queues, cmds)) {
                for (auto &&q : std::get<0>(it)) {
                    q->push(std::get<1>(it));
                }
            }
        }
    }
}

class StreamingInput final: public cv::gimpl::GIslandExecutable::IInput
{
    QueueReader &qr;
    std::vector<Q*> &in_queues; // FIXME: This can be part of QueueReader
    cv::GRunArgs &in_constants; // FIXME: This can be part of QueueReader

    virtual cv::gimpl::StreamMsg get() override
    {
        GAPI_ITT_STATIC_LOCAL_HANDLE(inputs_get_hndl, "StreamingInput::get");
        GAPI_ITT_AUTO_TRACE_GUARD(inputs_get_hndl);

        cv::GRunArgs isl_input_args;

        if (!qr.getInputVector(in_queues, in_constants, isl_input_args))
        {
            // Stop case
            return cv::gimpl::StreamMsg{cv::gimpl::EndOfStream{}};
        }
        // Wrap all input cv::Mats with RMats
        for (auto& arg : isl_input_args) {
            if (arg.index() == cv::GRunArg::index_of<cv::Mat>()) {
                arg = cv::GRunArg{ cv::make_rmat<cv::gimpl::RMatAdapter>(cv::util::get<cv::Mat>(arg))
                                 , arg.meta
                                 };
            }
        }
        return cv::gimpl::StreamMsg{std::move(isl_input_args)};
    }
    virtual cv::gimpl::StreamMsg try_get() override
    {
        // FIXME: This is not very usable at the moment!
        return get();
    }
 public:
    explicit StreamingInput(QueueReader &rdr,
                            std::vector<Q*> &inq,
                            cv::GRunArgs &inc,
                            const std::vector<cv::gimpl::RcDesc> &in_descs)
        : qr(rdr), in_queues(inq), in_constants(inc)
    {
        set(in_descs);
    }
};

class StreamingOutput final: public cv::gimpl::GIslandExecutable::IOutput
{
    // These objects form an internal state of the StreamingOutput
    struct Posting
    {
        using V = cv::util::variant<cv::GRunArg, cv::gimpl::EndOfStream>;
        V data;
        bool ready = false;
    };
    using PostingList = std::list<Posting>;
    std::vector<PostingList> m_postings;
    std::unordered_map< const void*
                      , std::pair<int, PostingList::iterator>
                      > m_postIdx;
    std::size_t m_stops_sent = 0u;

    // These objects are owned externally
    const cv::GMetaArgs &m_metas;
    std::vector< std::vector<Q*> > &m_out_queues;
    std::shared_ptr<cv::gimpl::GIslandExecutable> m_island;

    // NB: StreamingOutput have to be thread-safe.
    // Now synchronization approach is quite poor and inefficient.
    mutable std::mutex m_mutex;

    // Allocate a new data object for output under idx
    // Prepare this object for posting
    virtual cv::GRunArgP get(int idx) override
    {
        GAPI_ITT_STATIC_LOCAL_HANDLE(outputs_get_hndl, "StreamingOutput::get (alloc)");
        GAPI_ITT_AUTO_TRACE_GUARD(outputs_get_hndl);

        std::lock_guard<std::mutex> lock{m_mutex};

        using MatType = cv::Mat;
        using SclType = cv::Scalar;

        // Allocate a new posting first, then bind this GRunArgP to this item
        auto iter    = m_postings[idx].insert(m_postings[idx].end(), Posting{});
        const auto r = desc()[idx];
        cv::GRunArg& out_arg = cv::util::get<cv::GRunArg>(iter->data);
        cv::GRunArgP ret_val;
        switch (r.shape) {
            // Allocate a data object based on its shape & meta, and put it into our vectors.
            // Yes, first we put a cv::Mat GRunArg, and then specify _THAT_
            // pointer as an output parameter - to make sure that after island completes,
            // our GRunArg still has the right (up-to-date) value.
            // Same applies to other types.
            // FIXME: This is absolutely ugly but seem to work perfectly for its purpose.
        case cv::GShape::GMAT:
            {
                auto desc = cv::util::get<cv::GMatDesc>(m_metas[idx]);
                if (m_island->allocatesOutputs())
                {
                    out_arg = cv::GRunArg(m_island->allocate(desc));
                }
                else
                {
                    MatType newMat;
                    cv::gimpl::createMat(desc, newMat);
                    auto rmat = cv::make_rmat<cv::gimpl::RMatAdapter>(newMat);
                    out_arg = cv::GRunArg(std::move(rmat));
                }
                ret_val = cv::GRunArgP(&cv::util::get<cv::RMat>(out_arg));
            }
            break;
        case cv::GShape::GSCALAR:
            {
                SclType newScl;
                out_arg = cv::GRunArg(std::move(newScl));
                ret_val = cv::GRunArgP(&cv::util::get<SclType>(out_arg));
            }
            break;
        case cv::GShape::GARRAY:
            {
                cv::detail::VectorRef newVec;
                cv::util::get<cv::detail::ConstructVec>(r.ctor)(newVec);
                out_arg = cv::GRunArg(std::move(newVec));
                // VectorRef is implicitly shared so no pointer is taken here
                // FIXME: that variant MOVE problem again
                const auto &rr = cv::util::get<cv::detail::VectorRef>(out_arg);
                ret_val = cv::GRunArgP(rr);
            }
            break;
        case cv::GShape::GOPAQUE:
            {
                cv::detail::OpaqueRef newOpaque;
                cv::util::get<cv::detail::ConstructOpaque>(r.ctor)(newOpaque);
                out_arg = cv::GRunArg(std::move(newOpaque));
                // OpaqueRef is implicitly shared so no pointer is taken here
                // FIXME: that variant MOVE problem again
                const auto &rr = cv::util::get<cv::detail::OpaqueRef>(out_arg);
                ret_val = cv::GRunArgP(rr);
            }
            break;
        case cv::GShape::GFRAME:
            {
                cv::MediaFrame frame;
                out_arg = cv::GRunArg(std::move(frame));
                ret_val = cv::GRunArgP(&cv::util::get<cv::MediaFrame>(out_arg));
            }
            break;
        default:
            cv::util::throw_error(std::logic_error("Unsupported GShape"));
        }
        m_postIdx[cv::gimpl::proto::ptr(ret_val)] = std::make_pair(idx, iter);
        return ret_val;
    }

    virtual void post(cv::GRunArgP&& argp) override
    {
        GAPI_ITT_STATIC_LOCAL_HANDLE(outputs_post_hndl, "StreamingOutput::post");
        GAPI_ITT_AUTO_TRACE_GUARD(outputs_post_hndl);

        std::lock_guard<std::mutex> lock{m_mutex};

        // Mark the output ready for posting. If it is the first in the line,
        // actually post it and all its successors which are ready for posting too.
        auto it = m_postIdx.find(cv::gimpl::proto::ptr(argp));
        GAPI_Assert(it != m_postIdx.end());
        const int out_idx = it->second.first;
        const auto out_iter = it->second.second;
        out_iter->ready = true;
        m_postIdx.erase(it); // Drop the link from the cache anyway
        if (out_iter != m_postings[out_idx].begin())
        {
            return; // There are some pending postings in the beginning, return
        }

        GAPI_Assert(out_iter == m_postings[out_idx].begin());
        auto post_iter = m_postings[out_idx].begin();
        while (post_iter != m_postings[out_idx].end() && post_iter->ready == true)
        {
            Cmd cmd;
            if (cv::util::holds_alternative<cv::GRunArg>(post_iter->data))
            {
                cmd = Cmd{cv::util::get<cv::GRunArg>(post_iter->data)};
            }
            else
            {
                GAPI_Assert(cv::util::holds_alternative<cv::gimpl::EndOfStream>(post_iter->data));
                cmd = Cmd{Stop{}};
                m_stops_sent++;
            }
            for (auto &&q : m_out_queues[out_idx])
            {
                q->push(cmd);
            }
            post_iter = m_postings[out_idx].erase(post_iter);
        }
    }

    virtual void post(cv::gimpl::EndOfStream&&) override
    {
        std::lock_guard<std::mutex> lock{m_mutex};
        // If the posting list is empty, just broadcast the stop message.
        // If it is not, enqueue the Stop message in the postings list.
        for (auto &&it : ade::util::indexed(m_postings))
        {
            const auto  idx = ade::util::index(it);
                  auto &lst = ade::util::value(it);
            if (lst.empty())
            {
                for (auto &&q : m_out_queues[idx])
                {
                    q->push(Cmd(Stop{}));
                }
                m_stops_sent++;
            }
            else
            {
                Posting p;
                p.data = Posting::V{cv::gimpl::EndOfStream{}};
                p.ready = true;
                lst.push_back(std::move(p)); // FIXME: For some reason {}-ctor didn't work here
            }
        }
    }
    void meta(const cv::GRunArgP &out, const cv::GRunArg::Meta &m) override
    {
        std::lock_guard<std::mutex> lock{m_mutex};
        const auto it = m_postIdx.find(cv::gimpl::proto::ptr(out));
        GAPI_Assert(it != m_postIdx.end());

        const auto out_iter = it->second.second;
        cv::util::get<cv::GRunArg>(out_iter->data).meta = m;
    }

public:
    explicit StreamingOutput(const cv::GMetaArgs &metas,
                             std::vector< std::vector<Q*> > &out_queues,
                             const std::vector<cv::gimpl::RcDesc> &out_descs,
                             std::shared_ptr<cv::gimpl::GIslandExecutable> island)
        : m_metas(metas)
        , m_out_queues(out_queues)
        , m_island(island)
    {
        set(out_descs);
        m_postings.resize(out_descs.size());
    }

    bool done() const
    {
        std::lock_guard<std::mutex> lock{m_mutex};
        // The streaming actor work is considered DONE for this stream
        // when it posted/resent all STOP messages to all its outputs.
        return m_stops_sent == desc().size();
    }
};

// This thread is a plain dumb processing actor. What it do is just:
// - Reads input from the input queue(s), sleeps if there's nothing to read
// - Once a full input vector is obtained, passes it to the underlying island
//   executable for processing.
// - Pushes processing results down to consumers - to the subsequent queues.
//   Note: Every data object consumer has its own queue.
void islandActorThread(std::vector<cv::gimpl::RcDesc> in_rcs,                     // FIXME: this is...
                       std::vector<cv::gimpl::RcDesc> out_rcs,                    // FIXME: ...basically just...
                       cv::GMetaArgs out_metas,                                   // ...
                       std::shared_ptr<cv::gimpl::GIslandExecutable> island_exec, // FIXME: ...a copy of OpDesc{}.
                       std::vector<Q*> in_queues,
                       cv::GRunArgs in_constants,
                       std::vector< std::vector<Q*> > out_queues,
                       const std::string& island_meta_info)
{
    GAPI_Assert(in_queues.size() == in_rcs.size());
    GAPI_Assert(out_queues.size() == out_rcs.size());
    GAPI_Assert(out_queues.size() == out_metas.size());
    QueueReader qr;
    StreamingInput input(qr, in_queues, in_constants, in_rcs);
    StreamingOutput output(out_metas, out_queues, out_rcs, island_exec);

    GAPI_ITT_DYNAMIC_LOCAL_HANDLE(island_hndl, island_meta_info.c_str());
    while (!output.done())
    {
        GAPI_ITT_AUTO_TRACE_GUARD(island_hndl);
        island_exec->run(input, output);
    }
}

// The idea of collectorThread is easy.  If there're multiple outputs
// in the graph, we need to pull an object from every associated queue
// and then put the resulting vector into one single queue.  While it
// looks redundant, it simplifies dramatically the way how try_pull()
// is implemented - we need to check one queue instead of many.
//
// After desync() is added, there may be multiple collector threads
// running, every thread producing its own part of the partial
// pipeline output (optional<T>...). All partial outputs are pushed
// to the same output queue and then picked by GStreamingExecutor
// in the end.
void collectorThread(std::vector<Q*>   in_queues,
                     std::vector<int>  in_mapping,
                     const std::size_t out_size,
                     const bool        handle_stop,
                     Q&                out_queue)
{
    // These flags are static now: regardless if the sync or
    // desync branch is collected by this thread, all in_queue
    // data should come in sync.
    std::vector<bool> flags(out_size, false);
    for (auto idx : in_mapping) {
        flags[idx] = true;
    }

    GAPI_ITT_STATIC_LOCAL_HANDLE(collector_hndl, "collector");
    GAPI_ITT_STATIC_LOCAL_HANDLE(collector_get_results_hndl, "collector_get_results");
    GAPI_ITT_STATIC_LOCAL_HANDLE(collector_push_hndl, "collector_push");

    QueueReader qr;
    while (true)
    {
        GAPI_ITT_AUTO_TRACE_GUARD(collector_hndl);
        cv::GRunArgs this_result(out_size);

        const bool ok = [&](){
            GAPI_ITT_AUTO_TRACE_GUARD(collector_get_results_hndl);
            return qr.getResultsVector(in_queues, in_mapping, out_size, this_result);
        }();

        if (!ok)
        {
            if (handle_stop)
            {
                out_queue.push(Cmd{Stop{}});
            }
            // Terminate the thread anyway
            return;
        }

        {
            GAPI_ITT_AUTO_TRACE_GUARD(collector_push_hndl);
            out_queue.push(Cmd{Result{std::move(this_result), flags}});
        }
    }
}

void check_DesyncObjectConsumedByMultipleIslands(const cv::gimpl::GIslandModel::Graph &gim) {
    using namespace cv::gimpl;

    // Since the limitation exists only in this particular
    // implementation, the check is also done only here but not at the
    // graph compiler level.
    //
    // See comment in desync(GMat) src/api/kernels_streaming.cpp for details.
    for (auto &&nh : gim.nodes()) {
        if (gim.metadata(nh).get<NodeKind>().k == NodeKind::SLOT) {
            // SLOTs are read by ISLANDs, so look for the metadata
            // of the outbound edges
            std::unordered_map<int, GIsland*> out_desync_islands;
            for (auto &&out_eh : nh->outEdges()) {
                if (gim.metadata(out_eh).contains<DesyncIslEdge>()) {
                    // This is a desynchronized edge
                    // Look what Island it leads to
                    const auto out_desync_idx = gim.metadata(out_eh)
                        .get<DesyncIslEdge>().index;
                    const auto out_island = gim.metadata(out_eh->dstNode())
                        .get<FusedIsland>().object;

                    auto it = out_desync_islands.find(out_desync_idx);
                    if (it != out_desync_islands.end()) {
                        // If there's already an edge with this desync
                        // id, it must point to the same island object
                        GAPI_Assert(it->second == out_island.get()
                                    && "A single desync object may only be used by a single island!");
                    } else {
                        // Store the island pointer for the further check
                        out_desync_islands[out_desync_idx] = out_island.get();
                    }
                } // if(desync)
            } // for(out_eh)
            // There must be only one backend in the end of the day
            // (under this desync path)
        } // if(SLOT)
    } // for(nodes)
}

// NB: Construct GRunArgsP based on passed info and store the memory in passed cv::GRunArgs.
// Needed for python bridge, because in case python user doesn't pass output arguments to apply.
void constructOptGraphOutputs(const cv::GTypesInfo &out_info,
                                    cv::GOptRunArgs &args,
                                    cv::GOptRunArgsP &outs)
{
    for (auto&& info : out_info)
    {
        switch (info.shape)
        {
            case cv::GShape::GMAT:
            {
                args.emplace_back(cv::optional<cv::Mat>{});
                outs.emplace_back(&cv::util::get<cv::optional<cv::Mat>>(args.back()));
                break;
            }
            case cv::GShape::GSCALAR:
            {
                args.emplace_back(cv::optional<cv::Scalar>{});
                outs.emplace_back(&cv::util::get<cv::optional<cv::Scalar>>(args.back()));
                break;
            }
            case cv::GShape::GARRAY:
            {
                cv::detail::VectorRef ref;
                cv::util::get<cv::detail::ConstructVec>(info.ctor)(ref);
                args.emplace_back(cv::util::make_optional(std::move(ref)));
                outs.emplace_back(wrap_opt_arg(cv::util::get<cv::optional<cv::detail::VectorRef>>(args.back())));
                break;
            }
            case cv::GShape::GOPAQUE:
            {
                cv::detail::OpaqueRef ref;
                cv::util::get<cv::detail::ConstructOpaque>(info.ctor)(ref);
                args.emplace_back(cv::util::make_optional(std::move(ref)));
                outs.emplace_back(wrap_opt_arg(cv::util::get<cv::optional<cv::detail::OpaqueRef>>(args.back())));
                break;
            }
            default:
                cv::util::throw_error(std::logic_error("Unsupported optional output shape for Python"));
        }
    }
}
} // anonymous namespace

class cv::gimpl::GStreamingExecutor::Synchronizer final {
    gapi::streaming::sync_policy m_sync_policy = gapi::streaming::sync_policy::dont_sync;
    ade::Graph& m_island_graph;
    cv::gimpl::GIslandModel::Graph m_gim;
    std::size_t m_queue_capacity = 0u;
    std::thread m_thread;

    std::vector<ade::NodeHandle> m_synchronized_emitters;
    std::vector<stream::SyncQueue> m_sync_queues;

    std::vector<stream::Q*> newSyncQueue() {
        m_sync_queues.emplace_back(SyncQueue{});
        m_sync_queues.back().set_capacity(m_queue_capacity);
        return std::vector<Q*>{&m_sync_queues.back()};
    }
public:
    Synchronizer(gapi::streaming::sync_policy sync_policy,
                 ade::Graph& island_graph,
                 std::size_t queue_capacity)
        : m_sync_policy(sync_policy)
        , m_island_graph(island_graph)
        , m_gim(m_island_graph)
        , m_queue_capacity(queue_capacity) {
    }

    void registerVideoEmitters(std::vector<ade::NodeHandle>&& emitters) {
        // There is no point to make synchronization for the one video input
        // so do nothing in this case
        if (   m_sync_policy == cv::gapi::streaming::sync_policy::drop
            && emitters.size() > 1u) {
            m_synchronized_emitters = std::move(emitters);
            m_sync_queues.reserve(m_synchronized_emitters.size());
        }
    }

    std::vector<stream::Q*> outQueues(const ade::NodeHandle& emitter) {
        // If the emitter was registered previously (which means it needs to be synchronized),
        // create a new queue for this emitter to push the data to. Sync thread will
        // pop from this queue and push data to emitter's readers.
        // If the emitter was not registered, direct emitter output to its immediate readers right away
        return m_synchronized_emitters.end() != std::find(m_synchronized_emitters.begin(),
                                                          m_synchronized_emitters.end(),
                                                          emitter)
               ? newSyncQueue()
               : reader_queues(m_island_graph, emitter->outNodes().front());
    }

    // Start a thread which will handle the synchronization.
    // Do nothing if synchronization is not needed
    void start() {
        if (m_synchronized_emitters.size() != 0) {
            GAPI_Assert(m_synchronized_emitters.size() > 1u);
            std::vector<Q*> sync_in_queues(m_synchronized_emitters.size());
            std::vector<std::vector<Q*>> sync_out_queues(m_synchronized_emitters.size());
            for (auto it : ade::util::indexed(m_synchronized_emitters)) {
                const auto id = ade::util::index(it);
                const auto eh = ade::util::value(it);
                sync_in_queues[id] = &m_sync_queues[id];
                sync_out_queues[id] = reader_queues(m_island_graph, eh->outNodes().front());
            }
            m_thread = std::thread(syncActorThread,
                                   std::move(sync_in_queues),
                                   std::move(sync_out_queues));
        }
    }

    void join() {
        if (m_synchronized_emitters.size() != 0) {
            m_thread.join();
        }
    }

    void clear() {
        for (auto &q : m_sync_queues) q.clear();
        m_sync_queues.clear();
        m_synchronized_emitters.clear();
    }
};

// GStreamingExecutor expects compile arguments as input to have possibility to do
// proper graph reshape and islands recompilation
cv::gimpl::GStreamingExecutor::GStreamingExecutor(std::unique_ptr<ade::Graph> &&g_model,
                                                  const GCompileArgs &comp_args)
    : m_orig_graph(std::move(g_model))
    , m_island_graph(GModel::Graph(*m_orig_graph).metadata()
                     .get<IslandModel>().model)
    , m_comp_args(comp_args)
    , m_gim(*m_island_graph)
    , m_desync(GModel::Graph(*m_orig_graph).metadata()
               .contains<Desynchronized>())
{
    GModel::Graph gm(*m_orig_graph);
    // NB: Right now GIslandModel is acyclic, and all the below code assumes that.
    // NB: This naive execution code is taken from GExecutor nearly
    // "as-is"

    if (m_desync) {
        check_DesyncObjectConsumedByMultipleIslands(m_gim);
    }

    const auto proto = gm.metadata().get<Protocol>();
    m_emitters      .resize(proto.in_nhs.size());
    m_emitter_queues.resize(proto.in_nhs.size());
    m_sinks         .resize(proto.out_nhs.size());
    m_sink_queues   .resize(proto.out_nhs.size(), nullptr);
    m_sink_sync     .resize(proto.out_nhs.size(), -1);

    // Very rough estimation to limit internal queue sizes if not specified by the user.
    // Pipeline depth is equal to number of its (pipeline) steps.
    auto has_queue_capacity = cv::gapi::getCompileArg<cv::gapi::streaming::queue_capacity>(m_comp_args);
    const auto queue_capacity = has_queue_capacity ? has_queue_capacity->capacity :
            3*std::count_if
            (m_gim.nodes().begin(),
            m_gim.nodes().end(),
            [&](ade::NodeHandle nh) {
                return m_gim.metadata(nh).get<NodeKind>().k == NodeKind::ISLAND;
            });
    GAPI_Assert(queue_capacity != 0u);

    auto sync_policy = cv::gimpl::getCompileArg<cv::gapi::streaming::sync_policy>(m_comp_args)
                       .value_or(cv::gapi::streaming::sync_policy::dont_sync);
    m_sync.reset(new Synchronizer(sync_policy, *m_island_graph, queue_capacity));

    // If metadata was not passed to compileStreaming, Islands are not compiled at this point.
    // It is fine -- Islands are then compiled in setSource (at the first valid call).
    const bool islands_compiled = m_gim.metadata().contains<IslandsCompiled>();

    auto sorted = m_gim.metadata().get<ade::passes::TopologicalSortData>();
    for (auto nh : sorted.nodes())
    {
        switch (m_gim.metadata(nh).get<NodeKind>().k)
        {
        case NodeKind::ISLAND:
            {
                std::vector<RcDesc> input_rcs;
                std::vector<RcDesc> output_rcs;
                std::vector<GRunArg> in_constants;
                cv::GMetaArgs output_metas;
                input_rcs.reserve(nh->inNodes().size());
                in_constants.reserve(nh->inNodes().size()); // FIXME: Ugly
                output_rcs.reserve(nh->outNodes().size());
                output_metas.reserve(nh->outNodes().size());

                std::unordered_set<ade::NodeHandle, ade::HandleHasher<ade::Node> > const_ins;

                // FIXME: THIS ORDER IS IRRELEVANT TO PROTOCOL OR ANY OTHER ORDER!
                // FIXME: SAME APPLIES TO THE REGULAR GEXECUTOR!!
                auto xtract_in = [&](ade::NodeHandle slot_nh, std::vector<RcDesc> &vec)
                {
                    const auto orig_data_nh
                        = m_gim.metadata(slot_nh).get<DataSlot>().original_data_node;
                    const auto &orig_data_info
                        = gm.metadata(orig_data_nh).get<Data>();
                    if (orig_data_info.storage == Data::Storage::CONST_VAL) {
                        const_ins.insert(slot_nh);
                        // FIXME: Variant move issue
                        in_constants.push_back(const_cast<const cv::GRunArg&>(gm.metadata(orig_data_nh).get<ConstValue>().arg));
                    } else in_constants.push_back(cv::GRunArg{}); // FIXME: Make it in some smarter way pls
                    if (orig_data_info.shape == GShape::GARRAY) {
                        // FIXME: GArray lost host constructor problem
                        GAPI_Assert(!cv::util::holds_alternative<cv::util::monostate>(orig_data_info.ctor));
                    }
                    vec.emplace_back(RcDesc{ orig_data_info.rc
                                           , orig_data_info.shape
                                           , orig_data_info.ctor});
                };
                auto xtract_out = [&](ade::NodeHandle slot_nh, std::vector<RcDesc> &vec, cv::GMetaArgs &metas)
                {
                    const auto orig_data_nh
                        = m_gim.metadata(slot_nh).get<DataSlot>().original_data_node;
                    const auto &orig_data_info
                        = gm.metadata(orig_data_nh).get<Data>();
                    if (orig_data_info.shape == GShape::GARRAY) {
                        // FIXME: GArray lost host constructor problem
                        GAPI_Assert(!cv::util::holds_alternative<cv::util::monostate>(orig_data_info.ctor));
                    }
                    vec.emplace_back(RcDesc{ orig_data_info.rc
                                           , orig_data_info.shape
                                           , orig_data_info.ctor});
                    metas.emplace_back(orig_data_info.meta);
                };
                // FIXME: JEZ IT WAS SO AWFUL!!!!
                for (auto in_slot_nh  : nh->inNodes())  xtract_in(in_slot_nh,  input_rcs);
                for (auto out_slot_nh : nh->outNodes()) xtract_out(out_slot_nh, output_rcs, output_metas);

                std::shared_ptr<GIslandExecutable> isl_exec = islands_compiled
                    ? m_gim.metadata(nh).get<IslandExec>().object
                    : nullptr;
                m_ops.emplace_back(OpDesc{ std::move(input_rcs)
                                         , std::move(output_rcs)
                                         , std::move(output_metas)
                                         , nh
                                         , in_constants
                                         , isl_exec
                                         });
                // Initialize queues for every operation's input
                ade::TypedGraph<DataQueue, DesyncSpecialCase> qgr(*m_island_graph);
                bool is_desync_start = false;
                for (auto eh : nh->inEdges())
                {
                    // ...only if the data is not compile-const
                    if (const_ins.count(eh->srcNode()) == 0) {
                        if (m_gim.metadata(eh).contains<DesyncIslEdge>()) {
                            qgr.metadata(eh).set(DataQueue(DataQueue::DESYNC));
                            is_desync_start = true;
                        } else if (qgr.metadata(eh).contains<DesyncSpecialCase>()) {
                            // See comment below
                            // Limit queue size to 1 in this case
                            qgr.metadata(eh).set(DataQueue(1u));
                        } else {
                            qgr.metadata(eh).set(DataQueue(queue_capacity));
                        }
                        m_internal_queues.insert(qgr.metadata(eh).get<DataQueue>().q.get());
                    }
                }
                // WORKAROUND:
                // Since now we always know desync() is followed by copy(),
                // copy is always the island with DesyncIslEdge.
                // Mark the node's outputs a special way so then its following
                // queue sizes will be limited to 1 (to avoid copy reading more
                // data in advance - as there's no other way for the underlying
                // "slow" part to control it)
                if (is_desync_start) {
                    auto isl = m_gim.metadata(nh).get<FusedIsland>().object;
                    // In the current implementation, such islands
                    // _must_ start with copy
                    GAPI_Assert(isl->in_ops().size() == 1u);
                    GAPI_Assert(GModel::Graph(*m_orig_graph)
                                .metadata(*isl->in_ops().begin())
                                .get<cv::gimpl::Op>()
                                .k.name == cv::gimpl::streaming::GCopy::id());
                    for (auto out_nh : nh->outNodes()) {
                        for (auto out_eh : out_nh->outEdges()) {
                            qgr.metadata(out_eh).set(DesyncSpecialCase{});
                        }
                    }
                }
                // It is ok to do it here since the graph is visited in
                // a topologic order and its consumers (those checking
                // their input edges & initializing queues) are yet to be
                // visited
            }
            break;
        case NodeKind::SLOT:
            {
                const auto orig_data_nh
                    = m_gim.metadata(nh).get<DataSlot>().original_data_node;
                m_slots.emplace_back(DataDesc{nh, orig_data_nh});
            }
            break;
        case NodeKind::EMIT:
            {
                const auto emitter_idx
                    = m_gim.metadata(nh).get<Emitter>().proto_index;
                GAPI_Assert(emitter_idx < m_emitters.size());
                m_emitters[emitter_idx] = nh;
            }
            break;
        case NodeKind::SINK:
            {
                const auto sink_idx
                    = m_gim.metadata(nh).get<Sink>().proto_index;
                GAPI_Assert(sink_idx < m_sinks.size());
                m_sinks[sink_idx] = nh;

                // Also initialize Sink's input queue
                ade::TypedGraph<DataQueue> qgr(*m_island_graph);
                GAPI_Assert(nh->inEdges().size() == 1u);
                qgr.metadata(nh->inEdges().front()).set(DataQueue(queue_capacity));
                m_sink_queues[sink_idx] = qgr.metadata(nh->inEdges().front()).get<DataQueue>().q.get();

                // Assign a desync tag
                const auto sink_out_nh = gm.metadata().get<Protocol>().out_nhs[sink_idx];
                if (gm.metadata(sink_out_nh).contains<DesyncPath>()) {
                    // metadata().get_or<> could make this thing better
                    m_sink_sync[sink_idx] = gm.metadata(sink_out_nh).get<DesyncPath>().index;
                }
            }
            break;
        default:
            GAPI_Assert(false);
            break;
        } // switch(kind)
    } // for(gim nodes)

    // If there are desynchronized parts in the graph, there may be
    // multiple theads polling every separate (desynchronized)
    // branch in the graph individually. Prepare a mapping information
    // for any such thread
    for (auto &&idx : ade::util::iota(m_sink_queues.size())) {
        auto  path_id = m_sink_sync[idx];
        auto &info    = m_collector_map[path_id];
        info.queues.push_back(m_sink_queues[idx]);
        info.mapping.push_back(static_cast<int>(idx));
    }

    // Reserve space in the final queue based on the number
    // of desync parts (they can generate output individually
    // per the same input frame, so the output traffic multiplies)
    GAPI_Assert(m_collector_map.size() > 0u);
    m_out_queue.set_capacity(queue_capacity * m_collector_map.size());

    // FIXME: The code duplicates logic of collectGraphInfo()
    cv::gimpl::GModel::ConstGraph cgr(*m_orig_graph);
    auto meta = cgr.metadata().get<cv::gimpl::Protocol>().out_nhs;
    out_info.reserve(meta.size());

    ade::util::transform(meta, std::back_inserter(out_info), [&cgr](const ade::NodeHandle& nh) {
        const auto& data = cgr.metadata(nh).get<cv::gimpl::Data>();
        return cv::GTypeInfo{data.shape, data.kind, data.ctor};
    });
}

cv::gimpl::GStreamingExecutor::~GStreamingExecutor()
{
    if (state == State::READY || state == State::RUNNING)
        stop();
}

void cv::gimpl::GStreamingExecutor::setSource(GRunArgs &&ins)
{
    GAPI_Assert(state == State::READY || state == State::STOPPED);

    GModel::ConstGraph gm(*m_orig_graph);
    // Now the tricky-part: completing Islands compilation if compileStreaming
    // has been called without meta arguments.
    // The logic is basically the following:
    // - (0) Collect metadata from input vector;
    // - (1) If graph is compiled with meta
    //   - (2) Just check if the passed objects have correct meta.
    // - (3) Otherwise:
    //   - (4) Run metadata inference;
    //   - (5) If islands are not compiled at this point OR are not reshapeable:
    //     - (6) Compile them for a first time with this meta;
    //     - (7) Update internal structures with this island information
    //   - (8) Otherwise:
    //     - (9) Reshape islands to this new metadata.
    //     - (10) Update internal structures again
    const auto update_int_metas = [&]()
    {
        for (auto& op : m_ops)
        {
            op.out_metas.resize(0);
            for (auto out_slot_nh : op.nh->outNodes())
            {
                const auto &orig_nh = m_gim.metadata(out_slot_nh).get<DataSlot>().original_data_node;
                const auto &orig_info = gm.metadata(orig_nh).get<Data>();
                op.out_metas.emplace_back(orig_info.meta);
            }
        }
    };
    bool islandsRecompiled = false;
    const auto new_meta = cv::descr_of(ins); // 0
    if (gm.metadata().contains<OriginalInputMeta>()) // (1)
    {
        // NB: Metadata is tested in setSource() already - just put an assert here
        GAPI_Assert(new_meta == gm.metadata().get<OriginalInputMeta>().inputMeta); // (2)
    }
    else // (3)
    {
        GCompiler::runMetaPasses(*m_orig_graph.get(), new_meta); // (4)
        if (!m_gim.metadata().contains<IslandsCompiled>()
            || (m_reshapable.has_value() && m_reshapable.value() == false)) // (5)
        {
            bool is_reshapable = true;
            GCompiler::compileIslands(*m_orig_graph.get(), m_comp_args); // (6)
            for (auto& op : m_ops)
            {
                op.isl_exec = m_gim.metadata(op.nh).get<IslandExec>().object;
                is_reshapable = is_reshapable && op.isl_exec->canReshape();
            }
            update_int_metas(); // (7)
            m_reshapable = util::make_optional(is_reshapable);

            islandsRecompiled = true;
        }
        else // (8)
        {
            for (auto& op : m_ops)
            {
                op.isl_exec->reshape(*m_orig_graph, m_comp_args); // (9)
            }
            update_int_metas(); // (10)
        }
    }
    // Metadata handling is done!

    // Walk through the protocol, set-up emitters appropriately
    // There's a 1:1 mapping between emitters and corresponding data inputs.
    // Also collect video emitter nodes to use them later in synchronization
    std::vector<ade::NodeHandle> video_emitters;
    for (auto it : ade::util::zip(ade::util::toRange(m_emitters),
                                  ade::util::toRange(ins),
                                  ade::util::iota(m_emitters.size())))
    {
        auto  emit_nh  = std::get<0>(it);
        auto& emit_arg = std::get<1>(it);
        auto  emit_idx = std::get<2>(it);
        auto& emitter  = m_gim.metadata(emit_nh).get<Emitter>().object;

        using T = GRunArg;
        switch (emit_arg.index())
        {
        // Create a streaming emitter.
        // Produces the next video frame when pulled.
        case T::index_of<cv::gapi::wip::IStreamSource::Ptr>():
#if !defined(GAPI_STANDALONE)
            emitter.reset(new VideoEmitter{emit_arg});
            // Currently all video inputs are syncronized if sync policy is to drop,
            // there is no different fps branches etc, so all video emitters are registered
            video_emitters.emplace_back(emit_nh);
#else
            util::throw_error(std::logic_error("Video is not supported in the "
                                               "standalone mode"));
#endif
            break;
        default:
            // Create a constant emitter.
            // Produces always the same ("constant") value when pulled.
            emitter.reset(new ConstEmitter{emit_arg});
            m_const_vals.push_back(const_cast<cv::GRunArg &>(emit_arg)); // FIXME: move problem
            m_const_emitter_queues.push_back(&m_emitter_queues[emit_idx]);
            break;
        }
    }

    m_sync->registerVideoEmitters(std::move(video_emitters));

    // Craft here a completion callback to notify Const emitters that
    // any of video sources is over
    GAPI_Assert(m_const_emitter_queues.size() == m_const_vals.size());
    auto real_video_completion_cb = [this]()
    {
        for (auto it : ade::util::zip(ade::util::toRange(m_const_emitter_queues),
                                      ade::util::toRange(m_const_vals)))
        {
            Stop stop;
            stop.kind = Stop::Kind::CNST;
            stop.cdata = std::get<1>(it);
            std::get<0>(it)->push(Cmd{std::move(stop)});
        }
    };

    // FIXME: ONLY now, after all executable objects are created,
    // we can set up our execution threads. Let's do it.
    // First create threads for all the emitters.
    // FIXME: One way to avoid this may be including an Emitter object as a part of
    // START message. Why not?
    if (state == State::READY)
    {
        stop();
    }

    for (auto it : ade::util::indexed(m_emitters))
    {
        const auto id = ade::util::index(it); // = index in GComputation's protocol
        const auto eh = ade::util::value(it);

        // Prepare emitter thread parameters
        auto emitter = m_gim.metadata(eh).get<Emitter>().object;

        // Collect all reader queues from the emitter's the only output object
        auto out_queues = m_sync->outQueues(eh);

        m_threads.emplace_back(emitterActorThread,
                               emitter,
                               std::ref(m_emitter_queues[id]),
                               out_queues,
                               real_video_completion_cb);
    }

    m_sync->start();

    // Now do this for every island (in a topological order)
    for (auto &&op : m_ops)
    {
        // Prepare island thread parameters
        auto island_exec = m_gim.metadata(op.nh).get<IslandExec>().object;

        // Collect actor's input queues
        auto in_queues = input_queues(*m_island_graph, op.nh);

        // Collect actor's output queues.
        // This may be tricky...
        std::vector< std::vector<stream::Q*> > out_queues;
        for (auto &&out_eh : op.nh->outNodes()) {
            out_queues.push_back(reader_queues(*m_island_graph, out_eh));
        }

        // Create just empty island meta information
        std::string island_meta_info { };
#if defined(OPENCV_WITH_ITT)
        // In case if ITT tracing is enabled fill meta information with the built island name
        island_meta_info = GIslandModel::traceIslandName(op.nh, m_gim);
#endif // OPENCV_WITH_ITT

        // If Island Executable is recompiled, all its stuff including internal kernel states
        // are recreated and re-initialized automatically.
        // But if not, we should notify Island Executable about new started stream to let it update
        // its internal variables.
        if (!islandsRecompiled)
        {
            op.isl_exec->handleNewStream();
        }

        m_threads.emplace_back(islandActorThread,
                               op.in_objects,
                               op.out_objects,
                               op.out_metas,
                               island_exec,
                               in_queues,
                               op.in_constants,
                               out_queues,
                               island_meta_info);
    }

    // Finally, start collector thread(s).
    // If there are desynchronized parts in the graph, there may be
    // multiple theads polling every separate (desynchronized)
    // branch in the graph individually.
    const bool has_main_path = m_sink_sync.end() !=
        std::find(m_sink_sync.begin(), m_sink_sync.end(), -1);
    for (auto &&info : m_collector_map) {
        m_threads.emplace_back(collectorThread,
                               info.second.queues,
                               info.second.mapping,
                               m_sink_queues.size(),
                               has_main_path ? info.first == -1 : true, // see below (*)
                               std::ref(m_out_queue));

        // (*) - there may be a problem with desynchronized paths when those work
        // faster than the main path. In this case, the desync paths get "Stop" message
        // earlier and thus broadcast it down to pipeline gets stopped when there is
        // some "main path" data to process. This new collectorThread's flag regulates it:
        // - desync paths should never post Stop message if there is a main path.
        // - if there is no main path, than any desync path can terminate the execution.
    }
    state = State::READY;
}

void cv::gimpl::GStreamingExecutor::start()
{
    if (state == State::STOPPED)
    {
        util::throw_error(std::logic_error("Please call setSource() before start() "
                                           "if the pipeline has been already stopped"));
    }
    GAPI_Assert(state == State::READY);

    // Currently just trigger our emitters to work
    state = State::RUNNING;
    for (auto &q : m_emitter_queues)
    {
        q.push(stream::Cmd{stream::Start{}});
    }
}

void cv::gimpl::GStreamingExecutor::wait_shutdown()
{
    // This utility is used by pull/try_pull/stop() to uniformly
    // shutdown the worker threads.
    // FIXME: Of course it can be designed much better
    for (auto &t : m_threads) t.join();
    m_threads.clear();
    m_sync->join();

    // Clear all queues
    // If there are constant emitters, internal queues
    // may be polluted with constant values and have extra
    // data at the point of shutdown.
    // It usually happens when there's multiple inputs,
    // one constant and one is not, and the latter ends (e.g.
    // with end-of-stream).
    for (auto &q : m_emitter_queues) q.clear();
    for (auto &q : m_sink_queues) q->clear();
    for (auto &q : m_internal_queues) q->clear();
    m_const_emitter_queues.clear();
    m_const_vals.clear();
    m_out_queue.clear();
    m_sync->clear();

    for (auto &&op : m_ops) {
        op.isl_exec->handleStopStream();
    }

    state = State::STOPPED;
}

bool cv::gimpl::GStreamingExecutor::pull(cv::GRunArgsP &&outs)
{
    GAPI_ITT_STATIC_LOCAL_HANDLE(pull_hndl, "GStreamingExecutor::pull");
    GAPI_ITT_AUTO_TRACE_GUARD(pull_hndl);

    // This pull() can only be called when there's no desynchronized
    // parts in the graph.
    GAPI_Assert(!m_desync &&
                "This graph has desynchronized parts! Please use another pull()");

    if (state == State::STOPPED)
        return false;
    GAPI_Assert(state == State::RUNNING);
    GAPI_Assert(m_sink_queues.size() == outs.size() &&
                "Number of data objects in cv::gout() must match the number of graph outputs in cv::GOut()");

    Cmd cmd;
    m_out_queue.pop(cmd);
    if (cv::util::holds_alternative<Stop>(cmd))
    {
        wait_shutdown();
        return false;
    }

    GAPI_Assert(cv::util::holds_alternative<Result>(cmd));
    cv::GRunArgs &this_result = cv::util::get<Result>(cmd).args;
    sync_data(this_result, outs);
    return true;
}

bool cv::gimpl::GStreamingExecutor::pull(cv::GOptRunArgsP &&outs)
{
    // This pull() can only be called in both cases: if there are
    // desyncrhonized parts or not.

    // FIXME: so far it is a full duplicate of standard pull except
    // the sync_data version called.
    if (state == State::STOPPED)
        return false;
    GAPI_Assert(state == State::RUNNING);
    GAPI_Assert(m_sink_queues.size() == outs.size() &&
                "Number of data objects in cv::gout() must match the number of graph outputs in cv::GOut()");

    Cmd cmd;
    m_out_queue.pop(cmd);
    if (cv::util::holds_alternative<Stop>(cmd))
    {
        wait_shutdown();
        return false;
    }

    GAPI_Assert(cv::util::holds_alternative<Result>(cmd));
    sync_data(cv::util::get<Result>(cmd), outs);
    return true;
}

std::tuple<bool, cv::util::variant<cv::GRunArgs, cv::GOptRunArgs>> cv::gimpl::GStreamingExecutor::pull()
{
    using RunArgs = cv::util::variant<cv::GRunArgs, cv::GOptRunArgs>;
    bool is_over = false;

    if (m_desync) {
        GOptRunArgs opt_run_args;
        GOptRunArgsP opt_outs;
        opt_outs.reserve(out_info.size());
        opt_run_args.reserve(out_info.size());

        constructOptGraphOutputs(out_info, opt_run_args, opt_outs);
        is_over = pull(std::move(opt_outs));
        return std::make_tuple(is_over, RunArgs(opt_run_args));
    }

    GRunArgs run_args;
    GRunArgsP outs;
    run_args.reserve(out_info.size());
    outs.reserve(out_info.size());

    constructGraphOutputs(out_info, run_args, outs);
    is_over = pull(std::move(outs));
    return std::make_tuple(is_over, RunArgs(run_args));
}

bool cv::gimpl::GStreamingExecutor::try_pull(cv::GRunArgsP &&outs)
{
    if (state == State::STOPPED)
        return false;

    GAPI_Assert(m_sink_queues.size() == outs.size());

    Cmd cmd;
    if (!m_out_queue.try_pop(cmd)) {
        return false;
    }
    if (cv::util::holds_alternative<Stop>(cmd))
    {
        wait_shutdown();
        return false;
    }

    GAPI_Assert(cv::util::holds_alternative<Result>(cmd));
    cv::GRunArgs &this_result = cv::util::get<Result>(cmd).args;
    sync_data(this_result, outs);
    return true;
}

void cv::gimpl::GStreamingExecutor::stop()
{
    if (state == State::STOPPED)
        return;

    // FIXME: ...and how to deal with still-unread data then?
    // Push a Stop message to the every emitter,
    // wait until it broadcasts within the pipeline,
    // FIXME: worker threads could stuck on push()!
    // need to read the output queues until Stop!
    for (auto &q : m_emitter_queues) {
        q.push(stream::Cmd{stream::Stop{}});
    }

    // Pull messages from the final queue to ensure completion
    Cmd cmd;
    while (!cv::util::holds_alternative<Stop>(cmd))
    {
        m_out_queue.pop(cmd);
    }
    GAPI_Assert(cv::util::holds_alternative<Stop>(cmd));
    wait_shutdown();
}

bool cv::gimpl::GStreamingExecutor::running() const
{
    return (state == State::RUNNING);
}