intelligent_scissors.cpp
7.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include <iostream>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace cv;
struct Pix
{
Point next_point;
double cost;
bool operator > (const Pix &b) const
{
return cost > b.cost;
}
};
struct Parameters
{
Mat img, img_pre_render, img_render;
Point end;
std::vector<std::vector<Point> > contours;
std::vector<Point> tmp_contour;
Mat zero_crossing, gradient_magnitude, Ix, Iy, hit_map_x, hit_map_y;
};
static float local_cost(const Point& p, const Point& q, const Mat& gradient_magnitude, const Mat& Iy, const Mat& Ix, const Mat& zero_crossing)
{
float fG = gradient_magnitude.at<float>(q.y, q.x);
float dp;
float dq;
const float WEIGHT_LAP_ZERO_CROSS = 0.43f;
const float WEIGHT_GRADIENT_MAGNITUDE = 0.14f;
const float WEIGHT_GRADIENT_DIRECTION = 0.43f;
bool isDiag = (p.x != q.x) && (p.y != q.y);
if ((Iy.at<float>(p) * (q.x - p.x) - Ix.at<float>(p) * (q.y - p.y)) >= 0)
{
dp = Iy.at<float>(p) * (q.x - p.x) - Ix.at<float>(p) * (q.y - p.y);
dq = Iy.at<float>(q) * (q.x - p.x) - Ix.at<float>(q) * (q.y - p.y);
}
else
{
dp = Iy.at<float>(p) * (p.x - q.x) + (-Ix.at<float>(p)) * (p.y - q.y);
dq = Iy.at<float>(q) * (p.x - q.x) + (-Ix.at<float>(q)) * (p.y - q.y);
}
if (isDiag)
{
dp /= sqrtf(2);
dq /= sqrtf(2);
}
else
{
fG /= sqrtf(2);
}
return WEIGHT_LAP_ZERO_CROSS * zero_crossing.at<uchar>(q) +
WEIGHT_GRADIENT_DIRECTION * (acosf(dp) + acosf(dq)) / static_cast<float>(CV_PI) +
WEIGHT_GRADIENT_MAGNITUDE * fG;
}
static void find_min_path(const Point& start, Parameters* param)
{
Pix begin;
Mat &img = param->img;
Mat cost_map(img.size(), CV_32F, Scalar(FLT_MAX));
Mat expand(img.size(), CV_8UC1, Scalar(0));
Mat processed(img.size(), CV_8UC1, Scalar(0));
Mat removed(img.size(), CV_8UC1, Scalar(0));
std::priority_queue < Pix, std::vector<Pix>, std::greater<Pix> > L;
cost_map.at<float>(start) = 0;
processed.at<uchar>(start) = 1;
begin.cost = 0;
begin.next_point = start;
L.push(begin);
while (!L.empty())
{
Pix P = L.top();
L.pop();
Point p = P.next_point;
processed.at<uchar>(p) = 0;
if (removed.at<uchar>(p) == 0)
{
expand.at<uchar>(p) = 1;
for (int i = -1; i <= 1; i++)
{
for(int j = -1; j <= 1; j++)
{
int tx = p.x + i;
int ty = p.y + j;
if (tx < 0 || tx >= img.cols || ty < 0 || ty >= img.rows)
continue;
if (expand.at<uchar>(ty, tx) == 0)
{
Point q = Point(tx, ty);
float cost = cost_map.at<float>(p) + local_cost(p, q, param->gradient_magnitude, param->Iy, param->Ix, param->zero_crossing);
if (processed.at<uchar>(q) == 1 && cost < cost_map.at<float>(q))
{
removed.at<uchar>(q) = 1;
}
if (processed.at<uchar>(q) == 0)
{
cost_map.at<float>(q) = cost;
param->hit_map_x.at<int>(q)= p.x;
param->hit_map_y.at<int>(q) = p.y;
processed.at<uchar>(q) = 1;
Pix val;
val.cost = cost_map.at<float>(q);
val.next_point = q;
L.push(val);
}
}
}
}
}
}
}
static void onMouse(int event, int x, int y, int , void* userdata)
{
Parameters* param = reinterpret_cast<Parameters*>(userdata);
Point &end = param->end;
std::vector<std::vector<Point> > &contours = param->contours;
std::vector<Point> &tmp_contour = param->tmp_contour;
Mat &img_render = param->img_render;
Mat &img_pre_render = param->img_pre_render;
if (event == EVENT_LBUTTONDOWN)
{
end = Point(x, y);
if (!contours.back().empty())
{
for (int i = static_cast<int>(tmp_contour.size()) - 1; i >= 0; i--)
{
contours.back().push_back(tmp_contour[i]);
}
tmp_contour.clear();
}
else
{
contours.back().push_back(end);
}
find_min_path(end, param);
img_render.copyTo(img_pre_render);
imshow("lasso", img_render);
}
else if (event == EVENT_RBUTTONDOWN)
{
img_pre_render.copyTo(img_render);
drawContours(img_pre_render, contours, static_cast<int>(contours.size()) - 1, Scalar(0,255,0), FILLED);
addWeighted(img_pre_render, 0.3, img_render, 0.7, 0, img_render);
contours.resize(contours.size() + 1);
imshow("lasso", img_render);
}
else if (event == EVENT_MOUSEMOVE && !contours.back().empty())
{
tmp_contour.clear();
img_pre_render.copyTo(img_render);
Point val_point = Point(x, y);
while (val_point != end)
{
tmp_contour.push_back(val_point);
Point cur = Point(param->hit_map_x.at<int>(val_point), param->hit_map_y.at<int>(val_point));
line(img_render, val_point, cur, Scalar(255, 0, 0), 2);
val_point = cur;
}
imshow("lasso", img_render);
}
}
const char* keys =
{
"{help h | |}"
"{@image | fruits.jpg| Path to image to process}"
};
int main( int argc, const char** argv )
{
Parameters param;
const int EDGE_THRESHOLD_LOW = 50;
const int EDGE_THRESHOLD_HIGH = 100;
CommandLineParser parser(argc, argv, keys);
parser.about("\nThis program demonstrates implementation of 'Intelligent Scissors' algorithm designed\n"
"by Eric N. Mortensen and William A. Barrett, and described in article\n"
"'Intelligent Scissors for Image Composition':\n"
"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf\n"
"To start drawing a new contour select a pixel, click LEFT mouse button.\n"
"To fix a path click LEFT mouse button again.\n"
"To finish drawing a contour click RIGHT mouse button.\n");
if (parser.has("help"))
{
parser.printMessage();
return 1;
}
std::vector<std::vector<Point> > c(1);
param.contours = c;
std::string filename = parser.get<std::string>(0);
Mat grayscale, img_canny;
param.img = imread(samples::findFile(filename));
param.hit_map_x.create(param.img.rows, param.img.cols, CV_32SC1);
param.hit_map_y.create(param.img.rows, param.img.cols, CV_32SC1);
cvtColor(param.img, grayscale, COLOR_BGR2GRAY);
Canny(grayscale, img_canny, EDGE_THRESHOLD_LOW, EDGE_THRESHOLD_HIGH);
threshold(img_canny, param.zero_crossing, 254, 1, THRESH_BINARY_INV);
Sobel(grayscale, param.Ix, CV_32FC1, 1, 0, 1);
Sobel(grayscale, param.Iy, CV_32FC1, 0, 1, 1);
param.Ix.convertTo(param.Ix, CV_32F, 1.0/255);
param.Iy.convertTo(param.Iy, CV_32F, 1.0/255);
// Compute gradients magnitude.
double max_val = 0.0;
magnitude(param.Iy, param.Ix, param.gradient_magnitude);
minMaxLoc(param.gradient_magnitude, 0, &max_val);
param.gradient_magnitude.convertTo(param.gradient_magnitude, CV_32F, -1/max_val, 1.0);
param.img.copyTo(param.img_pre_render);
param.img.copyTo(param.img_render);
namedWindow("lasso");
setMouseCallback("lasso", onMouse, ¶m);
imshow("lasso", param.img);
waitKey(0);
}