tf_text_graph_ssd.py 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
# This file is a part of OpenCV project.
# It is a subject to the license terms in the LICENSE file found in the top-level directory
# of this distribution and at http://opencv.org/license.html.
#
# Copyright (C) 2018, Intel Corporation, all rights reserved.
# Third party copyrights are property of their respective owners.
#
# Use this script to get the text graph representation (.pbtxt) of SSD-based
# deep learning network trained in TensorFlow Object Detection API.
# Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function.
# See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
import argparse
import re
from math import sqrt
from tf_text_graph_common import *

class SSDAnchorGenerator:
    def __init__(self, min_scale, max_scale, num_layers, aspect_ratios,
                 reduce_boxes_in_lowest_layer, image_width, image_height):
        self.min_scale = min_scale
        self.aspect_ratios = aspect_ratios
        self.reduce_boxes_in_lowest_layer = reduce_boxes_in_lowest_layer
        self.image_width = image_width
        self.image_height = image_height
        self.scales =  [min_scale + (max_scale - min_scale) * i / (num_layers - 1)
                            for i in range(num_layers)] + [1.0]

    def get(self, layer_id):
        if layer_id == 0 and self.reduce_boxes_in_lowest_layer:
            widths = [0.1, self.min_scale * sqrt(2.0), self.min_scale * sqrt(0.5)]
            heights = [0.1, self.min_scale / sqrt(2.0), self.min_scale / sqrt(0.5)]
        else:
            widths = [self.scales[layer_id] * sqrt(ar) for ar in self.aspect_ratios]
            heights = [self.scales[layer_id] / sqrt(ar) for ar in self.aspect_ratios]

            widths += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])]
            heights += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])]
        min_size = min(self.image_width, self.image_height)
        widths = [w * min_size for w in widths]
        heights = [h * min_size for h in heights]
        return widths, heights


class MultiscaleAnchorGenerator:
    def __init__(self, min_level, aspect_ratios, scales_per_octave, anchor_scale):
        self.min_level = min_level
        self.aspect_ratios = aspect_ratios
        self.anchor_scale = anchor_scale
        self.scales = [2**(float(s) / scales_per_octave) for s in range(scales_per_octave)]

    def get(self, layer_id):
        widths = []
        heights = []
        for a in self.aspect_ratios:
            for s in self.scales:
                base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale
                ar = sqrt(a)
                heights.append(base_anchor_size * s / ar)
                widths.append(base_anchor_size * s * ar)
        return widths, heights


def createSSDGraph(modelPath, configPath, outputPath):
    # Nodes that should be kept.
    keepOps = ['Conv2D', 'BiasAdd', 'Add', 'AddV2', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm',
               'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity',
               'Sub', 'ResizeNearestNeighbor', 'Pad', 'FusedBatchNormV3', 'Mean']

    # Node with which prefixes should be removed
    prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Concatenate/', 'Postprocessor/', 'Preprocessor/map')

    # Load a config file.
    config = readTextMessage(configPath)
    config = config['model'][0]['ssd'][0]
    num_classes = int(config['num_classes'][0])

    fixed_shape_resizer = config['image_resizer'][0]['fixed_shape_resizer'][0]
    image_width = int(fixed_shape_resizer['width'][0])
    image_height = int(fixed_shape_resizer['height'][0])

    box_predictor = 'convolutional' if 'convolutional_box_predictor' in config['box_predictor'][0] else 'weight_shared_convolutional'

    anchor_generator = config['anchor_generator'][0]
    if 'ssd_anchor_generator' in anchor_generator:
        ssd_anchor_generator = anchor_generator['ssd_anchor_generator'][0]
        min_scale = float(ssd_anchor_generator['min_scale'][0])
        max_scale = float(ssd_anchor_generator['max_scale'][0])
        num_layers = int(ssd_anchor_generator['num_layers'][0])
        aspect_ratios = [float(ar) for ar in ssd_anchor_generator['aspect_ratios']]
        reduce_boxes_in_lowest_layer = True
        if 'reduce_boxes_in_lowest_layer' in ssd_anchor_generator:
            reduce_boxes_in_lowest_layer = ssd_anchor_generator['reduce_boxes_in_lowest_layer'][0] == 'true'
        priors_generator = SSDAnchorGenerator(min_scale, max_scale, num_layers,
                                              aspect_ratios, reduce_boxes_in_lowest_layer,
                                              image_width, image_height)


        print('Scale: [%f-%f]' % (min_scale, max_scale))
        print('Aspect ratios: %s' % str(aspect_ratios))
        print('Reduce boxes in the lowest layer: %s' % str(reduce_boxes_in_lowest_layer))
    elif 'multiscale_anchor_generator' in anchor_generator:
        multiscale_anchor_generator = anchor_generator['multiscale_anchor_generator'][0]
        min_level = int(multiscale_anchor_generator['min_level'][0])
        max_level = int(multiscale_anchor_generator['max_level'][0])
        anchor_scale = float(multiscale_anchor_generator['anchor_scale'][0])
        aspect_ratios = [float(ar) for ar in multiscale_anchor_generator['aspect_ratios']]
        scales_per_octave = int(multiscale_anchor_generator['scales_per_octave'][0])
        num_layers = max_level - min_level + 1
        priors_generator = MultiscaleAnchorGenerator(min_level, aspect_ratios,
                                                     scales_per_octave, anchor_scale)
        print('Levels: [%d-%d]' % (min_level, max_level))
        print('Anchor scale: %f' % anchor_scale)
        print('Scales per octave: %d' % scales_per_octave)
        print('Aspect ratios: %s' % str(aspect_ratios))
    else:
        print('Unknown anchor_generator')
        exit(0)

    print('Number of classes: %d' % num_classes)
    print('Number of layers: %d' % num_layers)
    print('box predictor: %s' % box_predictor)
    print('Input image size: %dx%d' % (image_width, image_height))

    # Read the graph.
    outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes']

    writeTextGraph(modelPath, outputPath, outNames)
    graph_def = parseTextGraph(outputPath)

    def getUnconnectedNodes():
        unconnected = []
        for node in graph_def.node:
            unconnected.append(node.name)
            for inp in node.input:
                if inp in unconnected:
                    unconnected.remove(inp)
        return unconnected


    def fuse_nodes(nodesToKeep):
        # Detect unfused batch normalization nodes and fuse them.
        # Add_0 <-- moving_variance, add_y
        # Rsqrt <-- Add_0
        # Mul_0 <-- Rsqrt, gamma
        # Mul_1 <-- input, Mul_0
        # Mul_2 <-- moving_mean, Mul_0
        # Sub_0 <-- beta, Mul_2
        # Add_1 <-- Mul_1, Sub_0
        nodesMap = {node.name: node for node in graph_def.node}
        subgraphBatchNorm = ['Add',
            ['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']],
            ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]]
        subgraphBatchNormV2 = ['AddV2',
            ['Mul', 'input', ['Mul', ['Rsqrt', ['AddV2', 'moving_variance', 'add_y']], 'gamma']],
            ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]]
        # Detect unfused nearest neighbor resize.
        subgraphResizeNN = ['Reshape',
            ['Mul', ['Reshape', 'input', ['Pack', 'shape_1', 'shape_2', 'shape_3', 'shape_4', 'shape_5']],
                    'ones'],
            ['Pack', ['StridedSlice', ['Shape', 'input'], 'stack', 'stack_1', 'stack_2'],
                     'out_height', 'out_width', 'out_channels']]
        def checkSubgraph(node, targetNode, inputs, fusedNodes):
            op = targetNode[0]
            if node.op == op and (len(node.input) >= len(targetNode) - 1):
                fusedNodes.append(node)
                for i, inpOp in enumerate(targetNode[1:]):
                    if isinstance(inpOp, list):
                        if not node.input[i] in nodesMap or \
                           not checkSubgraph(nodesMap[node.input[i]], inpOp, inputs, fusedNodes):
                            return False
                    else:
                        inputs[inpOp] = node.input[i]

                return True
            else:
                return False

        nodesToRemove = []
        for node in graph_def.node:
            inputs = {}
            fusedNodes = []
            if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes) or \
               checkSubgraph(node, subgraphBatchNormV2, inputs, fusedNodes):
                name = node.name
                node.Clear()
                node.name = name
                node.op = 'FusedBatchNorm'
                node.input.append(inputs['input'])
                node.input.append(inputs['gamma'])
                node.input.append(inputs['beta'])
                node.input.append(inputs['moving_mean'])
                node.input.append(inputs['moving_variance'])
                node.addAttr('epsilon', 0.001)
                nodesToRemove += fusedNodes[1:]

            inputs = {}
            fusedNodes = []
            if checkSubgraph(node, subgraphResizeNN, inputs, fusedNodes):
                name = node.name
                node.Clear()
                node.name = name
                node.op = 'ResizeNearestNeighbor'
                node.input.append(inputs['input'])
                node.input.append(name + '/output_shape')

                out_height_node = nodesMap[inputs['out_height']]
                out_width_node = nodesMap[inputs['out_width']]
                out_height = int(out_height_node.attr['value']['tensor'][0]['int_val'][0])
                out_width = int(out_width_node.attr['value']['tensor'][0]['int_val'][0])

                shapeNode = NodeDef()
                shapeNode.name = name + '/output_shape'
                shapeNode.op = 'Const'
                shapeNode.addAttr('value', [out_height, out_width])
                graph_def.node.insert(graph_def.node.index(node), shapeNode)
                nodesToKeep.append(shapeNode.name)

                nodesToRemove += fusedNodes[1:]
        for node in nodesToRemove:
            graph_def.node.remove(node)

    nodesToKeep = []
    fuse_nodes(nodesToKeep)

    removeIdentity(graph_def)

    def to_remove(name, op):
        return (not name in nodesToKeep) and \
               (op == 'Const' or (not op in keepOps) or name.startswith(prefixesToRemove))

    removeUnusedNodesAndAttrs(to_remove, graph_def)


    # Connect input node to the first layer
    assert(graph_def.node[0].op == 'Placeholder')
    try:
        input_shape = graph_def.node[0].attr['shape']['shape'][0]['dim']
        input_shape[1]['size'] = image_height
        input_shape[2]['size'] = image_width
    except:
        print("Input shapes are undefined")
    # assert(graph_def.node[1].op == 'Conv2D')
    weights = graph_def.node[1].input[-1]
    for i in range(len(graph_def.node[1].input)):
        graph_def.node[1].input.pop()
    graph_def.node[1].input.append(graph_def.node[0].name)
    graph_def.node[1].input.append(weights)

    # check and correct the case when preprocessing block is after input
    preproc_id = "Preprocessor/"
    if graph_def.node[2].name.startswith(preproc_id) and \
        graph_def.node[2].input[0].startswith(preproc_id):

        if not any(preproc_id in inp for inp in graph_def.node[3].input):
            graph_def.node[3].input.insert(0, graph_def.node[2].name)


    # Create SSD postprocessing head ###############################################

    # Concatenate predictions of classes, predictions of bounding boxes and proposals.
    def addConcatNode(name, inputs, axisNodeName):
        concat = NodeDef()
        concat.name = name
        concat.op = 'ConcatV2'
        for inp in inputs:
            concat.input.append(inp)
        concat.input.append(axisNodeName)
        graph_def.node.extend([concat])

    addConstNode('concat/axis_flatten', [-1], graph_def)
    addConstNode('PriorBox/concat/axis', [-2], graph_def)

    for label in ['ClassPredictor', 'BoxEncodingPredictor' if box_predictor is 'convolutional' else 'BoxPredictor']:
        concatInputs = []
        for i in range(num_layers):
            # Flatten predictions
            flatten = NodeDef()
            if box_predictor is 'convolutional':
                inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label)
            else:
                if i == 0:
                    inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label
                else:
                    inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label)
            flatten.input.append(inpName)
            flatten.name = inpName + '/Flatten'
            flatten.op = 'Flatten'

            concatInputs.append(flatten.name)
            graph_def.node.extend([flatten])
        addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten')

    num_matched_layers = 0
    for node in graph_def.node:
        if re.match('BoxPredictor_\d/BoxEncodingPredictor/convolution', node.name) or \
           re.match('BoxPredictor_\d/BoxEncodingPredictor/Conv2D', node.name) or \
           re.match('WeightSharedConvolutionalBoxPredictor(_\d)*/BoxPredictor/Conv2D', node.name):
            node.addAttr('loc_pred_transposed', True)
            num_matched_layers += 1
    assert(num_matched_layers == num_layers)

    # Add layers that generate anchors (bounding boxes proposals).
    priorBoxes = []
    boxCoder = config['box_coder'][0]
    fasterRcnnBoxCoder = boxCoder['faster_rcnn_box_coder'][0]
    boxCoderVariance = [1.0/float(fasterRcnnBoxCoder['x_scale'][0]), 1.0/float(fasterRcnnBoxCoder['y_scale'][0]), 1.0/float(fasterRcnnBoxCoder['width_scale'][0]), 1.0/float(fasterRcnnBoxCoder['height_scale'][0])]
    for i in range(num_layers):
        priorBox = NodeDef()
        priorBox.name = 'PriorBox_%d' % i
        priorBox.op = 'PriorBox'
        if box_predictor is 'convolutional':
            priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i)
        else:
            if i == 0:
                priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D')
            else:
                priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i)
        priorBox.input.append(graph_def.node[0].name)  # image_tensor

        priorBox.addAttr('flip', False)
        priorBox.addAttr('clip', False)

        widths, heights = priors_generator.get(i)

        priorBox.addAttr('width', widths)
        priorBox.addAttr('height', heights)
        priorBox.addAttr('variance', boxCoderVariance)

        graph_def.node.extend([priorBox])
        priorBoxes.append(priorBox.name)

    # Compare this layer's output with Postprocessor/Reshape
    addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten')

    # Sigmoid for classes predictions and DetectionOutput layer
    addReshape('ClassPredictor/concat', 'ClassPredictor/concat3d', [0, -1, num_classes + 1], graph_def)

    sigmoid = NodeDef()
    sigmoid.name = 'ClassPredictor/concat/sigmoid'
    sigmoid.op = 'Sigmoid'
    sigmoid.input.append('ClassPredictor/concat3d')
    graph_def.node.extend([sigmoid])

    addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def)

    detectionOut = NodeDef()
    detectionOut.name = 'detection_out'
    detectionOut.op = 'DetectionOutput'

    if box_predictor == 'convolutional':
        detectionOut.input.append('BoxEncodingPredictor/concat')
    else:
        detectionOut.input.append('BoxPredictor/concat')
    detectionOut.input.append(sigmoid.name + '/Flatten')
    detectionOut.input.append('PriorBox/concat')

    detectionOut.addAttr('num_classes', num_classes + 1)
    detectionOut.addAttr('share_location', True)
    detectionOut.addAttr('background_label_id', 0)

    postProcessing = config['post_processing'][0]
    batchNMS = postProcessing['batch_non_max_suppression'][0]

    if 'iou_threshold' in batchNMS:
        detectionOut.addAttr('nms_threshold', float(batchNMS['iou_threshold'][0]))
    else:
        detectionOut.addAttr('nms_threshold', 0.6)

    if 'score_threshold' in batchNMS:
        detectionOut.addAttr('confidence_threshold', float(batchNMS['score_threshold'][0]))
    else:
        detectionOut.addAttr('confidence_threshold', 0.01)

    if 'max_detections_per_class' in batchNMS:
        detectionOut.addAttr('top_k', int(batchNMS['max_detections_per_class'][0]))
    else:
        detectionOut.addAttr('top_k', 100)

    if 'max_total_detections' in batchNMS:
        detectionOut.addAttr('keep_top_k', int(batchNMS['max_total_detections'][0]))
    else:
        detectionOut.addAttr('keep_top_k', 100)

    detectionOut.addAttr('code_type', "CENTER_SIZE")

    graph_def.node.extend([detectionOut])

    while True:
        unconnectedNodes = getUnconnectedNodes()
        unconnectedNodes.remove(detectionOut.name)
        if not unconnectedNodes:
            break

        for name in unconnectedNodes:
            for i in range(len(graph_def.node)):
                if graph_def.node[i].name == name:
                    del graph_def.node[i]
                    break

    # Save as text.
    graph_def.save(outputPath)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
                                                 'SSD model from TensorFlow Object Detection API. '
                                                 'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
    parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
    parser.add_argument('--output', required=True, help='Path to output text graph.')
    parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.')
    args = parser.parse_args()

    createSSDGraph(args.input, args.config, args.output)