dnn.hpp 81.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_DNN_DNN_HPP
#define OPENCV_DNN_DNN_HPP

#include <vector>
#include <opencv2/core.hpp>
#include "opencv2/core/async.hpp"

#include "../dnn/version.hpp"

#include <opencv2/dnn/dict.hpp>

namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{

    typedef std::vector<int> MatShape;

    /**
     * @brief Enum of computation backends supported by layers.
     * @see Net::setPreferableBackend
     */
    enum Backend
    {
        //! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if
        //! OpenCV is built with Intel's Inference Engine library or
        //! DNN_BACKEND_OPENCV otherwise.
        DNN_BACKEND_DEFAULT = 0,
        DNN_BACKEND_HALIDE,
        DNN_BACKEND_INFERENCE_ENGINE,            //!< Intel's Inference Engine computational backend
                                                 //!< @sa setInferenceEngineBackendType
        DNN_BACKEND_OPENCV,
        DNN_BACKEND_VKCOM,
        DNN_BACKEND_CUDA,
#ifdef __OPENCV_BUILD
        DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000,     // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
        DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019,      // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
#endif
    };

    /**
     * @brief Enum of target devices for computations.
     * @see Net::setPreferableTarget
     */
    enum Target
    {
        DNN_TARGET_CPU = 0,
        DNN_TARGET_OPENCL,
        DNN_TARGET_OPENCL_FP16,
        DNN_TARGET_MYRIAD,
        DNN_TARGET_VULKAN,
        DNN_TARGET_FPGA,  //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
        DNN_TARGET_CUDA,
        DNN_TARGET_CUDA_FP16,
        DNN_TARGET_HDDL
    };

    CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
    CV_EXPORTS_W std::vector<Target> getAvailableTargets(dnn::Backend be);

    /**
     * @brief Enables detailed logging of the DNN model loading with CV DNN API.
     * @param[in] isDiagnosticsMode Indicates whether diagnostic mode should be set.
     *
     * Diagnostic mode provides detailed logging of the model loading stage to explore
     * potential problems (ex.: not implemented layer type).
     *
     * @note In diagnostic mode series of assertions will be skipped, it can lead to the
     * expected application crash.
     */
    CV_EXPORTS void enableModelDiagnostics(bool isDiagnosticsMode);

    /** @brief This class provides all data needed to initialize layer.
     *
     * It includes dictionary with scalar params (which can be read by using Dict interface),
     * blob params #blobs and optional meta information: #name and #type of layer instance.
    */
    class CV_EXPORTS LayerParams : public Dict
    {
    public:
        //TODO: Add ability to name blob params
        std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.

        String name; //!< Name of the layer instance (optional, can be used internal purposes).
        String type; //!< Type name which was used for creating layer by layer factory (optional).
    };

   /**
    * @brief Derivatives of this class encapsulates functions of certain backends.
    */
    class BackendNode
    {
    public:
        BackendNode(int backendId);

        virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.

        int backendId; //!< Backend identifier.
    };

    /**
     * @brief Derivatives of this class wraps cv::Mat for different backends and targets.
     */
    class BackendWrapper
    {
    public:
        BackendWrapper(int backendId, int targetId);

        /**
         * @brief Wrap cv::Mat for specific backend and target.
         * @param[in] targetId Target identifier.
         * @param[in] m cv::Mat for wrapping.
         *
         * Make CPU->GPU data transfer if it's require for the target.
         */
        BackendWrapper(int targetId, const cv::Mat& m);

        /**
         * @brief Make wrapper for reused cv::Mat.
         * @param[in] base Wrapper of cv::Mat that will be reused.
         * @param[in] shape Specific shape.
         *
         * Initialize wrapper from another one. It'll wrap the same host CPU
         * memory and mustn't allocate memory on device(i.e. GPU). It might
         * has different shape. Use in case of CPU memory reusing for reuse
         * associated memory on device too.
         */
        BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);

        virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.

        /**
         * @brief Transfer data to CPU host memory.
         */
        virtual void copyToHost() = 0;

        /**
         * @brief Indicate that an actual data is on CPU.
         */
        virtual void setHostDirty() = 0;

        int backendId;  //!< Backend identifier.
        int targetId;   //!< Target identifier.
    };

    class CV_EXPORTS ActivationLayer;

    /** @brief This interface class allows to build new Layers - are building blocks of networks.
     *
     * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
     * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
     */
    class CV_EXPORTS_W Layer : public Algorithm
    {
    public:

        //! List of learned parameters must be stored here to allow read them by using Net::getParam().
        CV_PROP_RW std::vector<Mat> blobs;

        /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
         *  @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
         *  @param[in]  input  vector of already allocated input blobs
         *  @param[out] output vector of already allocated output blobs
         *
         * If this method is called after network has allocated all memory for input and output blobs
         * and before inferencing.
         */
        CV_DEPRECATED_EXTERNAL
        virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);

        /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
         *  @param[in]  inputs  vector of already allocated input blobs
         *  @param[out] outputs vector of already allocated output blobs
         *
         * If this method is called after network has allocated all memory for input and output blobs
         * and before inferencing.
         */
        CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs);

        /** @brief Given the @p input blobs, computes the output @p blobs.
         *  @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
         *  @param[in]  input  the input blobs.
         *  @param[out] output allocated output blobs, which will store results of the computation.
         *  @param[out] internals allocated internal blobs
         */
        CV_DEPRECATED_EXTERNAL
        virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals);

        /** @brief Given the @p input blobs, computes the output @p blobs.
         *  @param[in]  inputs  the input blobs.
         *  @param[out] outputs allocated output blobs, which will store results of the computation.
         *  @param[out] internals allocated internal blobs
         */
        virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);

        /** @brief Tries to quantize the given layer and compute the quantization parameters required for fixed point implementation.
         *  @param[in] scales input and output scales.
         *  @param[in] zeropoints input and output zeropoints.
         *  @param[out] params Quantized parameters required for fixed point implementation of that layer.
         *  @returns True if layer can be quantized.
         */
        virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
                                 const std::vector<std::vector<int> > &zeropoints, LayerParams& params);

        /** @brief Given the @p input blobs, computes the output @p blobs.
         *  @param[in]  inputs  the input blobs.
         *  @param[out] outputs allocated output blobs, which will store results of the computation.
         *  @param[out] internals allocated internal blobs
         */
        void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);

        /** @brief
         * @overload
         * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
         */
        CV_DEPRECATED_EXTERNAL
        void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);

        /** @brief
         * @overload
         * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
         */
        CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs);

        /** @brief Allocates layer and computes output.
         *  @deprecated This method will be removed in the future release.
         */
        CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
                                       CV_IN_OUT std::vector<Mat> &internals);

        /** @brief Returns index of input blob into the input array.
         *  @param inputName label of input blob
         *
         * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
         * This method maps label of input blob to its index into input vector.
         */
        virtual int inputNameToIndex(String inputName);
        /** @brief Returns index of output blob in output array.
         *  @see inputNameToIndex()
         */
        CV_WRAP virtual int outputNameToIndex(const String& outputName);

        /**
         * @brief Ask layer if it support specific backend for doing computations.
         * @param[in] backendId computation backend identifier.
         * @see Backend
         */
        virtual bool supportBackend(int backendId);

        /**
         * @brief Returns Halide backend node.
         * @param[in] inputs Input Halide buffers.
         * @see BackendNode, BackendWrapper
         *
         * Input buffers should be exactly the same that will be used in forward invocations.
         * Despite we can use Halide::ImageParam based on input shape only,
         * it helps prevent some memory management issues (if something wrong,
         * Halide tests will be failed).
         */
        virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);

        virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs);

        virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);

        virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs);

        /**
         * @brief Returns a CUDA backend node
         *
         * @param   context  void pointer to CSLContext object
         * @param   inputs   layer inputs
         * @param   outputs  layer outputs
         */
        virtual Ptr<BackendNode> initCUDA(
            void *context,
            const std::vector<Ptr<BackendWrapper>>& inputs,
            const std::vector<Ptr<BackendWrapper>>& outputs
        );

       /**
        * @brief Automatic Halide scheduling based on layer hyper-parameters.
        * @param[in] node Backend node with Halide functions.
        * @param[in] inputs Blobs that will be used in forward invocations.
        * @param[in] outputs Blobs that will be used in forward invocations.
        * @param[in] targetId Target identifier
        * @see BackendNode, Target
        *
        * Layer don't use own Halide::Func members because we can have applied
        * layers fusing. In this way the fused function should be scheduled.
        */
        virtual void applyHalideScheduler(Ptr<BackendNode>& node,
                                          const std::vector<Mat*> &inputs,
                                          const std::vector<Mat> &outputs,
                                          int targetId) const;

        /**
         * @brief Implement layers fusing.
         * @param[in] node Backend node of bottom layer.
         * @see BackendNode
         *
         * Actual for graph-based backends. If layer attached successfully,
         * returns non-empty cv::Ptr to node of the same backend.
         * Fuse only over the last function.
         */
        virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);

        /**
         * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
         * @param[in] layer The subsequent activation layer.
         *
         * Returns true if the activation layer has been attached successfully.
         */
        virtual bool setActivation(const Ptr<ActivationLayer>& layer);

        /**
         * @brief Try to fuse current layer with a next one
         * @param[in] top Next layer to be fused.
         * @returns True if fusion was performed.
         */
        virtual bool tryFuse(Ptr<Layer>& top);

        /**
         * @brief Returns parameters of layers with channel-wise multiplication and addition.
         * @param[out] scale Channel-wise multipliers. Total number of values should
         *                   be equal to number of channels.
         * @param[out] shift Channel-wise offsets. Total number of values should
         *                   be equal to number of channels.
         *
         * Some layers can fuse their transformations with further layers.
         * In example, convolution + batch normalization. This way base layer
         * use weights from layer after it. Fused layer is skipped.
         * By default, @p scale and @p shift are empty that means layer has no
         * element-wise multiplications or additions.
         */
        virtual void getScaleShift(Mat& scale, Mat& shift) const;

        /**
         * @brief Returns scale and zeropoint of layers
         * @param[out] scale Output scale
         * @param[out] zeropoint Output zeropoint
         *
         * By default, @p scale is 1 and @p zeropoint is 0.
         */
        virtual void getScaleZeropoint(float& scale, int& zeropoint) const;


        /**
         * @brief "Deattaches" all the layers, attached to particular layer.
         */
        virtual void unsetAttached();

        virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
                                     const int requiredOutputs,
                                     std::vector<MatShape> &outputs,
                                     std::vector<MatShape> &internals) const;

        virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
                               const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}

        virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs);

        CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
        CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
        CV_PROP int preferableTarget; //!< prefer target for layer forwarding

        Layer();
        explicit Layer(const LayerParams &params);      //!< Initializes only #name, #type and #blobs fields.
        void setParamsFrom(const LayerParams &params);  //!< Initializes only #name, #type and #blobs fields.
        virtual ~Layer();
    };

    /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
     *
     * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
     * and edges specify relationships between layers inputs and outputs.
     *
     * Each network layer has unique integer id and unique string name inside its network.
     * LayerId can store either layer name or layer id.
     *
     * This class supports reference counting of its instances, i. e. copies point to the same instance.
     */
    class CV_EXPORTS_W_SIMPLE Net
    {
    public:

        CV_WRAP Net();  //!< Default constructor.
        CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.

        /** @brief Create a network from Intel's Model Optimizer intermediate representation (IR).
         *  @param[in] xml XML configuration file with network's topology.
         *  @param[in] bin Binary file with trained weights.
         *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
         *  backend.
         */
        CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);

        /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
         *  @param[in] bufferModelConfig buffer with model's configuration.
         *  @param[in] bufferWeights buffer with model's trained weights.
         *  @returns Net object.
         */
        CV_WRAP static
        Net readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);

        /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
         *  @param[in] bufferModelConfigPtr buffer pointer of model's configuration.
         *  @param[in] bufferModelConfigSize buffer size of model's configuration.
         *  @param[in] bufferWeightsPtr buffer pointer of model's trained weights.
         *  @param[in] bufferWeightsSize buffer size of model's trained weights.
         *  @returns Net object.
         */
        static
        Net readFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
                                            const uchar* bufferWeightsPtr, size_t bufferWeightsSize);

        /** Returns true if there are no layers in the network. */
        CV_WRAP bool empty() const;

        /** @brief Dump net to String
         *  @returns String with structure, hyperparameters, backend, target and fusion
         *  Call method after setInput(). To see correct backend, target and fusion run after forward().
         */
        CV_WRAP String dump();
        /** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file
         *  @param path   path to output file with .dot extension
         *  @see dump()
         */
        CV_WRAP void dumpToFile(const String& path);
        /** @brief Adds new layer to the net.
         *  @param name   unique name of the adding layer.
         *  @param type   typename of the adding layer (type must be registered in LayerRegister).
         *  @param dtype  datatype of output blobs.
         *  @param params parameters which will be used to initialize the creating layer.
         *  @returns unique identifier of created layer, or -1 if a failure will happen.
         */
        int addLayer(const String &name, const String &type, const int &dtype, LayerParams &params);

        /** @overload Datatype of output blobs set to default CV_32F */
        int addLayer(const String &name, const String &type, LayerParams &params);

        /** @brief Adds new layer and connects its first input to the first output of previously added layer.
         *  @see addLayer()
         */
        int addLayerToPrev(const String &name, const String &type, const int &dtype, LayerParams &params);

        /** @overload */
        int addLayerToPrev(const String &name, const String &type, LayerParams &params);

        /** @brief Converts string name of the layer to the integer identifier.
         *  @returns id of the layer, or -1 if the layer wasn't found.
         */
        CV_WRAP int getLayerId(const String &layer);

        CV_WRAP std::vector<String> getLayerNames() const;

        /** @brief Container for strings and integers. */
        typedef DictValue LayerId;

        /** @brief Returns pointer to layer with specified id or name which the network use. */
        CV_WRAP Ptr<Layer> getLayer(LayerId layerId);

        /** @brief Returns pointers to input layers of specific layer. */
        std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP

        /** @brief Connects output of the first layer to input of the second layer.
         *  @param outPin descriptor of the first layer output.
         *  @param inpPin descriptor of the second layer input.
         *
         * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
         * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
         *   If this part is empty then the network input pseudo layer will be used;
         * - the second optional part of the template <DFN>input_number</DFN>
         *   is either number of the layer input, either label one.
         *   If this part is omitted then the first layer input will be used.
         *
         *  @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
         */
        CV_WRAP void connect(String outPin, String inpPin);

        /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
         *  @param outLayerId identifier of the first layer
         *  @param outNum number of the first layer output
         *  @param inpLayerId identifier of the second layer
         *  @param inpNum number of the second layer input
         */
        void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);

        /** @brief Sets outputs names of the network input pseudo layer.
         *
         * Each net always has special own the network input pseudo layer with id=0.
         * This layer stores the user blobs only and don't make any computations.
         * In fact, this layer provides the only way to pass user data into the network.
         * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
         */
        CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);

        /** @brief Specify shape of network input.
         */
        CV_WRAP void setInputShape(const String &inputName, const MatShape& shape);

        /** @brief Runs forward pass to compute output of layer with name @p outputName.
         *  @param outputName name for layer which output is needed to get
         *  @return blob for first output of specified layer.
         *  @details By default runs forward pass for the whole network.
         */
        CV_WRAP Mat forward(const String& outputName = String());

        /** @brief Runs forward pass to compute output of layer with name @p outputName.
         *  @param outputName name for layer which output is needed to get
         *  @details By default runs forward pass for the whole network.
         *
         *  This is an asynchronous version of forward(const String&).
         *  dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
         */
        CV_WRAP AsyncArray forwardAsync(const String& outputName = String());

        /** @brief Runs forward pass to compute output of layer with name @p outputName.
         *  @param outputBlobs contains all output blobs for specified layer.
         *  @param outputName name for layer which output is needed to get
         *  @details If @p outputName is empty, runs forward pass for the whole network.
         */
        CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());

        /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
         *  @param outputBlobs contains blobs for first outputs of specified layers.
         *  @param outBlobNames names for layers which outputs are needed to get
         */
        CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
                             const std::vector<String>& outBlobNames);

        /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
         *  @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
         *  @param outBlobNames names for layers which outputs are needed to get
         */
        CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
                                                    const std::vector<String>& outBlobNames);

        /** @brief Returns a quantized Net from a floating-point Net.
         *  @param calibData Calibration data to compute the quantization parameters.
         *  @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
         *  @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S.
         */
        CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype);

        /** @brief Returns input scale and zeropoint for a quantized Net.
         *  @param scales output parameter for returning input scales.
         *  @param zeropoints output parameter for returning input zeropoints.
         */
        CV_WRAP void getInputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;

        /** @brief Returns output scale and zeropoint for a quantized Net.
         *  @param scales output parameter for returning output scales.
         *  @param zeropoints output parameter for returning output zeropoints.
         */
        CV_WRAP void getOutputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;

        /**
         * @brief Compile Halide layers.
         * @param[in] scheduler Path to YAML file with scheduling directives.
         * @see setPreferableBackend
         *
         * Schedule layers that support Halide backend. Then compile them for
         * specific target. For layers that not represented in scheduling file
         * or if no manual scheduling used at all, automatic scheduling will be applied.
         */
        CV_WRAP void setHalideScheduler(const String& scheduler);

        /**
         * @brief Ask network to use specific computation backend where it supported.
         * @param[in] backendId backend identifier.
         * @see Backend
         *
         * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT
         * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
         */
        CV_WRAP void setPreferableBackend(int backendId);

        /**
         * @brief Ask network to make computations on specific target device.
         * @param[in] targetId target identifier.
         * @see Target
         *
         * List of supported combinations backend / target:
         * |                        | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE |  DNN_BACKEND_CUDA |
         * |------------------------|--------------------|------------------------------|--------------------|-------------------|
         * | DNN_TARGET_CPU         |                  + |                            + |                  + |                   |
         * | DNN_TARGET_OPENCL      |                  + |                            + |                  + |                   |
         * | DNN_TARGET_OPENCL_FP16 |                  + |                            + |                    |                   |
         * | DNN_TARGET_MYRIAD      |                    |                            + |                    |                   |
         * | DNN_TARGET_FPGA        |                    |                            + |                    |                   |
         * | DNN_TARGET_CUDA        |                    |                              |                    |                 + |
         * | DNN_TARGET_CUDA_FP16   |                    |                              |                    |                 + |
         * | DNN_TARGET_HDDL        |                    |                            + |                    |                   |
         */
        CV_WRAP void setPreferableTarget(int targetId);

        /** @brief Sets the new input value for the network
         *  @param blob        A new blob. Should have CV_32F or CV_8U depth.
         *  @param name        A name of input layer.
         *  @param scalefactor An optional normalization scale.
         *  @param mean        An optional mean subtraction values.
         *  @see connect(String, String) to know format of the descriptor.
         *
         *  If scale or mean values are specified, a final input blob is computed
         *  as:
         * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
         */
        CV_WRAP void setInput(InputArray blob, const String& name = "",
                              double scalefactor = 1.0, const Scalar& mean = Scalar());

        /** @brief Sets the new value for the learned param of the layer.
         *  @param layer name or id of the layer.
         *  @param numParam index of the layer parameter in the Layer::blobs array.
         *  @param blob the new value.
         *  @see Layer::blobs
         *  @note If shape of the new blob differs from the previous shape,
         *  then the following forward pass may fail.
        */
        CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);

        /** @brief Returns parameter blob of the layer.
         *  @param layer name or id of the layer.
         *  @param numParam index of the layer parameter in the Layer::blobs array.
         *  @see Layer::blobs
         */
        CV_WRAP Mat getParam(LayerId layer, int numParam = 0);

        /** @brief Returns indexes of layers with unconnected outputs.
         */
        CV_WRAP std::vector<int> getUnconnectedOutLayers() const;

        /** @brief Returns names of layers with unconnected outputs.
         */
        CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;

        /** @brief Returns input and output shapes for all layers in loaded model;
         *  preliminary inferencing isn't necessary.
         *  @param netInputShapes shapes for all input blobs in net input layer.
         *  @param layersIds output parameter for layer IDs.
         *  @param inLayersShapes output parameter for input layers shapes;
         * order is the same as in layersIds
         *  @param outLayersShapes output parameter for output layers shapes;
         * order is the same as in layersIds
         */
        CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
                                     CV_OUT std::vector<int>& layersIds,
                                     CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
                                     CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;

        /** @overload */
        CV_WRAP void getLayersShapes(const MatShape& netInputShape,
                                     CV_OUT std::vector<int>& layersIds,
                                     CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
                                     CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;

        /** @brief Returns input and output shapes for layer with specified
         * id in loaded model; preliminary inferencing isn't necessary.
         *  @param netInputShape shape input blob in net input layer.
         *  @param layerId id for layer.
         *  @param inLayerShapes output parameter for input layers shapes;
         * order is the same as in layersIds
         *  @param outLayerShapes output parameter for output layers shapes;
         * order is the same as in layersIds
         */
        void getLayerShapes(const MatShape& netInputShape,
                                    const int layerId,
                                    CV_OUT std::vector<MatShape>& inLayerShapes,
                                    CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP

        /** @overload */
        void getLayerShapes(const std::vector<MatShape>& netInputShapes,
                                    const int layerId,
                                    CV_OUT std::vector<MatShape>& inLayerShapes,
                                    CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP

        /** @brief Computes FLOP for whole loaded model with specified input shapes.
         * @param netInputShapes vector of shapes for all net inputs.
         * @returns computed FLOP.
         */
        CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
        /** @overload */
        CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
        /** @overload */
        CV_WRAP int64 getFLOPS(const int layerId,
                               const std::vector<MatShape>& netInputShapes) const;
        /** @overload */
        CV_WRAP int64 getFLOPS(const int layerId,
                               const MatShape& netInputShape) const;

        /** @brief Returns list of types for layer used in model.
         * @param layersTypes output parameter for returning types.
         */
        CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;

        /** @brief Returns count of layers of specified type.
         * @param layerType type.
         * @returns count of layers
         */
        CV_WRAP int getLayersCount(const String& layerType) const;

        /** @brief Computes bytes number which are required to store
         * all weights and intermediate blobs for model.
         * @param netInputShapes vector of shapes for all net inputs.
         * @param weights output parameter to store resulting bytes for weights.
         * @param blobs output parameter to store resulting bytes for intermediate blobs.
         */
        void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
        /** @overload */
        CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
        /** @overload */
        CV_WRAP void getMemoryConsumption(const int layerId,
                                          const std::vector<MatShape>& netInputShapes,
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
        /** @overload */
        CV_WRAP void getMemoryConsumption(const int layerId,
                                          const MatShape& netInputShape,
                                          CV_OUT size_t& weights, CV_OUT size_t& blobs) const;

        /** @brief Computes bytes number which are required to store
         * all weights and intermediate blobs for each layer.
         * @param netInputShapes vector of shapes for all net inputs.
         * @param layerIds output vector to save layer IDs.
         * @param weights output parameter to store resulting bytes for weights.
         * @param blobs output parameter to store resulting bytes for intermediate blobs.
         */
        void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
                                          CV_OUT std::vector<int>& layerIds,
                                          CV_OUT std::vector<size_t>& weights,
                                          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
        /** @overload */
        void getMemoryConsumption(const MatShape& netInputShape,
                                          CV_OUT std::vector<int>& layerIds,
                                          CV_OUT std::vector<size_t>& weights,
                                          CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP

        /** @brief Enables or disables layer fusion in the network.
         * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
         */
        CV_WRAP void enableFusion(bool fusion);

        /** @brief Returns overall time for inference and timings (in ticks) for layers.
         *
         * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
         * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
         *
         * @param[out] timings vector for tick timings for all layers.
         * @return overall ticks for model inference.
         */
        CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);

    private:
        struct Impl;
        Ptr<Impl> impl;
    };

    /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
    *  @param cfgFile      path to the .cfg file with text description of the network architecture.
    *  @param darknetModel path to the .weights file with learned network.
    *  @returns Network object that ready to do forward, throw an exception in failure cases.
    *  @returns Net object.
    */
    CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());

    /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
     *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
     *  @param bufferModel A buffer contains a content of .weights file with learned network.
     *  @returns Net object.
     */
    CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
                                        const std::vector<uchar>& bufferModel = std::vector<uchar>());

    /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
     *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
     *  @param lenCfg      Number of bytes to read from bufferCfg
     *  @param bufferModel A buffer contains a content of .weights file with learned network.
     *  @param lenModel    Number of bytes to read from bufferModel
     *  @returns Net object.
     */
    CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
                                      const char *bufferModel = NULL, size_t lenModel = 0);

    /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
      * @param prototxt   path to the .prototxt file with text description of the network architecture.
      * @param caffeModel path to the .caffemodel file with learned network.
      * @returns Net object.
      */
    CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());

    /** @brief Reads a network model stored in Caffe model in memory.
      * @param bufferProto buffer containing the content of the .prototxt file
      * @param bufferModel buffer containing the content of the .caffemodel file
      * @returns Net object.
      */
    CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
                                      const std::vector<uchar>& bufferModel = std::vector<uchar>());

    /** @brief Reads a network model stored in Caffe model in memory.
      * @details This is an overloaded member function, provided for convenience.
      * It differs from the above function only in what argument(s) it accepts.
      * @param bufferProto buffer containing the content of the .prototxt file
      * @param lenProto length of bufferProto
      * @param bufferModel buffer containing the content of the .caffemodel file
      * @param lenModel length of bufferModel
      * @returns Net object.
      */
    CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
                                    const char *bufferModel = NULL, size_t lenModel = 0);

    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
      * @param model  path to the .pb file with binary protobuf description of the network architecture
      * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
      *               Resulting Net object is built by text graph using weights from a binary one that
      *               let us make it more flexible.
      * @returns Net object.
      */
    CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());

    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
      * @param bufferModel buffer containing the content of the pb file
      * @param bufferConfig buffer containing the content of the pbtxt file
      * @returns Net object.
      */
    CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
                                           const std::vector<uchar>& bufferConfig = std::vector<uchar>());

    /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
      * @details This is an overloaded member function, provided for convenience.
      * It differs from the above function only in what argument(s) it accepts.
      * @param bufferModel buffer containing the content of the pb file
      * @param lenModel length of bufferModel
      * @param bufferConfig buffer containing the content of the pbtxt file
      * @param lenConfig length of bufferConfig
      */
    CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
                                         const char *bufferConfig = NULL, size_t lenConfig = 0);

    /**
     *  @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
     *  @param model    path to the file, dumped from Torch by using torch.save() function.
     *  @param isBinary specifies whether the network was serialized in ascii mode or binary.
     *  @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
     *  @returns Net object.
     *
     *  @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
     *  which has various bit-length on different systems.
     *
     * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
     * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
     *
     * List of supported layers (i.e. object instances derived from Torch nn.Module class):
     * - nn.Sequential
     * - nn.Parallel
     * - nn.Concat
     * - nn.Linear
     * - nn.SpatialConvolution
     * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
     * - nn.ReLU, nn.TanH, nn.Sigmoid
     * - nn.Reshape
     * - nn.SoftMax, nn.LogSoftMax
     *
     * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
     */
     CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true);

     /**
      * @brief Read deep learning network represented in one of the supported formats.
      * @param[in] model Binary file contains trained weights. The following file
      *                  extensions are expected for models from different frameworks:
      *                  * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
      *                  * `*.pb` (TensorFlow, https://www.tensorflow.org/)
      *                  * `*.t7` | `*.net` (Torch, http://torch.ch/)
      *                  * `*.weights` (Darknet, https://pjreddie.com/darknet/)
      *                  * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
      *                  * `*.onnx` (ONNX, https://onnx.ai/)
      * @param[in] config Text file contains network configuration. It could be a
      *                   file with the following extensions:
      *                  * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
      *                  * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
      *                  * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
      *                  * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
      * @param[in] framework Explicit framework name tag to determine a format.
      * @returns Net object.
      *
      * This function automatically detects an origin framework of trained model
      * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow,
      * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
      * arguments does not matter.
      */
     CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");

     /**
      * @brief Read deep learning network represented in one of the supported formats.
      * @details This is an overloaded member function, provided for convenience.
      *          It differs from the above function only in what argument(s) it accepts.
      * @param[in] framework    Name of origin framework.
      * @param[in] bufferModel  A buffer with a content of binary file with weights
      * @param[in] bufferConfig A buffer with a content of text file contains network configuration.
      * @returns Net object.
      */
     CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
                              const std::vector<uchar>& bufferConfig = std::vector<uchar>());

    /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
     *  @warning This function has the same limitations as readNetFromTorch().
     */
    CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);

    /** @brief Load a network from Intel's Model Optimizer intermediate representation.
     *  @param[in] xml XML configuration file with network's topology.
     *  @param[in] bin Binary file with trained weights.
     *  @returns Net object.
     *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
     *  backend.
     */
    CV_EXPORTS_W
    Net readNetFromModelOptimizer(const String &xml, const String &bin);

    /** @brief Load a network from Intel's Model Optimizer intermediate representation.
     *  @param[in] bufferModelConfig Buffer contains XML configuration with network's topology.
     *  @param[in] bufferWeights Buffer contains binary data with trained weights.
     *  @returns Net object.
     *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
     *  backend.
     */
    CV_EXPORTS_W
    Net readNetFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);

    /** @brief Load a network from Intel's Model Optimizer intermediate representation.
     *  @param[in] bufferModelConfigPtr Pointer to buffer which contains XML configuration with network's topology.
     *  @param[in] bufferModelConfigSize Binary size of XML configuration data.
     *  @param[in] bufferWeightsPtr Pointer to buffer which contains binary data with trained weights.
     *  @param[in] bufferWeightsSize Binary size of trained weights data.
     *  @returns Net object.
     *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
     *  backend.
     */
    CV_EXPORTS
    Net readNetFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
                                           const uchar* bufferWeightsPtr, size_t bufferWeightsSize);

    /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
     *  @param onnxFile path to the .onnx file with text description of the network architecture.
     *  @returns Network object that ready to do forward, throw an exception in failure cases.
     */
    CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);

    /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
     *         in-memory buffer.
     *  @param buffer memory address of the first byte of the buffer.
     *  @param sizeBuffer size of the buffer.
     *  @returns Network object that ready to do forward, throw an exception
     *        in failure cases.
     */
    CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer);

    /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
     *         in-memory buffer.
     *  @param buffer in-memory buffer that stores the ONNX model bytes.
     *  @returns Network object that ready to do forward, throw an exception
     *        in failure cases.
     */
    CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer);

    /** @brief Creates blob from .pb file.
     *  @param path to the .pb file with input tensor.
     *  @returns Mat.
     */
    CV_EXPORTS_W Mat readTensorFromONNX(const String& path);

    /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
     *  subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
     *  @param image input image (with 1-, 3- or 4-channels).
     *  @param size spatial size for output image
     *  @param mean scalar with mean values which are subtracted from channels. Values are intended
     *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
     *  @param scalefactor multiplier for @p image values.
     *  @param swapRB flag which indicates that swap first and last channels
     *  in 3-channel image is necessary.
     *  @param crop flag which indicates whether image will be cropped after resize or not
     *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
     *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
     *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
     *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
     *  @returns 4-dimensional Mat with NCHW dimensions order.
     */
    CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
                                   const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
                                   int ddepth=CV_32F);

    /** @brief Creates 4-dimensional blob from image.
     *  @details This is an overloaded member function, provided for convenience.
     *           It differs from the above function only in what argument(s) it accepts.
     */
    CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
                                  const Size& size = Size(), const Scalar& mean = Scalar(),
                                  bool swapRB=false, bool crop=false, int ddepth=CV_32F);


    /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
     *  crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
     *  swap Blue and Red channels.
     *  @param images input images (all with 1-, 3- or 4-channels).
     *  @param size spatial size for output image
     *  @param mean scalar with mean values which are subtracted from channels. Values are intended
     *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
     *  @param scalefactor multiplier for @p images values.
     *  @param swapRB flag which indicates that swap first and last channels
     *  in 3-channel image is necessary.
     *  @param crop flag which indicates whether image will be cropped after resize or not
     *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
     *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
     *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
     *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
     *  @returns 4-dimensional Mat with NCHW dimensions order.
     */
    CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
                                    Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
                                    int ddepth=CV_32F);

    /** @brief Creates 4-dimensional blob from series of images.
     *  @details This is an overloaded member function, provided for convenience.
     *           It differs from the above function only in what argument(s) it accepts.
     */
    CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
                                   double scalefactor=1.0, Size size = Size(),
                                   const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
                                   int ddepth=CV_32F);

    /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
     *  (std::vector<cv::Mat>).
     *  @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
     *  which you would like to extract the images.
     *  @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
     *  (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
     *  of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
     */
    CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);

    /** @brief Convert all weights of Caffe network to half precision floating point.
     * @param src Path to origin model from Caffe framework contains single
     *            precision floating point weights (usually has `.caffemodel` extension).
     * @param dst Path to destination model with updated weights.
     * @param layersTypes Set of layers types which parameters will be converted.
     *                    By default, converts only Convolutional and Fully-Connected layers'
     *                    weights.
     *
     * @note Shrinked model has no origin float32 weights so it can't be used
     *       in origin Caffe framework anymore. However the structure of data
     *       is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
     *       So the resulting model may be used there.
     */
    CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
                                       const std::vector<String>& layersTypes = std::vector<String>());

    /** @brief Create a text representation for a binary network stored in protocol buffer format.
     *  @param[in] model  A path to binary network.
     *  @param[in] output A path to output text file to be created.
     *
     *  @note To reduce output file size, trained weights are not included.
     */
    CV_EXPORTS_W void writeTextGraph(const String& model, const String& output);

    /** @brief Performs non maximum suppression given boxes and corresponding scores.

     * @param bboxes a set of bounding boxes to apply NMS.
     * @param scores a set of corresponding confidences.
     * @param score_threshold a threshold used to filter boxes by score.
     * @param nms_threshold a threshold used in non maximum suppression.
     * @param indices the kept indices of bboxes after NMS.
     * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
     * @param top_k if `>0`, keep at most @p top_k picked indices.
     */
    CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
                               const float score_threshold, const float nms_threshold,
                               CV_OUT std::vector<int>& indices,
                               const float eta = 1.f, const int top_k = 0);

    CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores,
                               const float score_threshold, const float nms_threshold,
                               CV_OUT std::vector<int>& indices,
                               const float eta = 1.f, const int top_k = 0);

    CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores,
                             const float score_threshold, const float nms_threshold,
                             CV_OUT std::vector<int>& indices,
                             const float eta = 1.f, const int top_k = 0);

    /**
     * @brief Enum of Soft NMS methods.
     * @see softNMSBoxes
     */
    enum class SoftNMSMethod
    {
        SOFTNMS_LINEAR = 1,
        SOFTNMS_GAUSSIAN = 2
    };

    /** @brief Performs soft non maximum suppression given boxes and corresponding scores.
     * Reference: https://arxiv.org/abs/1704.04503
     * @param bboxes a set of bounding boxes to apply Soft NMS.
     * @param scores a set of corresponding confidences.
     * @param updated_scores a set of corresponding updated confidences.
     * @param score_threshold a threshold used to filter boxes by score.
     * @param nms_threshold a threshold used in non maximum suppression.
     * @param indices the kept indices of bboxes after NMS.
     * @param top_k keep at most @p top_k picked indices.
     * @param sigma parameter of Gaussian weighting.
     * @param method Gaussian or linear.
     * @see SoftNMSMethod
     */
    CV_EXPORTS_W void softNMSBoxes(const std::vector<Rect>& bboxes,
                                   const std::vector<float>& scores,
                                   CV_OUT std::vector<float>& updated_scores,
                                   const float score_threshold,
                                   const float nms_threshold,
                                   CV_OUT std::vector<int>& indices,
                                   size_t top_k = 0,
                                   const float sigma = 0.5,
                                   SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN);


     /** @brief This class is presented high-level API for neural networks.
      *
      * Model allows to set params for preprocessing input image.
      * Model creates net from file with trained weights and config,
      * sets preprocessing input and runs forward pass.
      */
     class CV_EXPORTS_W_SIMPLE Model
     {
     public:
         CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
         Model();

         Model(const Model&) = default;
         Model(Model&&) = default;
         Model& operator=(const Model&) = default;
         Model& operator=(Model&&) = default;

         /**
          * @brief Create model from deep learning network represented in one of the supported formats.
          * An order of @p model and @p config arguments does not matter.
          * @param[in] model Binary file contains trained weights.
          * @param[in] config Text file contains network configuration.
          */
         CV_WRAP Model(const String& model, const String& config = "");

         /**
          * @brief Create model from deep learning network.
          * @param[in] network Net object.
          */
         CV_WRAP Model(const Net& network);

         /** @brief Set input size for frame.
          *  @param[in] size New input size.
          *  @note If shape of the new blob less than 0, then frame size not change.
         */
         CV_WRAP Model& setInputSize(const Size& size);

         /** @overload
         *  @param[in] width New input width.
         *  @param[in] height New input height.
         */
         CV_WRAP inline
         Model& setInputSize(int width, int height) { return setInputSize(Size(width, height)); }

         /** @brief Set mean value for frame.
          *  @param[in] mean Scalar with mean values which are subtracted from channels.
         */
         CV_WRAP Model& setInputMean(const Scalar& mean);

         /** @brief Set scalefactor value for frame.
          *  @param[in] scale Multiplier for frame values.
         */
         CV_WRAP Model& setInputScale(double scale);

         /** @brief Set flag crop for frame.
          *  @param[in] crop Flag which indicates whether image will be cropped after resize or not.
         */
         CV_WRAP Model& setInputCrop(bool crop);

         /** @brief Set flag swapRB for frame.
          *  @param[in] swapRB Flag which indicates that swap first and last channels.
         */
         CV_WRAP Model& setInputSwapRB(bool swapRB);

         /** @brief Set preprocessing parameters for frame.
         *  @param[in] size New input size.
         *  @param[in] mean Scalar with mean values which are subtracted from channels.
         *  @param[in] scale Multiplier for frame values.
         *  @param[in] swapRB Flag which indicates that swap first and last channels.
         *  @param[in] crop Flag which indicates whether image will be cropped after resize or not.
         *  blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
         */
         CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(),
                                     const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false);

         /** @brief Given the @p input frame, create input blob, run net and return the output @p blobs.
          *  @param[in]  frame  The input image.
          *  @param[out] outs Allocated output blobs, which will store results of the computation.
          */
         CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs) const;


         // ============================== Net proxy methods ==============================
         // Never expose methods with network implementation details, like:
         // - addLayer, addLayerToPrev, connect, setInputsNames, setInputShape, setParam, getParam
         // - getLayer*, getUnconnectedOutLayers, getUnconnectedOutLayersNames, getLayersShapes
         // - forward* methods, setInput

         /// @sa Net::setPreferableBackend
         CV_WRAP Model& setPreferableBackend(dnn::Backend backendId);
         /// @sa Net::setPreferableTarget
         CV_WRAP Model& setPreferableTarget(dnn::Target targetId);

         CV_DEPRECATED_EXTERNAL
         operator Net&() const { return getNetwork_(); }

     //protected: - internal/tests usage only
         Net& getNetwork_() const;
         inline Net& getNetwork_() { return const_cast<const Model*>(this)->getNetwork_(); }

         struct Impl;
         inline Impl* getImpl() const { return impl.get(); }
         inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); }
     protected:
         Ptr<Impl> impl;
     };

     /** @brief This class represents high-level API for classification models.
      *
      * ClassificationModel allows to set params for preprocessing input image.
      * ClassificationModel creates net from file with trained weights and config,
      * sets preprocessing input, runs forward pass and return top-1 prediction.
      */
     class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model
     {
     public:
         /**
          * @brief Create classification model from network represented in one of the supported formats.
          * An order of @p model and @p config arguments does not matter.
          * @param[in] model Binary file contains trained weights.
          * @param[in] config Text file contains network configuration.
          */
          CV_WRAP ClassificationModel(const String& model, const String& config = "");

         /**
          * @brief Create model from deep learning network.
          * @param[in] network Net object.
          */
         CV_WRAP ClassificationModel(const Net& network);

         /** @brief Given the @p input frame, create input blob, run net and return top-1 prediction.
          *  @param[in]  frame  The input image.
          */
         std::pair<int, float> classify(InputArray frame);

         /** @overload */
         CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf);
     };

     /** @brief This class represents high-level API for keypoints models
      *
      * KeypointsModel allows to set params for preprocessing input image.
      * KeypointsModel creates net from file with trained weights and config,
      * sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
      */
     class CV_EXPORTS_W_SIMPLE KeypointsModel: public Model
     {
     public:
         /**
          * @brief Create keypoints model from network represented in one of the supported formats.
          * An order of @p model and @p config arguments does not matter.
          * @param[in] model Binary file contains trained weights.
          * @param[in] config Text file contains network configuration.
          */
          CV_WRAP KeypointsModel(const String& model, const String& config = "");

         /**
          * @brief Create model from deep learning network.
          * @param[in] network Net object.
          */
         CV_WRAP KeypointsModel(const Net& network);

         /** @brief Given the @p input frame, create input blob, run net
          *  @param[in]  frame  The input image.
          *  @param thresh minimum confidence threshold to select a keypoint
          *  @returns a vector holding the x and y coordinates of each detected keypoint
          *
          */
         CV_WRAP std::vector<Point2f> estimate(InputArray frame, float thresh=0.5);
     };

     /** @brief This class represents high-level API for segmentation  models
      *
      * SegmentationModel allows to set params for preprocessing input image.
      * SegmentationModel creates net from file with trained weights and config,
      * sets preprocessing input, runs forward pass and returns the class prediction for each pixel.
      */
     class CV_EXPORTS_W_SIMPLE SegmentationModel: public Model
     {
     public:
         /**
          * @brief Create segmentation model from network represented in one of the supported formats.
          * An order of @p model and @p config arguments does not matter.
          * @param[in] model Binary file contains trained weights.
          * @param[in] config Text file contains network configuration.
          */
          CV_WRAP SegmentationModel(const String& model, const String& config = "");

         /**
          * @brief Create model from deep learning network.
          * @param[in] network Net object.
          */
         CV_WRAP SegmentationModel(const Net& network);

         /** @brief Given the @p input frame, create input blob, run net
          *  @param[in]  frame  The input image.
          *  @param[out] mask Allocated class prediction for each pixel
          */
         CV_WRAP void segment(InputArray frame, OutputArray mask);
     };

     /** @brief This class represents high-level API for object detection networks.
      *
      * DetectionModel allows to set params for preprocessing input image.
      * DetectionModel creates net from file with trained weights and config,
      * sets preprocessing input, runs forward pass and return result detections.
      * For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
      */
     class CV_EXPORTS_W_SIMPLE DetectionModel : public Model
     {
     public:
         /**
          * @brief Create detection model from network represented in one of the supported formats.
          * An order of @p model and @p config arguments does not matter.
          * @param[in] model Binary file contains trained weights.
          * @param[in] config Text file contains network configuration.
          */
         CV_WRAP DetectionModel(const String& model, const String& config = "");

         /**
          * @brief Create model from deep learning network.
          * @param[in] network Net object.
          */
         CV_WRAP DetectionModel(const Net& network);

         CV_DEPRECATED_EXTERNAL  // avoid using in C++ code (need to fix bindings first)
         DetectionModel();

         /**
          * @brief nmsAcrossClasses defaults to false,
          * such that when non max suppression is used during the detect() function, it will do so per-class.
          * This function allows you to toggle this behaviour.
          * @param[in] value The new value for nmsAcrossClasses
          */
         CV_WRAP DetectionModel& setNmsAcrossClasses(bool value);

         /**
          * @brief Getter for nmsAcrossClasses. This variable defaults to false,
          * such that when non max suppression is used during the detect() function, it will do so only per-class
          */
         CV_WRAP bool getNmsAcrossClasses();

         /** @brief Given the @p input frame, create input blob, run net and return result detections.
          *  @param[in]  frame  The input image.
          *  @param[out] classIds Class indexes in result detection.
          *  @param[out] confidences A set of corresponding confidences.
          *  @param[out] boxes A set of bounding boxes.
          *  @param[in] confThreshold A threshold used to filter boxes by confidences.
          *  @param[in] nmsThreshold A threshold used in non maximum suppression.
          */
         CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds,
                             CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
                             float confThreshold = 0.5f, float nmsThreshold = 0.0f);
     };


/** @brief This class represents high-level API for text recognition networks.
 *
 * TextRecognitionModel allows to set params for preprocessing input image.
 * TextRecognitionModel creates net from file with trained weights and config,
 * sets preprocessing input, runs forward pass and return recognition result.
 * For TextRecognitionModel, CRNN-CTC is supported.
 */
class CV_EXPORTS_W_SIMPLE TextRecognitionModel : public Model
{
public:
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
    TextRecognitionModel();

    /**
     * @brief Create Text Recognition model from deep learning network
     * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
     * @param[in] network Net object
     */
    CV_WRAP TextRecognitionModel(const Net& network);

    /**
     * @brief Create text recognition model from network represented in one of the supported formats
     * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
     * @param[in] model Binary file contains trained weights
     * @param[in] config Text file contains network configuration
     */
    CV_WRAP inline
    TextRecognitionModel(const std::string& model, const std::string& config = "")
        : TextRecognitionModel(readNet(model, config)) { /* nothing */ }

    /**
     * @brief Set the decoding method of translating the network output into string
     * @param[in] decodeType The decoding method of translating the network output into string, currently supported type:
     *    - `"CTC-greedy"` greedy decoding for the output of CTC-based methods
     *    - `"CTC-prefix-beam-search"` Prefix beam search decoding for the output of CTC-based methods
     */
    CV_WRAP
    TextRecognitionModel& setDecodeType(const std::string& decodeType);

    /**
     * @brief Get the decoding method
     * @return the decoding method
     */
    CV_WRAP
    const std::string& getDecodeType() const;

    /**
     * @brief Set the decoding method options for `"CTC-prefix-beam-search"` decode usage
     * @param[in] beamSize Beam size for search
     * @param[in] vocPruneSize Parameter to optimize big vocabulary search,
     * only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.
     */
    CV_WRAP
    TextRecognitionModel& setDecodeOptsCTCPrefixBeamSearch(int beamSize, int vocPruneSize = 0);

    /**
     * @brief Set the vocabulary for recognition.
     * @param[in] vocabulary the associated vocabulary of the network.
     */
    CV_WRAP
    TextRecognitionModel& setVocabulary(const std::vector<std::string>& vocabulary);

    /**
     * @brief Get the vocabulary for recognition.
     * @return vocabulary the associated vocabulary
     */
    CV_WRAP
    const std::vector<std::string>& getVocabulary() const;

    /**
     * @brief Given the @p input frame, create input blob, run net and return recognition result
     * @param[in] frame The input image
     * @return The text recognition result
     */
    CV_WRAP
    std::string recognize(InputArray frame) const;

    /**
     * @brief Given the @p input frame, create input blob, run net and return recognition result
     * @param[in] frame The input image
     * @param[in] roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs
     * @param[out] results A set of text recognition results.
     */
    CV_WRAP
    void recognize(InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector<std::string>& results) const;
};


/** @brief Base class for text detection networks
 */
class CV_EXPORTS_W_SIMPLE TextDetectionModel : public Model
{
protected:
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
    TextDetectionModel();

public:

    /** @brief Performs detection
     *
     * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
     *
     * Each result is quadrangle's 4 points in this order:
     * - bottom-left
     * - top-left
     * - top-right
     * - bottom-right
     *
     * Use cv::getPerspectiveTransform function to retrive image region without perspective transformations.
     *
     * @note If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
     *
     * @param[in] frame The input image
     * @param[out] detections array with detections' quadrangles (4 points per result)
     * @param[out] confidences array with detection confidences
     */
    CV_WRAP
    void detect(
            InputArray frame,
            CV_OUT std::vector< std::vector<Point> >& detections,
            CV_OUT std::vector<float>& confidences
    ) const;

    /** @overload */
    CV_WRAP
    void detect(
            InputArray frame,
            CV_OUT std::vector< std::vector<Point> >& detections
    ) const;

    /** @brief Performs detection
     *
     * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
     *
     * Each result is rotated rectangle.
     *
     * @note Result may be inaccurate in case of strong perspective transformations.
     *
     * @param[in] frame the input image
     * @param[out] detections array with detections' RotationRect results
     * @param[out] confidences array with detection confidences
     */
    CV_WRAP
    void detectTextRectangles(
            InputArray frame,
            CV_OUT std::vector<cv::RotatedRect>& detections,
            CV_OUT std::vector<float>& confidences
    ) const;

    /** @overload */
    CV_WRAP
    void detectTextRectangles(
            InputArray frame,
            CV_OUT std::vector<cv::RotatedRect>& detections
    ) const;
};

/** @brief This class represents high-level API for text detection DL networks compatible with EAST model.
 *
 * Configurable parameters:
 * - (float) confThreshold - used to filter boxes by confidences, default: 0.5f
 * - (float) nmsThreshold - used in non maximum suppression, default: 0.0f
 */
class CV_EXPORTS_W_SIMPLE TextDetectionModel_EAST : public TextDetectionModel
{
public:
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
    TextDetectionModel_EAST();

    /**
     * @brief Create text detection algorithm from deep learning network
     * @param[in] network Net object
     */
    CV_WRAP TextDetectionModel_EAST(const Net& network);

    /**
     * @brief Create text detection model from network represented in one of the supported formats.
     * An order of @p model and @p config arguments does not matter.
     * @param[in] model Binary file contains trained weights.
     * @param[in] config Text file contains network configuration.
     */
    CV_WRAP inline
    TextDetectionModel_EAST(const std::string& model, const std::string& config = "")
        : TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ }

    /**
     * @brief Set the detection confidence threshold
     * @param[in] confThreshold A threshold used to filter boxes by confidences
     */
    CV_WRAP
    TextDetectionModel_EAST& setConfidenceThreshold(float confThreshold);

    /**
     * @brief Get the detection confidence threshold
     */
    CV_WRAP
    float getConfidenceThreshold() const;

    /**
     * @brief Set the detection NMS filter threshold
     * @param[in] nmsThreshold A threshold used in non maximum suppression
     */
    CV_WRAP
    TextDetectionModel_EAST& setNMSThreshold(float nmsThreshold);

    /**
     * @brief Get the detection confidence threshold
     */
    CV_WRAP
    float getNMSThreshold() const;
};

/** @brief This class represents high-level API for text detection DL networks compatible with DB model.
 *
 * Related publications: @cite liao2020real
 * Paper: https://arxiv.org/abs/1911.08947
 * For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
 *
 * Configurable parameters:
 * - (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
 * - (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
 * - (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
 * - (int) maxCandidates - The max number of the output results.
 */
class CV_EXPORTS_W_SIMPLE TextDetectionModel_DB : public TextDetectionModel
{
public:
    CV_DEPRECATED_EXTERNAL  // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
    TextDetectionModel_DB();

    /**
     * @brief Create text detection algorithm from deep learning network.
     * @param[in] network Net object.
     */
    CV_WRAP TextDetectionModel_DB(const Net& network);

    /**
     * @brief Create text detection model from network represented in one of the supported formats.
     * An order of @p model and @p config arguments does not matter.
     * @param[in] model Binary file contains trained weights.
     * @param[in] config Text file contains network configuration.
     */
    CV_WRAP inline
    TextDetectionModel_DB(const std::string& model, const std::string& config = "")
        : TextDetectionModel_DB(readNet(model, config)) { /* nothing */ }

    CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold);
    CV_WRAP float getBinaryThreshold() const;

    CV_WRAP TextDetectionModel_DB& setPolygonThreshold(float polygonThreshold);
    CV_WRAP float getPolygonThreshold() const;

    CV_WRAP TextDetectionModel_DB& setUnclipRatio(double unclipRatio);
    CV_WRAP double getUnclipRatio() const;

    CV_WRAP TextDetectionModel_DB& setMaxCandidates(int maxCandidates);
    CV_WRAP int getMaxCandidates() const;
};

//! @}
CV__DNN_INLINE_NS_END
}
}

#include <opencv2/dnn/layer.hpp>
#include <opencv2/dnn/dnn.inl.hpp>

/// @deprecated Include this header directly from application. Automatic inclusion will be removed
#include <opencv2/dnn/utils/inference_engine.hpp>

#endif  /* OPENCV_DNN_DNN_HPP */