tf_text_graph_efficientdet.py
9.02 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# This file is a part of OpenCV project.
# It is a subject to the license terms in the LICENSE file found in the top-level directory
# of this distribution and at http://opencv.org/license.html.
#
# Copyright (C) 2020, Intel Corporation, all rights reserved.
# Third party copyrights are property of their respective owners.
#
# Use this script to get the text graph representation (.pbtxt) of EfficientDet
# deep learning network trained in https://github.com/google/automl.
# Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function.
# See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
import argparse
import re
from math import sqrt
from tf_text_graph_common import *
class AnchorGenerator:
def __init__(self, min_level, aspect_ratios, num_scales, anchor_scale):
self.min_level = min_level
self.aspect_ratios = aspect_ratios
self.anchor_scale = anchor_scale
self.scales = [2**(float(s) / num_scales) for s in range(num_scales)]
def get(self, layer_id):
widths = []
heights = []
for s in self.scales:
for a in self.aspect_ratios:
base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale
heights.append(base_anchor_size * s * a[1])
widths.append(base_anchor_size * s * a[0])
return widths, heights
def createGraph(modelPath, outputPath, min_level, aspect_ratios, num_scales,
anchor_scale, num_classes, image_width, image_height):
print('Min level: %d' % min_level)
print('Anchor scale: %f' % anchor_scale)
print('Num scales: %d' % num_scales)
print('Aspect ratios: %s' % str(aspect_ratios))
print('Number of classes: %d' % num_classes)
print('Input image size: %dx%d' % (image_width, image_height))
# Read the graph.
_inpNames = ['image_arrays']
outNames = ['detections']
writeTextGraph(modelPath, outputPath, outNames)
graph_def = parseTextGraph(outputPath)
def getUnconnectedNodes():
unconnected = []
for node in graph_def.node:
if node.op == 'Const':
continue
unconnected.append(node.name)
for inp in node.input:
if inp in unconnected:
unconnected.remove(inp)
return unconnected
nodesToKeep = ['truediv'] # Keep preprocessing nodes
removeIdentity(graph_def)
scopesToKeep = ('image_arrays', 'efficientnet', 'resample_p6', 'resample_p7',
'fpn_cells', 'class_net', 'box_net', 'Reshape', 'concat')
addConstNode('scale_w', [2.0], graph_def)
addConstNode('scale_h', [2.0], graph_def)
nodesToKeep += ['scale_w', 'scale_h']
for node in graph_def.node:
if re.match('efficientnet-(.*)/blocks_\d+/se/mul_1', node.name):
node.input[0], node.input[1] = node.input[1], node.input[0]
if re.match('fpn_cells/cell_\d+/fnode\d+/resample(.*)/nearest_upsampling/Reshape_1$', node.name):
node.op = 'ResizeNearestNeighbor'
node.input[1] = 'scale_w'
node.input.append('scale_h')
for inpNode in graph_def.node:
if inpNode.name == node.name[:node.name.rfind('_')]:
node.input[0] = inpNode.input[0]
if re.match('box_net/box-predict(_\d)*/separable_conv2d$', node.name):
node.addAttr('loc_pred_transposed', True)
# Replace RealDiv to Mul with inversed scale for compatibility
if node.op == 'RealDiv':
for inpNode in graph_def.node:
if inpNode.name != node.input[1] or not 'value' in inpNode.attr:
continue
tensor = inpNode.attr['value']['tensor'][0]
if not 'float_val' in tensor:
continue
scale = float(inpNode.attr['value']['tensor'][0]['float_val'][0])
addConstNode(inpNode.name + '/inv', [1.0 / scale], graph_def)
nodesToKeep.append(inpNode.name + '/inv')
node.input[1] = inpNode.name + '/inv'
node.op = 'Mul'
break
def to_remove(name, op):
if name in nodesToKeep:
return False
return op == 'Const' or not name.startswith(scopesToKeep)
removeUnusedNodesAndAttrs(to_remove, graph_def)
# Attach unconnected preprocessing
assert(graph_def.node[1].name == 'truediv' and graph_def.node[1].op == 'RealDiv')
graph_def.node[1].input.insert(0, 'image_arrays')
graph_def.node[2].input.insert(0, 'truediv')
priors_generator = AnchorGenerator(min_level, aspect_ratios, num_scales, anchor_scale)
priorBoxes = []
for i in range(5):
inpName = ''
for node in graph_def.node:
if node.name == 'Reshape_%d' % (i * 2 + 1):
inpName = node.input[0]
break
priorBox = NodeDef()
priorBox.name = 'PriorBox_%d' % i
priorBox.op = 'PriorBox'
priorBox.input.append(inpName)
priorBox.input.append(graph_def.node[0].name) # image_tensor
priorBox.addAttr('flip', False)
priorBox.addAttr('clip', False)
widths, heights = priors_generator.get(i)
priorBox.addAttr('width', widths)
priorBox.addAttr('height', heights)
priorBox.addAttr('variance', [1.0, 1.0, 1.0, 1.0])
graph_def.node.extend([priorBox])
priorBoxes.append(priorBox.name)
addConstNode('concat/axis_flatten', [-1], graph_def)
def addConcatNode(name, inputs, axisNodeName):
concat = NodeDef()
concat.name = name
concat.op = 'ConcatV2'
for inp in inputs:
concat.input.append(inp)
concat.input.append(axisNodeName)
graph_def.node.extend([concat])
addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten')
sigmoid = NodeDef()
sigmoid.name = 'concat/sigmoid'
sigmoid.op = 'Sigmoid'
sigmoid.input.append('concat')
graph_def.node.extend([sigmoid])
addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def)
addFlatten('concat_1', 'concat_1/Flatten', graph_def)
detectionOut = NodeDef()
detectionOut.name = 'detection_out'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('concat_1/Flatten')
detectionOut.input.append(sigmoid.name + '/Flatten')
detectionOut.input.append('PriorBox/concat')
detectionOut.addAttr('num_classes', num_classes)
detectionOut.addAttr('share_location', True)
detectionOut.addAttr('background_label_id', num_classes + 1)
detectionOut.addAttr('nms_threshold', 0.6)
detectionOut.addAttr('confidence_threshold', 0.2)
detectionOut.addAttr('top_k', 100)
detectionOut.addAttr('keep_top_k', 100)
detectionOut.addAttr('code_type', "CENTER_SIZE")
graph_def.node.extend([detectionOut])
graph_def.node[0].attr['shape'] = {
'shape': {
'dim': [
{'size': -1},
{'size': image_height},
{'size': image_width},
{'size': 3}
]
}
}
while True:
unconnectedNodes = getUnconnectedNodes()
unconnectedNodes.remove(detectionOut.name)
if not unconnectedNodes:
break
for name in unconnectedNodes:
for i in range(len(graph_def.node)):
if graph_def.node[i].name == name:
del graph_def.node[i]
break
# Save as text
graph_def.save(outputPath)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
'SSD model from TensorFlow Object Detection API. '
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
parser.add_argument('--output', required=True, help='Path to output text graph.')
parser.add_argument('--min_level', default=3, type=int, help='Parameter from training config')
parser.add_argument('--num_scales', default=3, type=int, help='Parameter from training config')
parser.add_argument('--anchor_scale', default=4.0, type=float, help='Parameter from training config')
parser.add_argument('--aspect_ratios', default=[1.0, 1.0, 1.4, 0.7, 0.7, 1.4],
nargs='+', type=float, help='Parameter from training config')
parser.add_argument('--num_classes', default=90, type=int, help='Number of classes to detect')
parser.add_argument('--width', default=512, type=int, help='Network input width')
parser.add_argument('--height', default=512, type=int, help='Network input height')
args = parser.parse_args()
ar = args.aspect_ratios
assert(len(ar) % 2 == 0)
ar = list(zip(ar[::2], ar[1::2]))
createGraph(args.input, args.output, args.min_level, ar, args.num_scales,
args.anchor_scale, args.num_classes, args.width, args.height)