grfmt_jpeg2000_openjpeg.cpp
23.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020, Stefan Brüns <stefan.bruens@rwth-aachen.de>
#include "precomp.hpp"
#ifdef HAVE_OPENJPEG
#include "grfmt_jpeg2000_openjpeg.hpp"
#include "opencv2/core/utils/logger.hpp"
namespace cv {
namespace {
String colorspaceName(COLOR_SPACE colorspace)
{
switch (colorspace)
{
case OPJ_CLRSPC_CMYK:
return "CMYK";
case OPJ_CLRSPC_SRGB:
return "sRGB";
case OPJ_CLRSPC_EYCC:
return "e-YCC";
case OPJ_CLRSPC_GRAY:
return "grayscale";
case OPJ_CLRSPC_SYCC:
return "YUV";
case OPJ_CLRSPC_UNKNOWN:
return "unknown";
case OPJ_CLRSPC_UNSPECIFIED:
return "unspecified";
default:
CV_Error(Error::StsNotImplemented, "Invalid colorspace");
}
}
template <class T>
struct ConstItTraits {
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = const T*;
using reference = const T&;
};
template <class T>
struct NonConstItTraits {
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using reference = T&;
};
/**
* Iterator over the channel in continuous chunk of the memory e.g. in the one row of a Mat
* No bounds checks are preformed due to keeping this class as simple as possible while
* fulfilling RandomAccessIterator naming requirements.
*
* @tparam Traits holds information about value type and constness of the defined types
*/
template <class Traits>
class ChannelsIterator
{
public:
using difference_type = typename Traits::difference_type;
using value_type = typename Traits::value_type;
using pointer = typename Traits::pointer;
using reference = typename Traits::reference;
using iterator_category = std::random_access_iterator_tag;
ChannelsIterator(pointer ptr, std::size_t channel, std::size_t channels_count)
: ptr_ { ptr + channel }, step_ { channels_count }
{
}
/* Element Access */
reference operator*() const
{
return *ptr_;
}
pointer operator->() const
{
return &(operator*());
}
reference operator[](difference_type n) const
{
return *(*this + n);
}
/* Iterator movement */
ChannelsIterator<Traits>& operator++()
{
ptr_ += step_;
return *this;
}
ChannelsIterator<Traits> operator++(int)
{
ChannelsIterator ret(*this);
++(*this);
return ret;
}
ChannelsIterator<Traits>& operator--()
{
ptr_ -= step_;
return *this;
}
ChannelsIterator<Traits> operator--(int)
{
ChannelsIterator ret(*this);
--(*this);
return ret;
}
ChannelsIterator<Traits>& operator-=(difference_type n)
{
ptr_ -= n * step_;
return *this;
}
ChannelsIterator<Traits>& operator+=(difference_type n)
{
ptr_ += n * step_;
return *this;
}
ChannelsIterator<Traits> operator-(difference_type n) const
{
return ChannelsIterator<Traits>(*this) -= n;
}
ChannelsIterator<Traits> operator+(difference_type n) const
{
return ChannelsIterator<Traits>(*this) += n;
}
difference_type operator-(const ChannelsIterator<Traits>& other) const
{
return (ptr_ - other.ptr_) / step_;
}
/* Comparision */
bool operator==(const ChannelsIterator<Traits>& other) const CV_NOEXCEPT
{
return ptr_ == other.ptr_;
}
bool operator!=(const ChannelsIterator<Traits>& other) const CV_NOEXCEPT
{
return !(*this == other);
}
bool operator<(const ChannelsIterator<Traits>& other) const CV_NOEXCEPT
{
return ptr_ < other.ptr_;
}
bool operator>(const ChannelsIterator<Traits>& other) const CV_NOEXCEPT
{
return other < *this;
}
bool operator>=(const ChannelsIterator<Traits>& other) const CV_NOEXCEPT
{
return !(*this < other);
}
bool operator<=(const ChannelsIterator<Traits>& other) const CV_NOEXCEPT
{
return !(other < *this);
}
private:
pointer ptr_{nullptr};
std::size_t step_{1};
};
template <class Traits>
inline ChannelsIterator<Traits> operator+(typename Traits::difference_type n, const ChannelsIterator<Traits>& it)
{
return it + n;
}
template<typename OutT, typename InT>
void copyToMatImpl(std::vector<InT*>&& in, Mat& out, uint8_t shift)
{
using ChannelsIt = ChannelsIterator<NonConstItTraits<OutT>>;
Size size = out.size();
if (out.isContinuous())
{
size.width *= size.height;
size.height = 1;
}
const bool isShiftRequired = shift != 0;
const std::size_t channelsCount = in.size();
if (isShiftRequired)
{
for (int i = 0; i < size.height; ++i)
{
auto rowPtr = out.ptr<OutT>(i);
for (std::size_t c = 0; c < channelsCount; ++c)
{
const auto first = in[c];
const auto last = first + size.width;
auto dOut = ChannelsIt(rowPtr, c, channelsCount);
std::transform(first, last, dOut, [shift](InT val) -> OutT { return static_cast<OutT>(val >> shift); });
in[c] += size.width;
}
}
}
else
{
for (int i = 0; i < size.height; ++i)
{
auto rowPtr = out.ptr<OutT>(i);
for (std::size_t c = 0; c < channelsCount; ++c)
{
const auto first = in[c];
const auto last = first + size.width;
auto dOut = ChannelsIt(rowPtr, c, channelsCount);
std::transform(first, last, dOut, [](InT val) -> OutT { return static_cast<OutT>(val); });
in[c] += size.width;
}
}
}
}
template<typename InT>
void copyToMat(std::vector<const InT*>&& in, Mat& out, uint8_t shift)
{
switch (out.depth())
{
case CV_8U:
copyToMatImpl<uint8_t>(std::move(in), out, shift);
break;
case CV_16U:
copyToMatImpl<uint16_t>(std::move(in), out, shift);
break;
default:
CV_Error(Error::StsNotImplemented, "only depth CV_8U and CV16_U are supported");
}
}
template<typename InT, typename OutT>
void copyFromMatImpl(const Mat& in, std::vector<OutT*>&& out)
{
using ChannelsIt = ChannelsIterator<ConstItTraits<InT>>;
Size size = in.size();
if (in.isContinuous())
{
size.width *= size.height;
size.height = 1;
}
const std::size_t outChannelsCount = out.size();
for (int i = 0; i < size.height; ++i)
{
const InT* row = in.ptr<InT>(i);
for (std::size_t c = 0; c < outChannelsCount; ++c)
{
auto first = ChannelsIt(row, c, outChannelsCount);
auto last = first + size.width;
out[c] = std::copy(first, last, out[c]);
}
}
}
template<typename OutT>
void copyFromMat(const Mat& in, std::vector<OutT*>&& out)
{
switch (in.depth())
{
case CV_8U:
copyFromMatImpl<uint8_t>(in, std::move(out));
break;
case CV_16U:
copyFromMatImpl<uint16_t>(in, std::move(out));
break;
default:
CV_Error(Error::StsNotImplemented, "only depth CV_8U and CV16_U are supported");
}
}
void errorLogCallback(const char* msg, void* /* userData */)
{
CV_LOG_ERROR(NULL, cv::format("OpenJPEG2000: %s", msg));
}
void warningLogCallback(const char* msg, void* /* userData */)
{
CV_LOG_WARNING(NULL, cv::format("OpenJPEG2000: %s", msg));
}
void setupLogCallbacks(opj_codec_t* codec)
{
if (!opj_set_error_handler(codec, errorLogCallback, nullptr))
{
CV_LOG_WARNING(NULL, "OpenJPEG2000: can not set error log handler");
}
if (!opj_set_warning_handler(codec, warningLogCallback, nullptr))
{
CV_LOG_WARNING(NULL, "OpenJPEG2000: can not set warning log handler");
}
}
opj_dparameters setupDecoderParameters()
{
opj_dparameters parameters;
opj_set_default_decoder_parameters(¶meters);
return parameters;
}
opj_cparameters setupEncoderParameters(const std::vector<int>& params)
{
opj_cparameters parameters;
opj_set_default_encoder_parameters(¶meters);
bool rate_is_specified = false;
for (size_t i = 0; i < params.size(); i += 2)
{
switch (params[i])
{
case cv::IMWRITE_JPEG2000_COMPRESSION_X1000:
parameters.tcp_rates[0] = 1000.f / std::min(std::max(params[i + 1], 1), 1000);
rate_is_specified = true;
break;
default:
CV_LOG_WARNING(NULL, "OpenJPEG2000(encoder): skip unsupported parameter: " << params[i]);
break;
}
}
parameters.tcp_numlayers = 1;
parameters.cp_disto_alloc = 1;
if (!rate_is_specified)
{
parameters.tcp_rates[0] = 4;
}
return parameters;
}
bool decodeSRGBData(const opj_image_t& inImg, cv::Mat& outImg, uint8_t shift)
{
using ImageComponents = std::vector<const OPJ_INT32*>;
const int inChannels = inImg.numcomps;
const int outChannels = outImg.channels();
if (outChannels == 1)
{
// Assume gray (+ alpha) for 1 channels -> gray
if (inChannels <= 2)
{
copyToMat(ImageComponents { inImg.comps[0].data }, outImg, shift);
}
// Assume RGB for >= 3 channels -> gray
else
{
Mat tmp(outImg.size(), CV_MAKETYPE(outImg.depth(), 3));
copyToMat(ImageComponents { inImg.comps[2].data, inImg.comps[1].data, inImg.comps[0].data },
tmp, shift);
cvtColor(tmp, outImg, COLOR_BGR2GRAY);
}
return true;
}
if (inChannels >= 3)
{
// Assume RGB (+ alpha) for 3 channels -> BGR
ImageComponents incomps { inImg.comps[2].data, inImg.comps[1].data, inImg.comps[0].data };
// Assume RGBA for 4 channels -> BGRA
if (outChannels > 3)
{
incomps.push_back(inImg.comps[3].data);
}
copyToMat(std::move(incomps), outImg, shift);
return true;
}
CV_LOG_ERROR(NULL,
cv::format("OpenJPEG2000: unsupported conversion from %d components to %d for SRGB image decoding",
inChannels, outChannels));
return false;
}
bool decodeGrayscaleData(const opj_image_t& inImg, cv::Mat& outImg, uint8_t shift)
{
using ImageComponents = std::vector<const OPJ_INT32*>;
const int inChannels = inImg.numcomps;
const int outChannels = outImg.channels();
if (outChannels == 1 || outChannels == 3)
{
copyToMat(ImageComponents(outChannels, inImg.comps[0].data), outImg, shift);
return true;
}
CV_LOG_ERROR(NULL,
cv::format("OpenJPEG2000: unsupported conversion from %d components to %d for Grayscale image decoding",
inChannels, outChannels));
return false;
}
bool decodeSYCCData(const opj_image_t& inImg, cv::Mat& outImg, uint8_t shift)
{
using ImageComponents = std::vector<const OPJ_INT32*>;
const int inChannels = inImg.numcomps;
const int outChannels = outImg.channels();
if (outChannels == 1) {
copyToMat(ImageComponents { inImg.comps[0].data }, outImg, shift);
return true;
}
if (outChannels == 3 && inChannels >= 3) {
copyToMat(ImageComponents { inImg.comps[0].data, inImg.comps[1].data, inImg.comps[2].data },
outImg, shift);
cvtColor(outImg, outImg, COLOR_YUV2BGR);
return true;
}
CV_LOG_ERROR(NULL,
cv::format("OpenJPEG2000: unsupported conversion from %d components to %d for YUV image decoding",
inChannels, outChannels));
return false;
}
OPJ_SIZE_T opjReadFromBuffer(void* dist, OPJ_SIZE_T count, detail::OpjMemoryBuffer* buffer)
{
const OPJ_SIZE_T bytesToRead = std::min(buffer->availableBytes(), count);
if (bytesToRead > 0)
{
memcpy(dist, buffer->pos, bytesToRead);
buffer->pos += bytesToRead;
return bytesToRead;
}
else
{
return static_cast<OPJ_SIZE_T>(-1);
}
}
OPJ_SIZE_T opjSkipFromBuffer(OPJ_SIZE_T count, detail::OpjMemoryBuffer* buffer) {
const OPJ_SIZE_T bytesToSkip = std::min(buffer->availableBytes(), count);
if (bytesToSkip > 0)
{
buffer->pos += bytesToSkip;
return bytesToSkip;
}
else
{
return static_cast<OPJ_SIZE_T>(-1);
}
}
OPJ_BOOL opjSeekFromBuffer(OPJ_OFF_T count, detail::OpjMemoryBuffer* buffer)
{
// Count should stay positive to prevent unsigned overflow
CV_DbgAssert(count > 0);
// To provide proper comparison between OPJ_OFF_T and OPJ_SIZE_T, both should be
// casted to uint64_t (On 32-bit systems sizeof(size_t) might be 4)
CV_DbgAssert(static_cast<uint64_t>(count) < static_cast<uint64_t>(std::numeric_limits<OPJ_SIZE_T>::max()));
const OPJ_SIZE_T pos = std::min(buffer->length, static_cast<OPJ_SIZE_T>(count));
buffer->pos = buffer->begin + pos;
return OPJ_TRUE;
}
detail::StreamPtr opjCreateBufferInputStream(detail::OpjMemoryBuffer* buf)
{
detail::StreamPtr stream{ opj_stream_default_create(/* isInput */ true) };
if (stream)
{
opj_stream_set_user_data(stream.get(), static_cast<void*>(buf), nullptr);
opj_stream_set_user_data_length(stream.get(), buf->length);
opj_stream_set_read_function(stream.get(), (opj_stream_read_fn)(opjReadFromBuffer));
opj_stream_set_skip_function(stream.get(), (opj_stream_skip_fn)(opjSkipFromBuffer));
opj_stream_set_seek_function(stream.get(), (opj_stream_seek_fn)(opjSeekFromBuffer));
}
return stream;
}
} // namespace <anonymous>
/////////////////////// Jpeg2KOpjDecoder ///////////////////
namespace detail {
Jpeg2KOpjDecoderBase::Jpeg2KOpjDecoderBase(OPJ_CODEC_FORMAT format)
: format_(format)
{
m_buf_supported = true;
}
bool Jpeg2KOpjDecoderBase::readHeader()
{
if (!m_buf.empty()) {
opjBuf_ = detail::OpjMemoryBuffer(m_buf);
stream_ = opjCreateBufferInputStream(&opjBuf_);
}
else
{
stream_.reset(opj_stream_create_default_file_stream(m_filename.c_str(), OPJ_STREAM_READ));
}
if (!stream_)
return false;
codec_.reset(opj_create_decompress(format_));
if (!codec_)
return false;
// Callbacks are cleared, when opj_destroy_codec is called,
// They can provide some additional information for the user, about what goes wrong
setupLogCallbacks(codec_.get());
opj_dparameters parameters = setupDecoderParameters();
if (!opj_setup_decoder(codec_.get(), ¶meters))
return false;
{
opj_image_t* rawImage;
if (!opj_read_header(stream_.get(), codec_.get(), &rawImage))
return false;
image_.reset(rawImage);
}
m_width = image_->x1 - image_->x0;
m_height = image_->y1 - image_->y0;
/* Different components may have different precision,
* so check all.
*/
bool hasAlpha = false;
const int numcomps = image_->numcomps;
CV_Assert(numcomps >= 1);
for (int i = 0; i < numcomps; i++)
{
const opj_image_comp_t& comp = image_->comps[i];
if (comp.sgnd)
{
CV_Error(Error::StsNotImplemented, cv::format("OpenJPEG2000: Component %d/%d is signed", i, numcomps));
}
if (hasAlpha && comp.alpha)
{
CV_Error(Error::StsNotImplemented, cv::format("OpenJPEG2000: Component %d/%d is duplicate alpha channel", i, numcomps));
}
hasAlpha |= comp.alpha != 0;
if (comp.prec > 64)
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: precision > 64 is not supported");
}
m_maxPrec = std::max(m_maxPrec, comp.prec);
}
if (m_maxPrec < 8) {
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: Precision < 8 not supported");
} else if (m_maxPrec == 8) {
m_type = CV_MAKETYPE(CV_8U, numcomps);
} else if (m_maxPrec <= 16) {
m_type = CV_MAKETYPE(CV_16U, numcomps);
} else if (m_maxPrec <= 23) {
m_type = CV_MAKETYPE(CV_32F, numcomps);
} else {
m_type = CV_MAKETYPE(CV_64F, numcomps);
}
return true;
}
bool Jpeg2KOpjDecoderBase::readData( Mat& img )
{
using DecodeFunc = bool(*)(const opj_image_t&, cv::Mat&, uint8_t shift);
if (!opj_decode(codec_.get(), stream_.get(), image_.get()))
{
CV_Error(Error::StsError, "OpenJPEG2000: Decoding is failed");
}
if (img.channels() == 2)
{
CV_Error(Error::StsNotImplemented,
cv::format("OpenJPEG2000: Unsupported number of output channels. IN: %d OUT: 2", image_->numcomps));
}
DecodeFunc decode = nullptr;
switch (image_->color_space)
{
case OPJ_CLRSPC_UNKNOWN:
/* FALLTHRU */
case OPJ_CLRSPC_UNSPECIFIED:
CV_LOG_WARNING(NULL, "OpenJPEG2000: Image has unknown or unspecified color space, SRGB is assumed");
/* FALLTHRU */
case OPJ_CLRSPC_SRGB:
decode = decodeSRGBData;
break;
case OPJ_CLRSPC_GRAY:
decode = decodeGrayscaleData;
break;
case OPJ_CLRSPC_SYCC:
decode = decodeSYCCData;
break;
default:
CV_Error(Error::StsNotImplemented,
cv::format("OpenJPEG2000: Unsupported color space conversion: %s -> %s",
colorspaceName(image_->color_space).c_str(),
(img.channels() == 1) ? "gray" : "BGR"));
}
const int depth = img.depth();
const OPJ_UINT32 outPrec = [depth]() {
if (depth == CV_8U) return 8;
if (depth == CV_16U) return 16;
CV_Error(Error::StsNotImplemented,
cv::format("OpenJPEG2000: output precision > 16 not supported: target depth %d", depth));
}();
const uint8_t shift = outPrec > m_maxPrec ? 0 : (uint8_t)(m_maxPrec - outPrec); // prec <= 64
const int inChannels = image_->numcomps;
CV_Assert(inChannels > 0);
CV_Assert(image_->comps);
for (int c = 0; c < inChannels; c++)
{
const opj_image_comp_t& comp = image_->comps[c];
CV_CheckEQ((int)comp.dx, 1, "OpenJPEG2000: tiles are not supported");
CV_CheckEQ((int)comp.dy, 1, "OpenJPEG2000: tiles are not supported");
CV_CheckEQ((int)comp.x0, 0, "OpenJPEG2000: tiles are not supported");
CV_CheckEQ((int)comp.y0, 0, "OpenJPEG2000: tiles are not supported");
CV_CheckEQ((int)comp.w, img.cols, "OpenJPEG2000: tiles are not supported");
CV_CheckEQ((int)comp.h, img.rows, "OpenJPEG2000: tiles are not supported");
CV_Assert(comp.data && "OpenJPEG2000: missing component data (unsupported / broken input)");
}
return decode(*image_, img, shift);
}
} // namespace detail
Jpeg2KJP2OpjDecoder::Jpeg2KJP2OpjDecoder()
: Jpeg2KOpjDecoderBase(OPJ_CODEC_JP2)
{
static const unsigned char JP2Signature[] = { 0, 0, 0, 0x0c, 'j', 'P', ' ', ' ', 13, 10, 0x87, 10 };
m_signature = String((const char*) JP2Signature, sizeof(JP2Signature));
}
ImageDecoder Jpeg2KJP2OpjDecoder::newDecoder() const
{
return makePtr<Jpeg2KJP2OpjDecoder>();
}
Jpeg2KJ2KOpjDecoder::Jpeg2KJ2KOpjDecoder()
: Jpeg2KOpjDecoderBase(OPJ_CODEC_J2K)
{
static const unsigned char J2KSignature[] = { 0xff, 0x4f, 0xff, 0x51 };
m_signature = String((const char*) J2KSignature, sizeof(J2KSignature));
}
ImageDecoder Jpeg2KJ2KOpjDecoder::newDecoder() const
{
return makePtr<Jpeg2KJ2KOpjDecoder>();
}
/////////////////////// Jpeg2KOpjEncoder ///////////////////
Jpeg2KOpjEncoder::Jpeg2KOpjEncoder()
{
m_description = "JPEG-2000 files (*.jp2)";
}
ImageEncoder Jpeg2KOpjEncoder::newEncoder() const
{
return makePtr<Jpeg2KOpjEncoder>();
}
bool Jpeg2KOpjEncoder::isFormatSupported(int depth) const
{
return depth == CV_8U || depth == CV_16U;
}
bool Jpeg2KOpjEncoder::write(const Mat& img, const std::vector<int>& params)
{
CV_Assert(params.size() % 2 == 0);
const int channels = img.channels();
CV_DbgAssert(channels > 0); // passed matrix is not empty
if (channels > 4)
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: only BGR(a) and gray (+ alpha) images supported");
}
const int depth = img.depth();
const OPJ_UINT32 outPrec = [depth]() {
if (depth == CV_8U) return 8;
if (depth == CV_16U) return 16;
CV_Error(Error::StsNotImplemented,
cv::format("OpenJPEG2000: image precision > 16 not supported. Got: %d", depth));
}();
opj_cparameters parameters = setupEncoderParameters(params);
std::vector<opj_image_cmptparm_t> compparams(channels);
for (int i = 0; i < channels; i++) {
compparams[i].prec = outPrec;
compparams[i].bpp = outPrec;
compparams[i].sgnd = 0; // unsigned for now
compparams[i].dx = parameters.subsampling_dx;
compparams[i].dy = parameters.subsampling_dy;
compparams[i].w = img.size().width;
compparams[i].h = img.size().height;
}
auto colorspace = (channels > 2) ? OPJ_CLRSPC_SRGB : OPJ_CLRSPC_GRAY;
detail::ImagePtr image(opj_image_create(channels, compparams.data(), colorspace));
if (!image)
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: can not create image");
}
if (channels == 2 || channels == 4)
{
image->comps[channels - 1].alpha = 1;
}
// we want the full image
image->x0 = 0;
image->y0 = 0;
image->x1 = compparams[0].dx * compparams[0].w;
image->y1 = compparams[0].dy * compparams[0].h;
// fill the component data arrays
std::vector<OPJ_INT32*> outcomps(channels, nullptr);
if (channels == 1)
{
outcomps.assign({ image->comps[0].data });
}
else if (channels == 2)
{
outcomps.assign({ image->comps[0].data, image->comps[1].data });
}
// Reversed order for BGR -> RGB conversion
else if (channels == 3)
{
outcomps.assign({ image->comps[2].data, image->comps[1].data, image->comps[0].data });
}
else if (channels == 4)
{
outcomps.assign({ image->comps[2].data, image->comps[1].data, image->comps[0].data,
image->comps[3].data });
}
// outcomps holds pointers to the data, so the actual data will be modified but won't be freed
// The container is not needed after data was copied
copyFromMat(img, std::move(outcomps));
detail::CodecPtr codec(opj_create_compress(OPJ_CODEC_JP2));
if (!codec) {
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: can not create compression codec");
}
setupLogCallbacks(codec.get());
if (!opj_setup_encoder(codec.get(), ¶meters, image.get()))
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: Can not setup encoder");
}
detail::StreamPtr stream(opj_stream_create_default_file_stream(m_filename.c_str(), OPJ_STREAM_WRITE));
if (!stream)
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: Can not create stream");
}
if (!opj_start_compress(codec.get(), image.get(), stream.get()))
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: Can not start compression");
}
if (!opj_encode(codec.get(), stream.get()))
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: Encoding failed");
}
if (!opj_end_compress(codec.get(), stream.get()))
{
CV_Error(Error::StsNotImplemented, "OpenJPEG2000: Can not end compression");
}
return true;
}
} // namespace cv
#endif