siamrpnpp.py 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
import argparse
import cv2 as cv
import numpy as np
import os

"""
Link to original paper : https://arxiv.org/abs/1812.11703
Link to original repo  : https://github.com/STVIR/pysot

You can download the pre-trained weights of the Tracker Model from https://drive.google.com/file/d/11bwgPFVkps9AH2NOD1zBDdpF_tQghAB-/view?usp=sharing
You can download the target net (target branch of SiamRPN++) from https://drive.google.com/file/d/1dw_Ne3UMcCnFsaD6xkZepwE4GEpqq7U_/view?usp=sharing
You can download the search net (search branch of SiamRPN++) from https://drive.google.com/file/d/1Lt4oE43ZSucJvze3Y-Z87CVDreO-Afwl/view?usp=sharing
You can download the head model (RPN Head) from https://drive.google.com/file/d/1zT1yu12mtj3JQEkkfKFJWiZ71fJ-dQTi/view?usp=sharing
"""

class ModelBuilder():
    """ This class generates the SiamRPN++ Tracker Model by using Imported ONNX Nets
    """
    def __init__(self, target_net, search_net, rpn_head):
        super(ModelBuilder, self).__init__()
        # Build the target branch
        self.target_net = target_net
        # Build the search branch
        self.search_net = search_net
        # Build RPN_Head
        self.rpn_head = rpn_head

    def template(self, z):
        """ Takes the template of size (1, 1, 127, 127) as an input to generate kernel
        """
        self.target_net.setInput(z)
        outNames = self.target_net.getUnconnectedOutLayersNames()
        self.zfs_1, self.zfs_2, self.zfs_3 = self.target_net.forward(outNames)

    def track(self, x):
        """ Takes the search of size (1, 1, 255, 255) as an input to generate classification score and bounding box regression
        """
        self.search_net.setInput(x)
        outNames = self.search_net.getUnconnectedOutLayersNames()
        xfs_1, xfs_2, xfs_3 = self.search_net.forward(outNames)
        self.rpn_head.setInput(np.stack([self.zfs_1, self.zfs_2, self.zfs_3]), 'input_1')
        self.rpn_head.setInput(np.stack([xfs_1, xfs_2, xfs_3]), 'input_2')
        outNames = self.rpn_head.getUnconnectedOutLayersNames()
        cls, loc = self.rpn_head.forward(outNames)
        return {'cls': cls, 'loc': loc}

class Anchors:
    """ This class generate anchors.
    """
    def __init__(self, stride, ratios, scales, image_center=0, size=0):
        self.stride = stride
        self.ratios = ratios
        self.scales = scales
        self.image_center = image_center
        self.size = size
        self.anchor_num = len(self.scales) * len(self.ratios)
        self.anchors = self.generate_anchors()

    def generate_anchors(self):
        """
        generate anchors based on predefined configuration
        """
        anchors = np.zeros((self.anchor_num, 4), dtype=np.float32)
        size = self.stride**2
        count = 0
        for r in self.ratios:
            ws = int(np.sqrt(size * 1. / r))
            hs = int(ws * r)

            for s in self.scales:
                w = ws * s
                h = hs * s
                anchors[count][:] = [-w * 0.5, -h * 0.5, w * 0.5, h * 0.5][:]
                count += 1
        return anchors

class SiamRPNTracker:
    def __init__(self, model):
        super(SiamRPNTracker, self).__init__()
        self.anchor_stride = 8
        self.anchor_ratios = [0.33, 0.5, 1, 2, 3]
        self.anchor_scales = [8]
        self.track_base_size = 8
        self.track_context_amount = 0.5
        self.track_exemplar_size = 127
        self.track_instance_size = 255
        self.track_lr = 0.4
        self.track_penalty_k = 0.04
        self.track_window_influence = 0.44
        self.score_size = (self.track_instance_size - self.track_exemplar_size) // \
                          self.anchor_stride + 1 + self.track_base_size
        self.anchor_num = len(self.anchor_ratios) * len(self.anchor_scales)
        hanning = np.hanning(self.score_size)
        window = np.outer(hanning, hanning)
        self.window = np.tile(window.flatten(), self.anchor_num)
        self.anchors = self.generate_anchor(self.score_size)
        self.model = model

    def get_subwindow(self, im, pos, model_sz, original_sz, avg_chans):
        """
        Args:
            im:         bgr based input image frame
            pos:        position of the center of the frame
            model_sz:   exemplar / target image size
            s_z:        original / search image size
            avg_chans:  channel average
        Return:
            im_patch:   sub_windows for the given image input
        """
        if isinstance(pos, float):
            pos = [pos, pos]
        sz = original_sz
        im_h, im_w, im_d = im.shape
        c = (original_sz + 1) / 2
        cx, cy = pos
        context_xmin = np.floor(cx - c + 0.5)
        context_xmax = context_xmin + sz - 1
        context_ymin = np.floor(cy - c + 0.5)
        context_ymax = context_ymin + sz - 1
        left_pad = int(max(0., -context_xmin))
        top_pad = int(max(0., -context_ymin))
        right_pad = int(max(0., context_xmax - im_w + 1))
        bottom_pad = int(max(0., context_ymax - im_h + 1))
        context_xmin += left_pad
        context_xmax += left_pad
        context_ymin += top_pad
        context_ymax += top_pad

        if any([top_pad, bottom_pad, left_pad, right_pad]):
            size = (im_h + top_pad + bottom_pad, im_w + left_pad + right_pad, im_d)
            te_im = np.zeros(size, np.uint8)
            te_im[top_pad:top_pad + im_h, left_pad:left_pad + im_w, :] = im
            if top_pad:
                te_im[0:top_pad, left_pad:left_pad + im_w, :] = avg_chans
            if bottom_pad:
                te_im[im_h + top_pad:, left_pad:left_pad + im_w, :] = avg_chans
            if left_pad:
                te_im[:, 0:left_pad, :] = avg_chans
            if right_pad:
                te_im[:, im_w + left_pad:, :] = avg_chans
            im_patch = te_im[int(context_ymin):int(context_ymax + 1),
                       int(context_xmin):int(context_xmax + 1), :]
        else:
            im_patch = im[int(context_ymin):int(context_ymax + 1),
                       int(context_xmin):int(context_xmax + 1), :]

        if not np.array_equal(model_sz, original_sz):
            im_patch = cv.resize(im_patch, (model_sz, model_sz))
        im_patch = im_patch.transpose(2, 0, 1)
        im_patch = im_patch[np.newaxis, :, :, :]
        im_patch = im_patch.astype(np.float32)
        return im_patch

    def generate_anchor(self, score_size):
        """
        Args:
            im:         bgr based input image frame
            pos:        position of the center of the frame
            model_sz:   exemplar / target image size
            s_z:        original / search image size
            avg_chans:  channel average
        Return:
            anchor:     anchors for pre-determined values of stride, ratio, and scale
        """
        anchors = Anchors(self.anchor_stride, self.anchor_ratios, self.anchor_scales)
        anchor = anchors.anchors
        x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
        anchor = np.stack([(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1], 1)
        total_stride = anchors.stride
        anchor_num = anchors.anchor_num
        anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
        ori = - (score_size // 2) * total_stride
        xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
                             [ori + total_stride * dy for dy in range(score_size)])
        xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
                 np.tile(yy.flatten(), (anchor_num, 1)).flatten()
        anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
        return anchor

    def _convert_bbox(self, delta, anchor):
        """
        Args:
            delta:      localisation
            anchor:     anchor of pre-determined anchor size
        Return:
            delta:      prediction of bounding box
        """
        delta_transpose = np.transpose(delta, (1, 2, 3, 0))
        delta_contig = np.ascontiguousarray(delta_transpose)
        delta = delta_contig.reshape(4, -1)
        delta[0, :] = delta[0, :] * anchor[:, 2] + anchor[:, 0]
        delta[1, :] = delta[1, :] * anchor[:, 3] + anchor[:, 1]
        delta[2, :] = np.exp(delta[2, :]) * anchor[:, 2]
        delta[3, :] = np.exp(delta[3, :]) * anchor[:, 3]
        return delta

    def _softmax(self, x):
        """
        Softmax in the direction of the depth of the layer
        """
        x = x.astype(dtype=np.float32)
        x_max = x.max(axis=1)[:, np.newaxis]
        e_x = np.exp(x-x_max)
        div = np.sum(e_x, axis=1)[:, np.newaxis]
        y = e_x / div
        return y

    def _convert_score(self, score):
        """
        Args:
            cls:        score
        Return:
            cls:        score for cls
        """
        score_transpose = np.transpose(score, (1, 2, 3, 0))
        score_con = np.ascontiguousarray(score_transpose)
        score_view = score_con.reshape(2, -1)
        score = np.transpose(score_view, (1, 0))
        score = self._softmax(score)
        return score[:,1]

    def _bbox_clip(self, cx, cy, width, height, boundary):
        """
        Adjusting the bounding box
        """
        bbox_h, bbox_w = boundary
        cx = max(0, min(cx, bbox_w))
        cy = max(0, min(cy, bbox_h))
        width = max(10, min(width, bbox_w))
        height = max(10, min(height, bbox_h))
        return cx, cy, width, height

    def init(self, img, bbox):
        """
        Args:
            img(np.ndarray):    bgr based input image frame
            bbox: (x, y, w, h): bounding box
        """
        x, y, w, h = bbox
        self.center_pos = np.array([x + (w - 1) / 2, y + (h - 1) / 2])
        self.h = h
        self.w = w
        w_z = self.w + self.track_context_amount * np.add(h, w)
        h_z = self.h + self.track_context_amount * np.add(h, w)
        s_z = round(np.sqrt(w_z * h_z))
        self.channel_average = np.mean(img, axis=(0, 1))
        z_crop = self.get_subwindow(img, self.center_pos, self.track_exemplar_size, s_z, self.channel_average)
        self.model.template(z_crop)

    def track(self, img):
        """
        Args:
            img(np.ndarray): BGR image
        Return:
            bbox(list):[x, y, width, height]
        """
        w_z = self.w + self.track_context_amount * np.add(self.w, self.h)
        h_z = self.h + self.track_context_amount * np.add(self.w, self.h)
        s_z = np.sqrt(w_z * h_z)
        scale_z = self.track_exemplar_size / s_z
        s_x = s_z * (self.track_instance_size / self.track_exemplar_size)
        x_crop = self.get_subwindow(img, self.center_pos, self.track_instance_size, round(s_x), self.channel_average)
        outputs = self.model.track(x_crop)
        score = self._convert_score(outputs['cls'])
        pred_bbox = self._convert_bbox(outputs['loc'], self.anchors)

        def change(r):
            return np.maximum(r, 1. / r)

        def sz(w, h):
            pad = (w + h) * 0.5
            return np.sqrt((w + pad) * (h + pad))

        # scale penalty
        s_c = change(sz(pred_bbox[2, :], pred_bbox[3, :]) /
                     (sz(self.w * scale_z, self.h * scale_z)))

        # aspect ratio penalty
        r_c = change((self.w / self.h) /
                     (pred_bbox[2, :] / pred_bbox[3, :]))
        penalty = np.exp(-(r_c * s_c - 1) * self.track_penalty_k)
        pscore = penalty * score

        # window penalty
        pscore = pscore * (1 - self.track_window_influence) + \
                 self.window * self.track_window_influence
        best_idx = np.argmax(pscore)
        bbox = pred_bbox[:, best_idx] / scale_z
        lr = penalty[best_idx] * score[best_idx] * self.track_lr

        cpx, cpy = self.center_pos
        x,y,w,h = bbox
        cx = x + cpx
        cy = y + cpy

        # smooth bbox
        width = self.w * (1 - lr) + w * lr
        height = self.h * (1 - lr) + h * lr

        # clip boundary
        cx, cy, width, height = self._bbox_clip(cx, cy, width, height, img.shape[:2])

        # udpate state
        self.center_pos = np.array([cx, cy])
        self.w = width
        self.h = height
        bbox = [cx - width / 2, cy - height / 2, width, height]
        best_score = score[best_idx]
        return {'bbox': bbox, 'best_score': best_score}

def get_frames(video_name):
    """
    Args:
        Path to input video frame
    Return:
        Frame
    """
    cap = cv.VideoCapture(video_name if video_name else 0)
    while True:
        ret, frame = cap.read()
        if ret:
            yield frame
        else:
            break

def main():
    """ Sample SiamRPN Tracker
    """
    # Computation backends supported by layers
    backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
                cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
    # Target Devices for computation
    targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
               cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)

    parser = argparse.ArgumentParser(description='Use this script to run SiamRPN++ Visual Tracker',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--input_video', type=str, help='Path to input video file. Skip this argument to capture frames from a camera.')
    parser.add_argument('--target_net', type=str, default='target_net.onnx', help='Path to part of SiamRPN++ ran on target frame.')
    parser.add_argument('--search_net', type=str, default='search_net.onnx', help='Path to part of SiamRPN++ ran on search frame.')
    parser.add_argument('--rpn_head', type=str, default='rpn_head.onnx', help='Path to RPN Head ONNX model.')
    parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
                        help="Select a computation backend: "
                        "%d: automatically (by default), "
                        "%d: Halide, "
                        "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
                        "%d: OpenCV Implementation, "
                        "%d: VKCOM, "
                        "%d: CUDA" % backends)
    parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
                        help='Select a target device: '
                        '%d: CPU target (by default), '
                        '%d: OpenCL, '
                        '%d: OpenCL FP16, '
                        '%d: Myriad, '
                        '%d: Vulkan, '
                        '%d: CUDA, '
                        '%d: CUDA fp16 (half-float preprocess)' % targets)
    args, _ = parser.parse_known_args()

    if args.input_video and not os.path.isfile(args.input_video):
        raise OSError("Input video file does not exist")
    if not os.path.isfile(args.target_net):
        raise OSError("Target Net does not exist")
    if not os.path.isfile(args.search_net):
        raise OSError("Search Net does not exist")
    if not os.path.isfile(args.rpn_head):
        raise OSError("RPN Head Net does not exist")

    #Load the Networks
    target_net = cv.dnn.readNetFromONNX(args.target_net)
    target_net.setPreferableBackend(args.backend)
    target_net.setPreferableTarget(args.target)
    search_net = cv.dnn.readNetFromONNX(args.search_net)
    search_net.setPreferableBackend(args.backend)
    search_net.setPreferableTarget(args.target)
    rpn_head = cv.dnn.readNetFromONNX(args.rpn_head)
    rpn_head.setPreferableBackend(args.backend)
    rpn_head.setPreferableTarget(args.target)
    model = ModelBuilder(target_net, search_net, rpn_head)
    tracker = SiamRPNTracker(model)

    first_frame = True
    cv.namedWindow('SiamRPN++ Tracker', cv.WINDOW_AUTOSIZE)
    for frame in get_frames(args.input_video):
        if first_frame:
            try:
                init_rect = cv.selectROI('SiamRPN++ Tracker', frame, False, False)
            except:
                exit()
            tracker.init(frame, init_rect)
            first_frame = False
        else:
            outputs = tracker.track(frame)
            bbox = list(map(int, outputs['bbox']))
            x,y,w,h = bbox
            cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3)
        cv.imshow('SiamRPN++ Tracker', frame)
        key = cv.waitKey(1)
        if key == ord("q"):
            break

if __name__ == '__main__':
    main()