opencl_kernels_features2d.cpp
27.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
// This file is auto-generated. Do not edit!
#include "opencv2/core.hpp"
#include "cvconfig.h"
#include "opencl_kernels_features2d.hpp"
#ifdef HAVE_OPENCL
namespace cv
{
namespace ocl
{
namespace features2d
{
static const char* const moduleName = "features2d";
struct cv::ocl::internal::ProgramEntry akaze_oclsrc={moduleName, "akaze",
"__kernel void\n"
"AKAZE_pm_g2(__global const float* lx, __global const float* ly, __global float* dst,\n"
"float k, int size)\n"
"{\n"
"int i = get_global_id(0);\n"
"if (!(i < size))\n"
"{\n"
"return;\n"
"}\n"
"const float k2inv = 1.0f / (k * k);\n"
"dst[i] = 1.0f / (1.0f + ((lx[i] * lx[i] + ly[i] * ly[i]) * k2inv));\n"
"}\n"
"__kernel void\n"
"AKAZE_nld_step_scalar(__global const float* lt, int lt_step, int lt_offset, int rows, int cols,\n"
"__global const float* lf, __global float* dst, float step_size)\n"
"{\n"
"int i = get_global_id(1);\n"
"int j = get_global_id(0);\n"
"if (!(i < rows && j < cols))\n"
"{\n"
"return;\n"
"}\n"
"int a = (i - 1) * cols;\n"
"int c = (i ) * cols;\n"
"int b = (i + 1) * cols;\n"
"float res = 0.0f;\n"
"if (i == 0)\n"
"{\n"
"if (j == 0 || j == (cols - 1))\n"
"{\n"
"res = 0.0f;\n"
"} else\n"
"{\n"
"res = (lf[c + j] + lf[c + j + 1])*(lt[c + j + 1] - lt[c + j]) +\n"
"(lf[c + j] + lf[c + j - 1])*(lt[c + j - 1] - lt[c + j]) +\n"
"(lf[c + j] + lf[b + j ])*(lt[b + j ] - lt[c + j]);\n"
"}\n"
"} else if (i == (rows - 1))\n"
"{\n"
"if (j == 0 || j == (cols - 1))\n"
"{\n"
"res = 0.0f;\n"
"} else\n"
"{\n"
"res = (lf[c + j] + lf[c + j + 1])*(lt[c + j + 1] - lt[c + j]) +\n"
"(lf[c + j] + lf[c + j - 1])*(lt[c + j - 1] - lt[c + j]) +\n"
"(lf[c + j] + lf[a + j ])*(lt[a + j ] - lt[c + j]);\n"
"}\n"
"} else\n"
"{\n"
"if (j == 0)\n"
"{\n"
"res = (lf[c + 0] + lf[c + 1])*(lt[c + 1] - lt[c + 0]) +\n"
"(lf[c + 0] + lf[b + 0])*(lt[b + 0] - lt[c + 0]) +\n"
"(lf[c + 0] + lf[a + 0])*(lt[a + 0] - lt[c + 0]);\n"
"} else if (j == (cols - 1))\n"
"{\n"
"res = (lf[c + j] + lf[c + j - 1])*(lt[c + j - 1] - lt[c + j]) +\n"
"(lf[c + j] + lf[b + j ])*(lt[b + j ] - lt[c + j]) +\n"
"(lf[c + j] + lf[a + j ])*(lt[a + j ] - lt[c + j]);\n"
"} else\n"
"{\n"
"res = (lf[c + j] + lf[c + j + 1])*(lt[c + j + 1] - lt[c + j]) +\n"
"(lf[c + j] + lf[c + j - 1])*(lt[c + j - 1] - lt[c + j]) +\n"
"(lf[c + j] + lf[b + j ])*(lt[b + j ] - lt[c + j]) +\n"
"(lf[c + j] + lf[a + j ])*(lt[a + j ] - lt[c + j]);\n"
"}\n"
"}\n"
"dst[c + j] = res * step_size;\n"
"}\n"
"__kernel void\n"
"AKAZE_compute_determinant(__global const float* lxx, __global const float* lxy, __global const float* lyy,\n"
"__global float* dst, float sigma, int size)\n"
"{\n"
"int i = get_global_id(0);\n"
"if (!(i < size))\n"
"{\n"
"return;\n"
"}\n"
"dst[i] = (lxx[i] * lyy[i] - lxy[i] * lxy[i]) * sigma;\n"
"}\n"
, "80f6cd2f334b70062ed64a0a1a866593", NULL};
struct cv::ocl::internal::ProgramEntry brute_force_match_oclsrc={moduleName, "brute_force_match",
"#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable\n"
"#define MAX_FLOAT 3.40282e+038f\n"
"#ifndef T\n"
"#define T float\n"
"#endif\n"
"#ifndef BLOCK_SIZE\n"
"#define BLOCK_SIZE 16\n"
"#endif\n"
"#ifndef MAX_DESC_LEN\n"
"#define MAX_DESC_LEN 64\n"
"#endif\n"
"#define BLOCK_SIZE_ODD (BLOCK_SIZE + 1)\n"
"#ifndef SHARED_MEM_SZ\n"
"# if (BLOCK_SIZE < MAX_DESC_LEN)\n"
"# define SHARED_MEM_SZ (kercn * (BLOCK_SIZE * MAX_DESC_LEN + BLOCK_SIZE * BLOCK_SIZE))\n"
"# else\n"
"# define SHARED_MEM_SZ (kercn * 2 * BLOCK_SIZE_ODD * BLOCK_SIZE)\n"
"# endif\n"
"#endif\n"
"#ifndef DIST_TYPE\n"
"#define DIST_TYPE 2\n"
"#endif\n"
"#if (DIST_TYPE == 2)\n"
"# ifdef T_FLOAT\n"
"typedef float result_type;\n"
"# if (8 == kercn)\n"
"typedef float8 value_type;\n"
"# define DIST(x, y) {value_type d = fabs((x) - (y)); result += d.s0 + d.s1 + d.s2 + d.s3 + d.s4 + d.s5 + d.s6 + d.s7;}\n"
"# elif (4 == kercn)\n"
"typedef float4 value_type;\n"
"# define DIST(x, y) {value_type d = fabs((x) - (y)); result += d.s0 + d.s1 + d.s2 + d.s3;}\n"
"# else\n"
"typedef float value_type;\n"
"# define DIST(x, y) result += fabs((x) - (y))\n"
"# endif\n"
"# else\n"
"typedef int result_type;\n"
"# if (8 == kercn)\n"
"typedef int8 value_type;\n"
"# define DIST(x, y) {value_type d = abs((x) - (y)); result += d.s0 + d.s1 + d.s2 + d.s3 + d.s4 + d.s5 + d.s6 + d.s7;}\n"
"# elif (4 == kercn)\n"
"typedef int4 value_type;\n"
"# define DIST(x, y) {value_type d = abs((x) - (y)); result += d.s0 + d.s1 + d.s2 + d.s3;}\n"
"# else\n"
"typedef int value_type;\n"
"# define DIST(x, y) result += abs((x) - (y))\n"
"# endif\n"
"# endif\n"
"# define DIST_RES(x) (x)\n"
"#elif (DIST_TYPE == 4)\n"
"typedef float result_type;\n"
"# if (8 == kercn)\n"
"typedef float8 value_type;\n"
"# define DIST(x, y) {value_type d = ((x) - (y)); result += dot(d.s0123, d.s0123) + dot(d.s4567, d.s4567);}\n"
"# elif (4 == kercn)\n"
"typedef float4 value_type;\n"
"# define DIST(x, y) {value_type d = ((x) - (y)); result += dot(d, d);}\n"
"# else\n"
"typedef float value_type;\n"
"# define DIST(x, y) {value_type d = ((x) - (y)); result = mad(d, d, result);}\n"
"# endif\n"
"# define DIST_RES(x) sqrt(x)\n"
"#elif (DIST_TYPE == 6)\n"
"# if (8 == kercn)\n"
"typedef int8 value_type;\n"
"# elif (4 == kercn)\n"
"typedef int4 value_type;\n"
"# else\n"
"typedef int value_type;\n"
"# endif\n"
"typedef int result_type;\n"
"# define DIST(x, y) result += popcount( (x) ^ (y) )\n"
"# define DIST_RES(x) (x)\n"
"#endif\n"
"inline result_type reduce_block(\n"
"__local value_type *s_query,\n"
"__local value_type *s_train,\n"
"int lidx,\n"
"int lidy\n"
")\n"
"{\n"
"result_type result = 0;\n"
"#pragma unroll\n"
"for (int j = 0 ; j < BLOCK_SIZE ; j++)\n"
"{\n"
"DIST(s_query[lidy * BLOCK_SIZE_ODD + j], s_train[j * BLOCK_SIZE_ODD + lidx]);\n"
"}\n"
"return DIST_RES(result);\n"
"}\n"
"inline result_type reduce_block_match(\n"
"__local value_type *s_query,\n"
"__local value_type *s_train,\n"
"int lidx,\n"
"int lidy\n"
")\n"
"{\n"
"result_type result = 0;\n"
"#pragma unroll\n"
"for (int j = 0 ; j < BLOCK_SIZE ; j++)\n"
"{\n"
"DIST(s_query[lidy * BLOCK_SIZE_ODD + j], s_train[j * BLOCK_SIZE_ODD + lidx]);\n"
"}\n"
"return result;\n"
"}\n"
"inline result_type reduce_multi_block(\n"
"__local value_type *s_query,\n"
"__local value_type *s_train,\n"
"int block_index,\n"
"int lidx,\n"
"int lidy\n"
")\n"
"{\n"
"result_type result = 0;\n"
"#pragma unroll\n"
"for (int j = 0 ; j < BLOCK_SIZE ; j++)\n"
"{\n"
"DIST(s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + lidx]);\n"
"}\n"
"return result;\n"
"}\n"
"__kernel void BruteForceMatch_Match(\n"
"__global T *query,\n"
"__global T *train,\n"
"__global int *bestTrainIdx,\n"
"__global float *bestDistance,\n"
"int query_rows,\n"
"int query_cols,\n"
"int train_rows,\n"
"int train_cols,\n"
"int step\n"
")\n"
"{\n"
"const int lidx = get_local_id(0);\n"
"const int lidy = get_local_id(1);\n"
"const int groupidx = get_group_id(0);\n"
"const int queryIdx = mad24(BLOCK_SIZE, groupidx, lidy);\n"
"const int queryOffset = min(queryIdx, query_rows - 1) * step;\n"
"__global TN *query_vec = (__global TN *)(query + queryOffset);\n"
"query_cols /= kercn;\n"
"__local float sharebuffer[SHARED_MEM_SZ];\n"
"__local value_type *s_query = (__local value_type *)sharebuffer;\n"
"#if 0 < MAX_DESC_LEN\n"
"__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;\n"
"#pragma unroll\n"
"for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; i++)\n"
"{\n"
"const int loadx = mad24(BLOCK_SIZE, i, lidx);\n"
"s_query[mad24(MAX_DESC_LEN, lidy, loadx)] = loadx < query_cols ? query_vec[loadx] : 0;\n"
"}\n"
"#else\n"
"__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE;\n"
"const int s_query_i = mad24(BLOCK_SIZE_ODD, lidy, lidx);\n"
"const int s_train_i = mad24(BLOCK_SIZE_ODD, lidx, lidy);\n"
"#endif\n"
"float myBestDistance = MAX_FLOAT;\n"
"int myBestTrainIdx = -1;\n"
"for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; t++)\n"
"{\n"
"result_type result = 0;\n"
"const int trainOffset = min(mad24(BLOCK_SIZE, t, lidy), train_rows - 1) * step;\n"
"__global TN *train_vec = (__global TN *)(train + trainOffset);\n"
"#if 0 < MAX_DESC_LEN\n"
"#pragma unroll\n"
"for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; i++)\n"
"{\n"
"const int loadx = mad24(BLOCK_SIZE, i, lidx);\n"
"s_train[mad24(BLOCK_SIZE, lidx, lidy)] = loadx < train_cols ? train_vec[loadx] : 0;\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"result += reduce_multi_block(s_query, s_train, i, lidx, lidy);\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"}\n"
"#else\n"
"for (int i = 0, endq = (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endq; i++)\n"
"{\n"
"const int loadx = mad24(i, BLOCK_SIZE, lidx);\n"
"if (loadx < query_cols)\n"
"{\n"
"s_query[s_query_i] = query_vec[loadx];\n"
"s_train[s_train_i] = train_vec[loadx];\n"
"}\n"
"else\n"
"{\n"
"s_query[s_query_i] = 0;\n"
"s_train[s_train_i] = 0;\n"
"}\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"result += reduce_block_match(s_query, s_train, lidx, lidy);\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"}\n"
"#endif\n"
"result = DIST_RES(result);\n"
"const int trainIdx = mad24(BLOCK_SIZE, t, lidx);\n"
"if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance )\n"
"{\n"
"myBestDistance = result;\n"
"myBestTrainIdx = trainIdx;\n"
"}\n"
"}\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"__local float *s_distance = (__local float *)sharebuffer;\n"
"__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE);\n"
"s_distance += lidy * BLOCK_SIZE_ODD;\n"
"s_trainIdx += lidy * BLOCK_SIZE_ODD;\n"
"s_distance[lidx] = myBestDistance;\n"
"s_trainIdx[lidx] = myBestTrainIdx;\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"#pragma unroll\n"
"for (int k = 0 ; k < BLOCK_SIZE; k++)\n"
"{\n"
"if (myBestDistance > s_distance[k])\n"
"{\n"
"myBestDistance = s_distance[k];\n"
"myBestTrainIdx = s_trainIdx[k];\n"
"}\n"
"}\n"
"if (queryIdx < query_rows && lidx == 0)\n"
"{\n"
"bestTrainIdx[queryIdx] = myBestTrainIdx;\n"
"bestDistance[queryIdx] = myBestDistance;\n"
"}\n"
"}\n"
"__kernel void BruteForceMatch_RadiusMatch(\n"
"__global T *query,\n"
"__global T *train,\n"
"float maxDistance,\n"
"__global int *bestTrainIdx,\n"
"__global float *bestDistance,\n"
"__global int *nMatches,\n"
"int query_rows,\n"
"int query_cols,\n"
"int train_rows,\n"
"int train_cols,\n"
"int bestTrainIdx_cols,\n"
"int step,\n"
"int ostep\n"
")\n"
"{\n"
"const int lidx = get_local_id(0);\n"
"const int lidy = get_local_id(1);\n"
"const int groupidx = get_group_id(0);\n"
"const int groupidy = get_group_id(1);\n"
"const int queryIdx = mad24(BLOCK_SIZE, groupidy, lidy);\n"
"const int queryOffset = min(queryIdx, query_rows - 1) * step;\n"
"__global TN *query_vec = (__global TN *)(query + queryOffset);\n"
"const int trainIdx = mad24(BLOCK_SIZE, groupidx, lidx);\n"
"const int trainOffset = min(mad24(BLOCK_SIZE, groupidx, lidy), train_rows - 1) * step;\n"
"__global TN *train_vec = (__global TN *)(train + trainOffset);\n"
"query_cols /= kercn;\n"
"__local float sharebuffer[SHARED_MEM_SZ];\n"
"__local value_type *s_query = (__local value_type *)sharebuffer;\n"
"__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE;\n"
"result_type result = 0;\n"
"const int s_query_i = mad24(BLOCK_SIZE_ODD, lidy, lidx);\n"
"const int s_train_i = mad24(BLOCK_SIZE_ODD, lidx, lidy);\n"
"for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)\n"
"{\n"
"const int loadx = mad24(BLOCK_SIZE, i, lidx);\n"
"if (loadx < query_cols)\n"
"{\n"
"s_query[s_query_i] = query_vec[loadx];\n"
"s_train[s_train_i] = train_vec[loadx];\n"
"}\n"
"else\n"
"{\n"
"s_query[s_query_i] = 0;\n"
"s_train[s_train_i] = 0;\n"
"}\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"result += reduce_block(s_query, s_train, lidx, lidy);\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"}\n"
"if (queryIdx < query_rows && trainIdx < train_rows && convert_float(result) < maxDistance)\n"
"{\n"
"int ind = atom_inc(nMatches + queryIdx);\n"
"if(ind < bestTrainIdx_cols)\n"
"{\n"
"bestTrainIdx[mad24(queryIdx, ostep, ind)] = trainIdx;\n"
"bestDistance[mad24(queryIdx, ostep, ind)] = result;\n"
"}\n"
"}\n"
"}\n"
"__kernel void BruteForceMatch_knnMatch(\n"
"__global T *query,\n"
"__global T *train,\n"
"__global int2 *bestTrainIdx,\n"
"__global float2 *bestDistance,\n"
"int query_rows,\n"
"int query_cols,\n"
"int train_rows,\n"
"int train_cols,\n"
"int step\n"
")\n"
"{\n"
"const int lidx = get_local_id(0);\n"
"const int lidy = get_local_id(1);\n"
"const int groupidx = get_group_id(0);\n"
"const int queryIdx = mad24(BLOCK_SIZE, groupidx, lidy);\n"
"const int queryOffset = min(queryIdx, query_rows - 1) * step;\n"
"__global TN *query_vec = (__global TN *)(query + queryOffset);\n"
"query_cols /= kercn;\n"
"__local float sharebuffer[SHARED_MEM_SZ];\n"
"__local value_type *s_query = (__local value_type *)sharebuffer;\n"
"#if 0 < MAX_DESC_LEN\n"
"__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;\n"
"#pragma unroll\n"
"for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)\n"
"{\n"
"int loadx = mad24(BLOCK_SIZE, i, lidx);\n"
"s_query[mad24(MAX_DESC_LEN, lidy, loadx)] = loadx < query_cols ? query_vec[loadx] : 0;\n"
"}\n"
"#else\n"
"__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE;\n"
"const int s_query_i = mad24(BLOCK_SIZE_ODD, lidy, lidx);\n"
"const int s_train_i = mad24(BLOCK_SIZE_ODD, lidx, lidy);\n"
"#endif\n"
"float myBestDistance1 = MAX_FLOAT;\n"
"float myBestDistance2 = MAX_FLOAT;\n"
"int myBestTrainIdx1 = -1;\n"
"int myBestTrainIdx2 = -1;\n"
"for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt ; t++)\n"
"{\n"
"result_type result = 0;\n"
"int trainOffset = min(mad24(BLOCK_SIZE, t, lidy), train_rows - 1) * step;\n"
"__global TN *train_vec = (__global TN *)(train + trainOffset);\n"
"#if 0 < MAX_DESC_LEN\n"
"#pragma unroll\n"
"for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)\n"
"{\n"
"const int loadx = mad24(BLOCK_SIZE, i, lidx);\n"
"s_train[mad24(BLOCK_SIZE, lidx, lidy)] = loadx < train_cols ? train_vec[loadx] : 0;\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"result += reduce_multi_block(s_query, s_train, i, lidx, lidy);\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"}\n"
"#else\n"
"for (int i = 0, endq = (query_cols + BLOCK_SIZE -1) / BLOCK_SIZE; i < endq ; i++)\n"
"{\n"
"const int loadx = mad24(BLOCK_SIZE, i, lidx);\n"
"if (loadx < query_cols)\n"
"{\n"
"s_query[s_query_i] = query_vec[loadx];\n"
"s_train[s_train_i] = train_vec[loadx];\n"
"}\n"
"else\n"
"{\n"
"s_query[s_query_i] = 0;\n"
"s_train[s_train_i] = 0;\n"
"}\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"result += reduce_block_match(s_query, s_train, lidx, lidy);\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"}\n"
"#endif\n"
"result = DIST_RES(result);\n"
"const int trainIdx = mad24(BLOCK_SIZE, t, lidx);\n"
"if (queryIdx < query_rows && trainIdx < train_rows)\n"
"{\n"
"if (result < myBestDistance1)\n"
"{\n"
"myBestDistance2 = myBestDistance1;\n"
"myBestTrainIdx2 = myBestTrainIdx1;\n"
"myBestDistance1 = result;\n"
"myBestTrainIdx1 = trainIdx;\n"
"}\n"
"else if (result < myBestDistance2)\n"
"{\n"
"myBestDistance2 = result;\n"
"myBestTrainIdx2 = trainIdx;\n"
"}\n"
"}\n"
"}\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"__local float *s_distance = (__local float *)sharebuffer;\n"
"__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE_ODD * BLOCK_SIZE);\n"
"s_distance += lidy * BLOCK_SIZE_ODD;\n"
"s_trainIdx += lidy * BLOCK_SIZE_ODD;\n"
"s_distance[lidx] = myBestDistance1;\n"
"s_trainIdx[lidx] = myBestTrainIdx1;\n"
"float bestDistance1 = MAX_FLOAT;\n"
"float bestDistance2 = MAX_FLOAT;\n"
"int bestTrainIdx1 = -1;\n"
"int bestTrainIdx2 = -1;\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"if (lidx == 0)\n"
"{\n"
"for (int i = 0 ; i < BLOCK_SIZE ; i++)\n"
"{\n"
"float val = s_distance[i];\n"
"if (val < bestDistance1)\n"
"{\n"
"bestDistance2 = bestDistance1;\n"
"bestTrainIdx2 = bestTrainIdx1;\n"
"bestDistance1 = val;\n"
"bestTrainIdx1 = s_trainIdx[i];\n"
"}\n"
"else if (val < bestDistance2)\n"
"{\n"
"bestDistance2 = val;\n"
"bestTrainIdx2 = s_trainIdx[i];\n"
"}\n"
"}\n"
"}\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"s_distance[lidx] = myBestDistance2;\n"
"s_trainIdx[lidx] = myBestTrainIdx2;\n"
"barrier(CLK_LOCAL_MEM_FENCE);\n"
"if (lidx == 0)\n"
"{\n"
"for (int i = 0 ; i < BLOCK_SIZE ; i++)\n"
"{\n"
"float val = s_distance[i];\n"
"if (val < bestDistance2)\n"
"{\n"
"bestDistance2 = val;\n"
"bestTrainIdx2 = s_trainIdx[i];\n"
"}\n"
"}\n"
"}\n"
"myBestDistance1 = bestDistance1;\n"
"myBestDistance2 = bestDistance2;\n"
"myBestTrainIdx1 = bestTrainIdx1;\n"
"myBestTrainIdx2 = bestTrainIdx2;\n"
"if (queryIdx < query_rows && lidx == 0)\n"
"{\n"
"bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);\n"
"bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);\n"
"}\n"
"}\n"
, "35c3a1e231d446e4088561e3604fb94f", NULL};
struct cv::ocl::internal::ProgramEntry fast_oclsrc={moduleName, "fast",
"inline int cornerScore(__global const uchar* img, int step)\n"
"{\n"
"int k, tofs, v = img[0], a0 = 0, b0;\n"
"int d[16];\n"
"#define LOAD2(idx, ofs) \\\n"
"tofs = ofs; d[idx] = (short)(v - img[tofs]); d[idx+8] = (short)(v - img[-tofs])\n"
"LOAD2(0, 3);\n"
"LOAD2(1, -step+3);\n"
"LOAD2(2, -step*2+2);\n"
"LOAD2(3, -step*3+1);\n"
"LOAD2(4, -step*3);\n"
"LOAD2(5, -step*3-1);\n"
"LOAD2(6, -step*2-2);\n"
"LOAD2(7, -step-3);\n"
"#pragma unroll\n"
"for( k = 0; k < 16; k += 2 )\n"
"{\n"
"int a = min((int)d[(k+1)&15], (int)d[(k+2)&15]);\n"
"a = min(a, (int)d[(k+3)&15]);\n"
"a = min(a, (int)d[(k+4)&15]);\n"
"a = min(a, (int)d[(k+5)&15]);\n"
"a = min(a, (int)d[(k+6)&15]);\n"
"a = min(a, (int)d[(k+7)&15]);\n"
"a = min(a, (int)d[(k+8)&15]);\n"
"a0 = max(a0, min(a, (int)d[k&15]));\n"
"a0 = max(a0, min(a, (int)d[(k+9)&15]));\n"
"}\n"
"b0 = -a0;\n"
"#pragma unroll\n"
"for( k = 0; k < 16; k += 2 )\n"
"{\n"
"int b = max((int)d[(k+1)&15], (int)d[(k+2)&15]);\n"
"b = max(b, (int)d[(k+3)&15]);\n"
"b = max(b, (int)d[(k+4)&15]);\n"
"b = max(b, (int)d[(k+5)&15]);\n"
"b = max(b, (int)d[(k+6)&15]);\n"
"b = max(b, (int)d[(k+7)&15]);\n"
"b = max(b, (int)d[(k+8)&15]);\n"
"b0 = min(b0, max(b, (int)d[k]));\n"
"b0 = min(b0, max(b, (int)d[(k+9)&15]));\n"
"}\n"
"return -b0-1;\n"
"}\n"
"__kernel\n"
"void FAST_findKeypoints(\n"
"__global const uchar * _img, int step, int img_offset,\n"
"int img_rows, int img_cols,\n"
"volatile __global int* kp_loc,\n"
"int max_keypoints, int threshold )\n"
"{\n"
"int j = get_global_id(0) + 3;\n"
"int i = get_global_id(1) + 3;\n"
"if (i < img_rows - 3 && j < img_cols - 3)\n"
"{\n"
"__global const uchar* img = _img + mad24(i, step, j + img_offset);\n"
"int v = img[0], t0 = v - threshold, t1 = v + threshold;\n"
"int k, tofs, v0, v1;\n"
"int m0 = 0, m1 = 0;\n"
"#define UPDATE_MASK(idx, ofs) \\\n"
"tofs = ofs; v0 = img[tofs]; v1 = img[-tofs]; \\\n"
"m0 |= ((v0 < t0) << idx) | ((v1 < t0) << (8 + idx)); \\\n"
"m1 |= ((v0 > t1) << idx) | ((v1 > t1) << (8 + idx))\n"
"UPDATE_MASK(0, 3);\n"
"if( (m0 | m1) == 0 )\n"
"return;\n"
"UPDATE_MASK(2, -step*2+2);\n"
"UPDATE_MASK(4, -step*3);\n"
"UPDATE_MASK(6, -step*2-2);\n"
"#define EVEN_MASK (1+4+16+64)\n"
"if( ((m0 | (m0 >> 8)) & EVEN_MASK) != EVEN_MASK &&\n"
"((m1 | (m1 >> 8)) & EVEN_MASK) != EVEN_MASK )\n"
"return;\n"
"UPDATE_MASK(1, -step+3);\n"
"UPDATE_MASK(3, -step*3+1);\n"
"UPDATE_MASK(5, -step*3-1);\n"
"UPDATE_MASK(7, -step-3);\n"
"if( ((m0 | (m0 >> 8)) & 255) != 255 &&\n"
"((m1 | (m1 >> 8)) & 255) != 255 )\n"
"return;\n"
"m0 |= m0 << 16;\n"
"m1 |= m1 << 16;\n"
"#define CHECK0(i) ((m0 & (511 << i)) == (511 << i))\n"
"#define CHECK1(i) ((m1 & (511 << i)) == (511 << i))\n"
"if( CHECK0(0) + CHECK0(1) + CHECK0(2) + CHECK0(3) +\n"
"CHECK0(4) + CHECK0(5) + CHECK0(6) + CHECK0(7) +\n"
"CHECK0(8) + CHECK0(9) + CHECK0(10) + CHECK0(11) +\n"
"CHECK0(12) + CHECK0(13) + CHECK0(14) + CHECK0(15) +\n"
"CHECK1(0) + CHECK1(1) + CHECK1(2) + CHECK1(3) +\n"
"CHECK1(4) + CHECK1(5) + CHECK1(6) + CHECK1(7) +\n"
"CHECK1(8) + CHECK1(9) + CHECK1(10) + CHECK1(11) +\n"
"CHECK1(12) + CHECK1(13) + CHECK1(14) + CHECK1(15) == 0 )\n"
"return;\n"
"{\n"
"int idx = atomic_inc(kp_loc);\n"
"if( idx < max_keypoints )\n"
"{\n"
"kp_loc[1 + 2*idx] = j;\n"
"kp_loc[2 + 2*idx] = i;\n"
"}\n"
"}\n"
"}\n"
"}\n"
"__kernel\n"
"void FAST_nonmaxSupression(\n"
"__global const int* kp_in, volatile __global int* kp_out,\n"
"__global const uchar * _img, int step, int img_offset,\n"
"int rows, int cols, int counter, int max_keypoints)\n"
"{\n"
"const int idx = get_global_id(0);\n"
"if (idx < counter)\n"
"{\n"
"int x = kp_in[1 + 2*idx];\n"
"int y = kp_in[2 + 2*idx];\n"
"__global const uchar* img = _img + mad24(y, step, x + img_offset);\n"
"int s = cornerScore(img, step);\n"
"if( (x < 4 || s > cornerScore(img-1, step)) +\n"
"(y < 4 || s > cornerScore(img-step, step)) != 2 )\n"
"return;\n"
"if( (x >= cols - 4 || s > cornerScore(img+1, step)) +\n"
"(y >= rows - 4 || s > cornerScore(img+step, step)) +\n"
"(x < 4 || y < 4 || s > cornerScore(img-step-1, step)) +\n"
"(x >= cols - 4 || y < 4 || s > cornerScore(img-step+1, step)) +\n"
"(x < 4 || y >= rows - 4 || s > cornerScore(img+step-1, step)) +\n"
"(x >= cols - 4 || y >= rows - 4 || s > cornerScore(img+step+1, step)) == 6)\n"
"{\n"
"int new_idx = atomic_inc(kp_out);\n"
"if( new_idx < max_keypoints )\n"
"{\n"
"kp_out[1 + 3*new_idx] = x;\n"
"kp_out[2 + 3*new_idx] = y;\n"
"kp_out[3 + 3*new_idx] = s;\n"
"}\n"
"}\n"
"}\n"
"}\n"
, "f5e6f463f21a7ed77bd4d2c753478305", NULL};
struct cv::ocl::internal::ProgramEntry orb_oclsrc={moduleName, "orb",
"#define LAYERINFO_SIZE 1\n"
"#define LAYERINFO_OFS 0\n"
"#define KEYPOINT_SIZE 3\n"
"#define ORIENTED_KEYPOINT_SIZE 4\n"
"#define KEYPOINT_X 0\n"
"#define KEYPOINT_Y 1\n"
"#define KEYPOINT_Z 2\n"
"#define KEYPOINT_ANGLE 3\n"
"#ifdef ORB_RESPONSES\n"
"__kernel void\n"
"ORB_HarrisResponses(__global const uchar* imgbuf, int imgstep, int imgoffset0,\n"
"__global const int* layerinfo, __global const int* keypoints,\n"
"__global float* responses, int nkeypoints )\n"
"{\n"
"int idx = get_global_id(0);\n"
"if( idx < nkeypoints )\n"
"{\n"
"__global const int* kpt = keypoints + idx*KEYPOINT_SIZE;\n"
"__global const int* layer = layerinfo + kpt[KEYPOINT_Z]*LAYERINFO_SIZE;\n"
"__global const uchar* img = imgbuf + imgoffset0 + layer[LAYERINFO_OFS] +\n"
"(kpt[KEYPOINT_Y] - blockSize/2)*imgstep + (kpt[KEYPOINT_X] - blockSize/2);\n"
"int i, j;\n"
"int a = 0, b = 0, c = 0;\n"
"for( i = 0; i < blockSize; i++, img += imgstep-blockSize )\n"
"{\n"
"for( j = 0; j < blockSize; j++, img++ )\n"
"{\n"
"int Ix = (img[1] - img[-1])*2 + img[-imgstep+1] - img[-imgstep-1] + img[imgstep+1] - img[imgstep-1];\n"
"int Iy = (img[imgstep] - img[-imgstep])*2 + img[imgstep-1] - img[-imgstep-1] + img[imgstep+1] - img[-imgstep+1];\n"
"a += Ix*Ix;\n"
"b += Iy*Iy;\n"
"c += Ix*Iy;\n"
"}\n"
"}\n"
"responses[idx] = ((float)a * b - (float)c * c - HARRIS_K * (float)(a + b) * (a + b))*scale_sq_sq;\n"
"}\n"
"}\n"
"#endif\n"
"#ifdef ORB_ANGLES\n"
"#define _DBL_EPSILON 2.2204460492503131e-16f\n"
"#define atan2_p1 (0.9997878412794807f*57.29577951308232f)\n"
"#define atan2_p3 (-0.3258083974640975f*57.29577951308232f)\n"
"#define atan2_p5 (0.1555786518463281f*57.29577951308232f)\n"
"#define atan2_p7 (-0.04432655554792128f*57.29577951308232f)\n"
"inline float fastAtan2( float y, float x )\n"
"{\n"
"float ax = fabs(x), ay = fabs(y);\n"
"float a, c, c2;\n"
"if( ax >= ay )\n"
"{\n"
"c = ay/(ax + _DBL_EPSILON);\n"
"c2 = c*c;\n"
"a = (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;\n"
"}\n"
"else\n"
"{\n"
"c = ax/(ay + _DBL_EPSILON);\n"
"c2 = c*c;\n"
"a = 90.f - (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;\n"
"}\n"
"if( x < 0 )\n"
"a = 180.f - a;\n"
"if( y < 0 )\n"
"a = 360.f - a;\n"
"return a;\n"
"}\n"
"__kernel void\n"
"ORB_ICAngle(__global const uchar* imgbuf, int imgstep, int imgoffset0,\n"
"__global const int* layerinfo, __global const int* keypoints,\n"
"__global float* responses, const __global int* u_max,\n"
"int nkeypoints, int half_k )\n"
"{\n"
"int idx = get_global_id(0);\n"
"if( idx < nkeypoints )\n"
"{\n"
"__global const int* kpt = keypoints + idx*KEYPOINT_SIZE;\n"
"__global const int* layer = layerinfo + kpt[KEYPOINT_Z]*LAYERINFO_SIZE;\n"
"__global const uchar* center = imgbuf + imgoffset0 + layer[LAYERINFO_OFS] +\n"
"kpt[KEYPOINT_Y]*imgstep + kpt[KEYPOINT_X];\n"
"int u, v, m_01 = 0, m_10 = 0;\n"
"for( u = -half_k; u <= half_k; u++ )\n"
"m_10 += u * center[u];\n"
"for( v = 1; v <= half_k; v++ )\n"
"{\n"
"int v_sum = 0;\n"
"int d = u_max[v];\n"
"for( u = -d; u <= d; u++ )\n"
"{\n"
"int val_plus = center[u + v*imgstep], val_minus = center[u - v*imgstep];\n"
"v_sum += (val_plus - val_minus);\n"
"m_10 += u * (val_plus + val_minus);\n"
"}\n"
"m_01 += v * v_sum;\n"
"}\n"
"responses[idx] = fastAtan2((float)m_01, (float)m_10);\n"
"}\n"
"}\n"
"#endif\n"
"#ifdef ORB_DESCRIPTORS\n"
"__kernel void\n"
"ORB_computeDescriptor(__global const uchar* imgbuf, int imgstep, int imgoffset0,\n"
"__global const int* layerinfo, __global const int* keypoints,\n"
"__global uchar* _desc, const __global int* pattern,\n"
"int nkeypoints, int dsize )\n"
"{\n"
"int idx = get_global_id(0);\n"
"if( idx < nkeypoints )\n"
"{\n"
"int i;\n"
"__global const int* kpt = keypoints + idx*ORIENTED_KEYPOINT_SIZE;\n"
"__global const int* layer = layerinfo + kpt[KEYPOINT_Z]*LAYERINFO_SIZE;\n"
"__global const uchar* center = imgbuf + imgoffset0 + layer[LAYERINFO_OFS] +\n"
"kpt[KEYPOINT_Y]*imgstep + kpt[KEYPOINT_X];\n"
"float angle = as_float(kpt[KEYPOINT_ANGLE]);\n"
"angle *= 0.01745329251994329547f;\n"
"float cosa;\n"
"float sina = sincos(angle, &cosa);\n"
"__global uchar* desc = _desc + idx*dsize;\n"
"#define GET_VALUE(idx) \\\n"
"center[mad24(convert_int_rte(pattern[(idx)*2] * sina + pattern[(idx)*2+1] * cosa), imgstep, \\\n"
"convert_int_rte(pattern[(idx)*2] * cosa - pattern[(idx)*2+1] * sina))]\n"
"for( i = 0; i < dsize; i++ )\n"
"{\n"
"int val;\n"
"#if WTA_K == 2\n"
"int t0, t1;\n"
"t0 = GET_VALUE(0); t1 = GET_VALUE(1);\n"
"val = t0 < t1;\n"
"t0 = GET_VALUE(2); t1 = GET_VALUE(3);\n"
"val |= (t0 < t1) << 1;\n"
"t0 = GET_VALUE(4); t1 = GET_VALUE(5);\n"
"val |= (t0 < t1) << 2;\n"
"t0 = GET_VALUE(6); t1 = GET_VALUE(7);\n"
"val |= (t0 < t1) << 3;\n"
"t0 = GET_VALUE(8); t1 = GET_VALUE(9);\n"
"val |= (t0 < t1) << 4;\n"
"t0 = GET_VALUE(10); t1 = GET_VALUE(11);\n"
"val |= (t0 < t1) << 5;\n"
"t0 = GET_VALUE(12); t1 = GET_VALUE(13);\n"
"val |= (t0 < t1) << 6;\n"
"t0 = GET_VALUE(14); t1 = GET_VALUE(15);\n"
"val |= (t0 < t1) << 7;\n"
"pattern += 16*2;\n"
"#elif WTA_K == 3\n"
"int t0, t1, t2;\n"
"t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);\n"
"val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);\n"
"t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);\n"
"val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;\n"
"t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);\n"
"val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;\n"
"t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);\n"
"val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;\n"
"pattern += 12*2;\n"
"#elif WTA_K == 4\n"
"int t0, t1, t2, t3, k;\n"
"int a, b;\n"
"t0 = GET_VALUE(0); t1 = GET_VALUE(1);\n"
"t2 = GET_VALUE(2); t3 = GET_VALUE(3);\n"
"a = 0, b = 2;\n"
"if( t1 > t0 ) t0 = t1, a = 1;\n"
"if( t3 > t2 ) t2 = t3, b = 3;\n"
"k = t0 > t2 ? a : b;\n"
"val = k;\n"
"t0 = GET_VALUE(4); t1 = GET_VALUE(5);\n"
"t2 = GET_VALUE(6); t3 = GET_VALUE(7);\n"
"a = 0, b = 2;\n"
"if( t1 > t0 ) t0 = t1, a = 1;\n"
"if( t3 > t2 ) t2 = t3, b = 3;\n"
"k = t0 > t2 ? a : b;\n"
"val |= k << 2;\n"
"t0 = GET_VALUE(8); t1 = GET_VALUE(9);\n"
"t2 = GET_VALUE(10); t3 = GET_VALUE(11);\n"
"a = 0, b = 2;\n"
"if( t1 > t0 ) t0 = t1, a = 1;\n"
"if( t3 > t2 ) t2 = t3, b = 3;\n"
"k = t0 > t2 ? a : b;\n"
"val |= k << 4;\n"
"t0 = GET_VALUE(12); t1 = GET_VALUE(13);\n"
"t2 = GET_VALUE(14); t3 = GET_VALUE(15);\n"
"a = 0, b = 2;\n"
"if( t1 > t0 ) t0 = t1, a = 1;\n"
"if( t3 > t2 ) t2 = t3, b = 3;\n"
"k = t0 > t2 ? a : b;\n"
"val |= k << 6;\n"
"pattern += 16*2;\n"
"#else\n"
"#error \"unknown/undefined WTA_K value; should be 2, 3 or 4\"\n"
"#endif\n"
"desc[i] = (uchar)val;\n"
"}\n"
"}\n"
"}\n"
"#endif\n"
, "a7c2cfaeda19907b637211b1cc91d253", NULL};
}}}
#endif