KalmanBoxTracker.cpp
5.12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include "KalmanBoxTracker.h"
#include <cmath>
#include "../../common/logger.hpp"
float IoU(vector<float> &bb_test, vector<float> &bb_gt)
{
float xx1, yy1, xx2, yy2, w, h, wh, o;
xx1 = max(bb_test[0], bb_gt[0]);
yy1 = max(bb_test[1], bb_gt[1]);
xx2 = min(bb_test[2], bb_gt[2]);
yy2 = min(bb_test[3], bb_gt[3]);
w = max(float(0), (xx2 - xx1));
h = max(float(0), (yy2 - yy1));
wh = w * h;
o = wh / ((bb_test[2] - bb_test[0])*(bb_test[3] - bb_test[1])
+ (bb_gt[2] - bb_gt[0])*(bb_gt[3] - bb_gt[1]) - wh);
return o;
}
// added by zsh 220718
float center_distance(vector<float> &bb_test, vector<float> &bb_gt, float maxLength)
{
float w1 = bb_gt[2] - bb_gt[0];
float h1 = bb_gt[3] - bb_gt[1];
float bbox_cx = (bb_gt[0] + bb_gt[2]) / 2;
float bbox_cy = (bb_gt[1] + bb_gt[3]) / 2;
float w2 = bb_test[2] - bb_test[0];
float h2 = bb_test[3] - bb_test[1];
float cx = (bb_test[0] + bb_test[2]) / 2;
float cy = (bb_test[1] + bb_test[3]) / 2;
float scaleW = 100;
float scaleH = 100;
if (w2 != 0 && h2 != 0) {
scaleW = w1 / w2;
if (scaleW < 1) scaleW = 1. / scaleW;
scaleH = h1 / h2;
if (scaleH < 1) scaleH = 1. / scaleH;
}
float res = std::sqrt((cx - bbox_cx)*(cx - bbox_cx)+(cy - bbox_cy)*(cy - bbox_cy)) / maxLength *
scaleW * scaleH;
//std::cout << res << std::endl;
return res;
}
void convert_bbox_to_z(vector<float> &bbox, vector<float> &z)
{
if(bbox.size() <= 0){
LOG_ERROR("convert_bbox_to_z - bbox.size() 小于0");
return;
}
float w, h, x, y, s, r;
w = bbox[2] - bbox[0];
h = bbox[3] - bbox[1];
x = bbox[0] + w / 2;
y = bbox[1] + h / 2;
if(fabs(h) < 1e-6){
LOG_ERROR("convert_bbox_to_z - h小于0");
return;
}
s = w * h; //scale is just area
r = w / h;
z.push_back(x);
z.push_back(y);
z.push_back(s);
z.push_back(r);
}
void convert_x_to_bbox(cv::Mat &x, vector<float> &bbox)
{
float w, h;
w = sqrt(x.at<float>(2) * x.at<float>(3));
h = x.at<float>(2) / w;
//bbox[x1,y1,x2,y2];
bbox.push_back(x.at<float>(0) - w / 2);
bbox.push_back(x.at<float>(1) - h / 2);
bbox.push_back(x.at<float>(0) + w / 2);
bbox.push_back(x.at<float>(1) + h / 2);
}
KalmanBoxTracker::KalmanBoxTracker(vector<float> &bbox, int trackLength)
{
KF.init(7, 4, 0); //初始化卡尔曼滤波器对象KF
state = cv::Mat::zeros(7, 1, CV_32F);
processNoise = cv::Mat::zeros(7, 1, CV_32F);
measurement = cv::Mat::zeros(4, 1, CV_32F); //定义测量值
KF.transitionMatrix = (cv::Mat_<float>(7, 7) << \
1, 0, 0, 0, 1, 0, 0, \
0, 1, 0, 0, 0, 1, 0, \
0, 0, 1, 0, 0, 0, 1, \
0, 0, 0, 1, 0, 0, 0, \
0, 0, 0, 0, 1, 0, 0, \
0, 0, 0, 0, 0, 1, 0, \
0, 0, 0, 0, 0, 0, 1); //状态转移矩阵A
KF.measurementMatrix = (cv::Mat_<float>(4, 7) << \
1, 0, 0, 0, 0, 0, 0, \
0, 1, 0, 0, 0, 0, 0, \
0, 0, 1, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 0); //测量矩阵H
KF.measurementNoiseCov = (cv::Mat_<float>(4, 4) << \
1, 0, 0, 0, \
0, 1, 0, 0, \
0, 0, 10, 0, \
0, 0, 0, 10); //测量噪声方差矩阵R
KF.errorCovPost = (cv::Mat_<float>(7, 7) << \
10, 0, 0, 0, 0, 0, 0, \
0, 10, 0, 0, 0, 0, 0, \
0, 0, 10, 0, 0, 0, 0, \
0, 0, 0, 10, 0, 0, 0, \
0, 0, 0, 0, 10000, 0, 0, \
0, 0, 0, 0, 0, 10000, 0, \
0, 0, 0, 0, 0, 0, 10000); //后验错误估计协方差矩阵P
KF.processNoiseCov = (cv::Mat_<float>(7, 7) << \
1, 0, 0, 0, 0, 0, 0, \
0, 1, 0, 0, 0, 0, 0, \
0, 0, 1, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 0, \
0, 0, 0, 0, 0.01, 0, 0, \
0, 0, 0, 0, 0, 0.01, 0, \
0, 0, 0, 0, 0, 0, 0.0001); //系统噪声方差矩阵Q
vector<float> z;
convert_bbox_to_z(bbox, z);
KF.statePost = (cv::Mat_<float>(7, 1) << z[0], z[1], z[2], z[3], 0, 0, 0); //corrected state
state = (cv::Mat_<float>(7, 1) << z[0], z[1], z[2], z[3], 0, 0, 0);
time_since_update = 0;
cls = bbox[5];
//history
//hits = 0;
hit_streak = 0;
age = 0;
m_trackLength = trackLength;
//history = new cycleQueue<vector<float>>(trackLength);
history.set_param(trackLength);
}
KalmanBoxTracker::~KalmanBoxTracker()
{
/*int trackerSize = history.size();
for (int i = 0; i < trackerSize; i++)
{
history.get(i).clear();
vector<float>().swap(history.get(i));
}*/
/*if (history != NULL)
{
delete history;
history = NULL;
}*/
}
void KalmanBoxTracker::update(vector<float> &bbox)
{
time_since_update = 0;
//history
//hits += 1;
hit_streak += 1;
vector<float> z;
convert_bbox_to_z(bbox, z);
measurement = (cv::Mat_<float>(4, 1) << z[0], z[1], z[2], z[3]);
KF.correct(measurement);
frame_count++;
}
vector<float> KalmanBoxTracker::predict()
{
if ((KF.statePost.at<float>(6) + KF.statePost.at<float>(2)) <= 0)
KF.statePost.at<float>(6) *= 0.0;
KF.predict();
age += 1;
if (time_since_update >= FusionInterval)
hit_streak = 0;
time_since_update += 1;
vector<float> bbox;
convert_x_to_bbox(KF.statePost, bbox);
//history.push_back(bbox);
TRACK_POINT tmp_point;
tmp_point.x = bbox[0] + (bbox[2] - bbox[0]) / 2;
tmp_point.y = bbox[1] + (bbox[3] - bbox[1]) / 2;
history.push(tmp_point);
return bbox;
}
vector<float> KalmanBoxTracker::get_state()
{
vector<float> bbox;
convert_x_to_bbox(KF.statePost, bbox);
return bbox;
}