speech_recognition.py 20.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
import numpy as np
import cv2 as cv
import argparse
import os
import soundfile as sf # Temporary import to load audio files

'''
 You can download the converted onnx model from https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6?usp=sharing
 or convert the model yourself.

 You can get the original pre-trained Jasper model from NVIDIA : https://ngc.nvidia.com/catalog/models/nvidia:jasper_pyt_onnx_fp16_amp/files
    Download and unzip : `$ wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/jasper_pyt_onnx_fp16_amp/versions/20.10.0/zip -O jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp.zip`

 you can get the script to convert the model here : https://gist.github.com/spazewalker/507f1529e19aea7e8417f6e935851a01

 You can convert the model using the following steps:
     1. Import onnx and load the original model
        ```
        import onnx
        model = onnx.load("./jasper-onnx/1/model.onnx")
        ```

     3. Change data type of input layer
        ```
        inp = model.graph.input[0]
        model.graph.input.remove(inp)
        inp.type.tensor_type.elem_type = 1
        model.graph.input.insert(0,inp)
        ```

     4. Change the data type of output layer
        ```
        out = model.graph.output[0]
        model.graph.output.remove(out)
        out.type.tensor_type.elem_type = 1
        model.graph.output.insert(0,out)
        ```

     5. Change the data type of every initializer and cast it's values from FP16 to FP32
        ```
        for i,init in enumerate(model.graph.initializer):
            model.graph.initializer.remove(init)
            init.data_type = 1
            init.raw_data = np.frombuffer(init.raw_data, count=np.product(init.dims), dtype=np.float16).astype(np.float32).tobytes()
            model.graph.initializer.insert(i,init)
        ```

     6. Add an additional reshape node to handle the inconsistant input from python and c++ of openCV.
        see https://github.com/opencv/opencv/issues/19091
        Make & insert a new node with 'Reshape' operation & required initializer
        ```
            tensor = numpy_helper.from_array(np.array([0,64,-1]),name='shape_reshape')
            model.graph.initializer.insert(0,tensor)
            node = onnx.helper.make_node(op_type='Reshape',inputs=['input__0','shape_reshape'], outputs=['input_reshaped'], name='reshape__0')
            model.graph.node.insert(0,node)
            model.graph.node[1].input[0] = 'input_reshaped'
        ```

     7. Finally save the model
        ```
        with open('jasper_dynamic_input_float.onnx','wb') as f:
            onnx.save_model(model,f)
        ```

    Original Repo : https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
 '''

class FilterbankFeatures:
    def __init__(self,
                 sample_rate=16000, window_size=0.02, window_stride=0.01,
                 n_fft=512, preemph=0.97, n_filt=64, lowfreq=0,
                 highfreq=None, log=True, dither=1e-5):
        '''
            Initializes pre-processing class. Default values are the values used by the Jasper
            architecture for pre-processing. For more details, refer to the paper here:
            https://arxiv.org/abs/1904.03288
        '''
        self.win_length = int(sample_rate * window_size) # frame size
        self.hop_length = int(sample_rate * window_stride) # stride
        self.n_fft = n_fft or 2 ** np.ceil(np.log2(self.win_length))
        self.log = log
        self.dither = dither
        self.n_filt = n_filt
        self.preemph = preemph
        highfreq = highfreq or sample_rate / 2
        self.window_tensor = np.hanning(self.win_length)

        self.filterbanks = self.mel(sample_rate, self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq)
        self.filterbanks.dtype=np.float32
        self.filterbanks = np.expand_dims(self.filterbanks,0)

    def normalize_batch(self, x, seq_len):
        '''
            Normalizes the features.
        '''
        x_mean = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
        x_std = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
        for i in range(x.shape[0]):
            x_mean[i, :] = np.mean(x[i, :, :seq_len[i]],axis=1)
            x_std[i, :] = np.std(x[i, :, :seq_len[i]],axis=1)
        # make sure x_std is not zero
        x_std += 1e-10
        return (x - np.expand_dims(x_mean,2)) / np.expand_dims(x_std,2)

    def calculate_features(self, x, seq_len):
        '''
            Calculates filterbank features.
            args:
                x : mono channel audio
                seq_len : length of the audio sample
            returns:
                x : filterbank features
        '''
        dtype = x.dtype

        seq_len = np.ceil(seq_len / self.hop_length)
        seq_len = np.array(seq_len,dtype=np.int32)

        # dither
        if self.dither > 0:
            x += self.dither * np.random.randn(*x.shape)

        # do preemphasis
        if self.preemph is not None:
            x = np.concatenate(
                (np.expand_dims(x[0],-1), x[1:] - self.preemph * x[:-1]), axis=0)

        # Short Time Fourier Transform
        x  = self.stft(x, n_fft=self.n_fft, hop_length=self.hop_length,
                  win_length=self.win_length,
                  fft_window=self.window_tensor)

        # get power spectrum
        x = (x**2).sum(-1)

        # dot with filterbank energies
        x = np.matmul(np.array(self.filterbanks,dtype=x.dtype), x)

        # log features if required
        if self.log:
            x = np.log(x + 1e-20)

        # normalize if required
        x = self.normalize_batch(x, seq_len).astype(dtype)
        return x

    # Mel Frequency calculation
    def hz_to_mel(self, frequencies):
        '''
            Converts frequencies from hz to mel scale. Input can be a number or a vector.
        '''
        frequencies = np.asanyarray(frequencies)

        f_min = 0.0
        f_sp = 200.0 / 3

        mels = (frequencies - f_min) / f_sp

        # Fill in the log-scale part
        min_log_hz = 1000.0  # beginning of log region (Hz)
        min_log_mel = (min_log_hz - f_min) / f_sp  # same (Mels)
        logstep = np.log(6.4) / 27.0  # step size for log region

        if frequencies.ndim:
            # If we have array data, vectorize
            log_t = frequencies >= min_log_hz
            mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep
        elif frequencies >= min_log_hz:
            # If we have scalar data, directly
            mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep
        return mels

    def mel_to_hz(self, mels):
        '''
            Converts frequencies from mel to hz scale. Input can be a number or a vector.
        '''
        mels = np.asanyarray(mels)

        # Fill in the linear scale
        f_min = 0.0
        f_sp = 200.0 / 3
        freqs = f_min + f_sp * mels

        # And now the nonlinear scale
        min_log_hz = 1000.0  # beginning of log region (Hz)
        min_log_mel = (min_log_hz - f_min) / f_sp  # same (Mels)
        logstep = np.log(6.4) / 27.0  # step size for log region

        if mels.ndim:
            # If we have vector data, vectorize
            log_t = mels >= min_log_mel
            freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
        elif mels >= min_log_mel:
            # If we have scalar data, check directly
            freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))

        return freqs

    def mel_frequencies(self, n_mels=128, fmin=0.0, fmax=11025.0):
        '''
            Calculates n mel frequencies between 2 frequencies
            args:
                n_mels : number of bands
                fmin : min frequency
                fmax : max frequency
            returns:
                mels : vector of mel frequencies
        '''
        # 'Center freqs' of mel bands - uniformly spaced between limits
        min_mel = self.hz_to_mel(fmin)
        max_mel = self.hz_to_mel(fmax)

        mels = np.linspace(min_mel, max_mel, n_mels)

        return self.mel_to_hz(mels)

    def mel(self, sr, n_fft, n_mels=128, fmin=0.0, fmax=None, dtype=np.float32):
        '''
            Generates mel filterbank
            args:
                sr : Sampling rate
                n_fft : number of FFT components
                n_mels : number of Mel bands to generate
                fmin : lowest frequency (in Hz)
                fmax : highest frequency (in Hz). sr/2.0 if None
                dtype : the data type of the output basis.
            returns:
                mels : Mel transform matrix
        '''
        # default Max freq = half of sampling rate
        if fmax is None:
            fmax = float(sr) / 2

        # Initialize the weights
        n_mels = int(n_mels)
        weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)

        # Center freqs of each FFT bin
        fftfreqs = np.linspace(0, float(sr) / 2, int(1 + n_fft // 2), endpoint=True)

        # 'Center freqs' of mel bands - uniformly spaced between limits
        mel_f = self.mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax)

        fdiff = np.diff(mel_f)
        ramps = np.subtract.outer(mel_f, fftfreqs)

        for i in range(n_mels):
            # lower and upper slopes for all bins
            lower = -ramps[i] / fdiff[i]
            upper = ramps[i + 2] / fdiff[i + 1]

            # .. then intersect them with each other and zero
            weights[i] = np.maximum(0, np.minimum(lower, upper))

        # Using Slaney-style mel which is scaled to be approx constant energy per channel
        enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
        weights *= enorm[:, np.newaxis]
        return weights

    # STFT preperation
    def pad_window_center(self, data, size, axis=-1, **kwargs):
        '''
            Centers the data and pads.
            args:
                data : Vector to be padded and centered
                size : Length to pad data
                axis : Axis along which to pad and center the data
                kwargs : arguments passed to np.pad
            return : centered and padded data
        '''
        kwargs.setdefault("mode", "constant")
        n = data.shape[axis]
        lpad = int((size - n) // 2)
        lengths = [(0, 0)] * data.ndim
        lengths[axis] = (lpad, int(size - n - lpad))
        if lpad < 0:
            raise Exception(
                ("Target size ({:d}) must be at least input size ({:d})").format(size, n)
            )
        return np.pad(data, lengths, **kwargs)

    def frame(self, x, frame_length, hop_length):
        '''
            Slices a data array into (overlapping) frames.
            args:
                x : array to frame
                frame_length : length of frame
                hop_length : Number of steps to advance between frames
            return : A framed view of `x`
        '''
        if x.shape[-1] < frame_length:
            raise Exception(
                "Input is too short (n={:d})"
                " for frame_length={:d}".format(x.shape[-1], frame_length)
            )
        x = np.asfortranarray(x)
        n_frames = 1 + (x.shape[-1] - frame_length) // hop_length
        strides = np.asarray(x.strides)
        new_stride = np.prod(strides[strides > 0] // x.itemsize) * x.itemsize
        shape = list(x.shape)[:-1] + [frame_length, n_frames]
        strides = list(strides) + [hop_length * new_stride]
        return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)

    def dtype_r2c(self, d, default=np.complex64):
        '''
            Find the complex numpy dtype corresponding to a real dtype.
            args:
                d : The real-valued dtype to convert to complex.
                default : The default complex target type, if `d` does not match a known dtype
            return : The complex dtype
        '''
        mapping = {
            np.dtype(np.float32): np.complex64,
            np.dtype(np.float64): np.complex128,
        }
        dt = np.dtype(d)
        if dt.kind == "c":
            return dt
        return np.dtype(mapping.get(dt, default))

    def stft(self, y, n_fft, hop_length=None, win_length=None, fft_window=None, pad_mode='reflect', return_complex=False):
        '''
            Short Time Fourier Transform. The STFT represents a signal in the time-frequency
            domain by computing discrete Fourier transforms (DFT) over short overlapping windows.
            args:
                y : input signal
                n_fft : length of the windowed signal after padding with zeros.
                hop_length : number of audio samples between adjacent STFT columns.
                win_length : Each frame of audio is windowed by window of length win_length and
                    then padded with zeros to match n_fft
                fft_window : a vector or array of length `n_fft` having values computed by a
                    window function
                pad_mode : mode while padding the singnal
                return_complex : returns array with complex data type if `True`
            return : Matrix of short-term Fourier transform coefficients.
        '''
        if win_length is None:
            win_length = n_fft
        if hop_length is None:
            hop_length = int(win_length // 4)
        if y.ndim!=1:
            raise Exception(f'Invalid input shape. Only Mono Channeled audio supported. Input must have shape (Audio,). Got {y.shape}')

        # Pad the window out to n_fft size
        fft_window = self.pad_window_center(fft_window, n_fft)

        # Reshape so that the window can be broadcast
        fft_window = fft_window.reshape((-1, 1))

        # Pad the time series so that frames are centered
        y = np.pad(y, int(n_fft // 2), mode=pad_mode)

        # Window the time series.
        y_frames = self.frame(y, frame_length=n_fft, hop_length=hop_length)

        # Convert data type to complex
        dtype = self.dtype_r2c(y.dtype)

        # Pre-allocate the STFT matrix
        stft_matrix = np.empty( (int(1 + n_fft // 2), y_frames.shape[-1]), dtype=dtype, order="F")

        stft_matrix = np.fft.rfft( fft_window * y_frames, axis=0)
        return stft_matrix if return_complex==True else np.stack((stft_matrix.real,stft_matrix.imag),axis=-1)

class Decoder:
    '''
        Used for decoding the output of jasper model.
    '''
    def __init__(self):
        labels=[' ','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',"'"]
        self.labels_map = {i: label for i,label in enumerate(labels)}
        self.blank_id = 28

    def decode(self,x):
        """
            Takes output of Jasper model and performs ctc decoding algorithm to
            remove duplicates and special symbol. Returns prediction
        """
        x = np.argmax(x,axis=-1)
        hypotheses = []
        prediction = x.tolist()
        # CTC decoding procedure
        decoded_prediction = []
        previous = self.blank_id
        for p in prediction:
            if (p != previous or previous == self.blank_id) and p != self.blank_id:
                decoded_prediction.append(p)
            previous = p
        hypothesis = ''.join([self.labels_map[c] for c in decoded_prediction])
        hypotheses.append(hypothesis)
        return hypotheses

def predict(features, net, decoder):
    '''
        Passes the features through the Jasper model and decodes the output to english transcripts.
        args:
            features : input features, calculated using FilterbankFeatures class
            net : Jasper model dnn.net object
            decoder : Decoder object
        return : Predicted text
    '''
    # This is a workaround https://github.com/opencv/opencv/issues/19091
    # expanding 1 dimentions allows us to pass it to the network
    # from python. This should be resolved in the future.
    features = np.expand_dims(features,axis=3)

    # make prediction
    net.setInput(features)
    output = net.forward()

    # decode output to transcript
    prediction = decoder.decode(output.squeeze(0))
    return prediction[0]

if __name__ == '__main__':

    # Computation backends supported by layers
    backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
    # Target Devices for computation
    targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16)

    parser = argparse.ArgumentParser(description='This script runs Jasper Speech recognition model',
                                     formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--input_audio', type=str, required=True, help='Path to input audio file. OR Path to a txt file with relative path to multiple audio files in different lines')
    parser.add_argument('--show_spectrogram', action='store_true', help='Whether to show a spectrogram of the input audio.')
    parser.add_argument('--model', type=str, default='jasper.onnx', help='Path to the onnx file of Jasper. default="jasper.onnx"')
    parser.add_argument('--output', type=str, help='Path to file where recognized audio transcript must be saved. Leave this to print on console.')
    parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
                        help='Select a computation backend: '
                        "%d: automatically (by default) "
                        "%d: OpenVINO Inference Engine "
                        "%d: OpenCV Implementation " % backends)
    parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
                        help='Select a target device: '
                        "%d: CPU target (by default) "
                        "%d: OpenCL "
                        "%d: OpenCL FP16 " % targets)

    args, _ = parser.parse_known_args()

    if args.input_audio and not os.path.isfile(args.input_audio):
        raise OSError("Input audio file does not exist")
    if not os.path.isfile(args.model):
        raise OSError("Jasper model file does not exist")
    if args.input_audio.endswith('.txt'):
        with open(args.input_audio) as f:
            content = f.readlines()
            content = [x.strip() for x in content]
            audio_file_paths = content
        for audio_file_path in audio_file_paths:
            if not os.path.isfile(audio_file_path):
                raise OSError("Audio file({audio_file_path}) does not exist")
    else:
        audio_file_paths = [args.input_audio]
    audio_file_paths = [os.path.abspath(x) for x in audio_file_paths]

    # Read audio Files
    features = []
    try:
        for audio_file_path in audio_file_paths:
            audio = sf.read(audio_file_path)
            # If audio is stereo, just take one channel.
            X = audio[0] if audio[0].ndim==1 else audio[0][:,0]
            features.append(X)
    except:
        raise Exception(f"Soundfile cannot read {args.input_audio}. Try a different format")

    # Get Filterbank Features
    feature_extractor = FilterbankFeatures()
    for i in range(len(features)):
        X = features[i]
        seq_len = np.array([X.shape[0]], dtype=np.int32)
        features[i] = feature_extractor.calculate_features(x=X, seq_len=seq_len)

    # Load Network
    net = cv.dnn.readNetFromONNX(args.model)
    net.setPreferableBackend(args.backend)
    net.setPreferableTarget(args.target)

    # Show spectogram if required
    if args.show_spectrogram and not args.input_audio.endswith('.txt'):
        img = cv.normalize(src=features[0][0], dst=None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
        img = cv.applyColorMap(img, cv.COLORMAP_JET)
        cv.imshow('spectogram', img)
        cv.waitKey(0)

    # Initialize decoder
    decoder = Decoder()

    # Make prediction
    prediction = []
    print("Predicting...")
    for feature in features:
        print(f"\rAudio file {len(prediction)+1}/{len(features)}", end='')
        prediction.append(predict(feature, net, decoder))
    print("")

    # save transcript if required
    if args.output:
        with open(args.output,'w') as f:
            for pred in prediction:
                f.write(pred+'\n')
        print("Transcript was written to {}".format(args.output))
    else:
        print(prediction)
    cv.destroyAllWindows()