virtual_try_on.py 20.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
#!/usr/bin/env python3
'''
You can download the Geometric Matching Module model from https://www.dropbox.com/s/tyhc73xa051grjp/cp_vton_gmm.onnx?dl=0
You can download the Try-On Module model from https://www.dropbox.com/s/q2x97ve2h53j66k/cp_vton_tom.onnx?dl=0
You can download the cloth segmentation model from https://www.dropbox.com/s/qag9vzambhhkvxr/lip_jppnet_384.pb?dl=0
You can find the OpenPose proto in opencv_extra/testdata/dnn/openpose_pose_coco.prototxt
and get .caffemodel using opencv_extra/testdata/dnn/download_models.py
'''

import argparse
import os.path
import numpy as np
import cv2 as cv

from numpy import linalg
from common import findFile
from human_parsing import parse_human

backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
            cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
           cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)

parser = argparse.ArgumentParser(description='Use this script to run virtial try-on using CP-VTON',
                                 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_image', '-i', required=True, help='Path to image with person.')
parser.add_argument('--input_cloth', '-c', required=True, help='Path to target cloth image')
parser.add_argument('--gmm_model', '-gmm', default='cp_vton_gmm.onnx', help='Path to Geometric Matching Module .onnx model.')
parser.add_argument('--tom_model', '-tom', default='cp_vton_tom.onnx', help='Path to Try-On Module .onnx model.')
parser.add_argument('--segmentation_model', default='lip_jppnet_384.pb', help='Path to cloth segmentation .pb model.')
parser.add_argument('--openpose_proto', default='openpose_pose_coco.prototxt', help='Path to OpenPose .prototxt model was trained on COCO dataset.')
parser.add_argument('--openpose_model', default='openpose_pose_coco.caffemodel', help='Path to OpenPose .caffemodel model was trained on COCO dataset.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
                    help="Choose one of computation backends: "
                            "%d: automatically (by default), "
                            "%d: Halide language (http://halide-lang.org/), "
                            "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
                            "%d: OpenCV implementation, "
                            "%d: VKCOM, "
                            "%d: CUDA" % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
                    help='Choose one of target computation devices: '
                            '%d: CPU target (by default), '
                            '%d: OpenCL, '
                            '%d: OpenCL fp16 (half-float precision), '
                            '%d: NCS2 VPU, '
                            '%d: HDDL VPU, '
                            '%d: Vulkan, '
                            '%d: CUDA, '
                            '%d: CUDA fp16 (half-float preprocess)'% targets)
args, _ = parser.parse_known_args()


def get_pose_map(image, proto_path, model_path, backend, target, height=256, width=192):
    radius = 5
    inp = cv.dnn.blobFromImage(image, 1.0 / 255, (width, height))

    net = cv.dnn.readNet(proto_path, model_path)
    net.setPreferableBackend(backend)
    net.setPreferableTarget(target)
    net.setInput(inp)
    out = net.forward()

    threshold = 0.1
    _, out_c, out_h, out_w = out.shape
    pose_map = np.zeros((height, width, out_c - 1))
    # last label: Background
    for i in range(0, out.shape[1] - 1):
        heatMap = out[0, i, :, :]
        keypoint = np.full((height, width), -1)
        _, conf, _, point = cv.minMaxLoc(heatMap)
        x = width * point[0] // out_w
        y = height * point[1] // out_h
        if conf > threshold and x > 0 and y > 0:
            keypoint[y - radius:y + radius, x - radius:x + radius] = 1
        pose_map[:, :, i] = keypoint

    pose_map = pose_map.transpose(2, 0, 1)
    return pose_map


class BilinearFilter(object):
    """
    PIL bilinear resize implementation
    image = image.resize((image_width // 16, image_height // 16), Image.BILINEAR)
    """
    def _precompute_coeffs(self, inSize, outSize):
        filterscale = max(1.0, inSize / outSize)
        ksize = int(np.ceil(filterscale)) * 2 + 1

        kk = np.zeros(shape=(outSize * ksize, ), dtype=np.float32)
        bounds = np.empty(shape=(outSize * 2, ), dtype=np.int32)

        centers = (np.arange(outSize) + 0.5) * filterscale + 0.5
        bounds[::2] = np.where(centers - filterscale < 0, 0, centers - filterscale)
        bounds[1::2] = np.where(centers + filterscale > inSize, inSize, centers + filterscale) - bounds[::2]
        xmins = bounds[::2] - centers + 1

        points = np.array([np.arange(row) + xmins[i] for i, row in enumerate(bounds[1::2])]) / filterscale
        for xx in range(0, outSize):
            point = points[xx]
            bilinear = np.where(point < 1.0, 1.0 - abs(point), 0.0)
            ww = np.sum(bilinear)
            kk[xx * ksize : xx * ksize + bilinear.size] = np.where(ww == 0.0, bilinear, bilinear / ww)
        return bounds, kk, ksize

    def _resample_horizontal(self, out, img, ksize, bounds, kk):
        for yy in range(0, out.shape[0]):
            for xx in range(0, out.shape[1]):
                xmin = bounds[xx * 2 + 0]
                xmax = bounds[xx * 2 + 1]
                k = kk[xx * ksize : xx * ksize + xmax]
                out[yy, xx] = np.round(np.sum(img[yy, xmin : xmin + xmax] * k))

    def _resample_vertical(self, out, img, ksize, bounds, kk):
        for yy in range(0, out.shape[0]):
            ymin = bounds[yy * 2 + 0]
            ymax = bounds[yy * 2 + 1]
            k = kk[yy * ksize: yy * ksize + ymax]
            out[yy] = np.round(np.sum(img[ymin : ymin + ymax, 0:out.shape[1]] * k[:, np.newaxis], axis=0))

    def imaging_resample(self, img, xsize, ysize):
        height, width = img.shape[0:2]
        bounds_horiz, kk_horiz, ksize_horiz = self._precompute_coeffs(width, xsize)
        bounds_vert, kk_vert, ksize_vert    = self._precompute_coeffs(height, ysize)

        out_hor = np.empty((img.shape[0], xsize), dtype=np.uint8)
        self._resample_horizontal(out_hor, img, ksize_horiz, bounds_horiz, kk_horiz)
        out = np.empty((ysize, xsize), dtype=np.uint8)
        self._resample_vertical(out, out_hor, ksize_vert, bounds_vert, kk_vert)
        return out


class CpVton(object):
    def __init__(self, gmm_model, tom_model, backend, target):
        super(CpVton, self).__init__()
        self.gmm_net = cv.dnn.readNet(gmm_model)
        self.tom_net = cv.dnn.readNet(tom_model)
        self.gmm_net.setPreferableBackend(backend)
        self.gmm_net.setPreferableTarget(target)
        self.tom_net.setPreferableBackend(backend)
        self.tom_net.setPreferableTarget(target)

    def prepare_agnostic(self, segm_image, input_image, pose_map, height=256, width=192):
        palette = {
            'Background'   : (0, 0, 0),
            'Hat'          : (128, 0, 0),
            'Hair'         : (255, 0, 0),
            'Glove'        : (0, 85, 0),
            'Sunglasses'   : (170, 0, 51),
            'UpperClothes' : (255, 85, 0),
            'Dress'        : (0, 0, 85),
            'Coat'         : (0, 119, 221),
            'Socks'        : (85, 85, 0),
            'Pants'        : (0, 85, 85),
            'Jumpsuits'    : (85, 51, 0),
            'Scarf'        : (52, 86, 128),
            'Skirt'        : (0, 128, 0),
            'Face'         : (0, 0, 255),
            'Left-arm'     : (51, 170, 221),
            'Right-arm'    : (0, 255, 255),
            'Left-leg'     : (85, 255, 170),
            'Right-leg'    : (170, 255, 85),
            'Left-shoe'    : (255, 255, 0),
            'Right-shoe'   : (255, 170, 0)
        }
        color2label = {val: key for key, val in palette.items()}
        head_labels = ['Hat', 'Hair', 'Sunglasses', 'Face', 'Pants', 'Skirt']

        segm_image = cv.cvtColor(segm_image, cv.COLOR_BGR2RGB)
        phead = np.zeros((1, height, width), dtype=np.float32)
        pose_shape = np.zeros((height, width), dtype=np.uint8)
        for r in range(height):
            for c in range(width):
                pixel = tuple(segm_image[r, c])
                if tuple(pixel) in color2label:
                    if color2label[pixel] in head_labels:
                        phead[0, r, c] = 1
                    if color2label[pixel] != 'Background':
                        pose_shape[r, c] = 255

        input_image = cv.dnn.blobFromImage(input_image, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True)
        input_image = input_image.squeeze(0)

        img_head = input_image * phead - (1 - phead)

        downsample = BilinearFilter()
        down = downsample.imaging_resample(pose_shape, width // 16, height // 16)
        res_shape = cv.resize(down, (width, height), cv.INTER_LINEAR)

        res_shape = cv.dnn.blobFromImage(res_shape, 1.0 / 127.5, mean=(127.5, 127.5, 127.5), swapRB=True)
        res_shape = res_shape.squeeze(0)

        agnostic = np.concatenate((res_shape, img_head, pose_map), axis=0)
        agnostic = np.expand_dims(agnostic, axis=0)
        return agnostic.astype(np.float32)

    def get_warped_cloth(self, cloth_img, agnostic, height=256, width=192):
        cloth = cv.dnn.blobFromImage(cloth_img, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True)

        self.gmm_net.setInput(agnostic, "input.1")
        self.gmm_net.setInput(cloth, "input.18")
        theta = self.gmm_net.forward()

        grid = self._generate_grid(theta)
        warped_cloth = self._bilinear_sampler(cloth, grid).astype(np.float32)
        return warped_cloth

    def get_tryon(self, agnostic, warp_cloth):
        inp = np.concatenate([agnostic, warp_cloth], axis=1)
        self.tom_net.setInput(inp)
        out = self.tom_net.forward()

        p_rendered, m_composite = np.split(out, [3], axis=1)
        p_rendered = np.tanh(p_rendered)
        m_composite = 1 / (1 + np.exp(-m_composite))

        p_tryon = warp_cloth * m_composite + p_rendered * (1 - m_composite)
        rgb_p_tryon = cv.cvtColor(p_tryon.squeeze(0).transpose(1, 2, 0), cv.COLOR_BGR2RGB)
        rgb_p_tryon = (rgb_p_tryon + 1) / 2
        return rgb_p_tryon

    def _compute_L_inverse(self, X, Y):
        N = X.shape[0]

        Xmat = np.tile(X, (1, N))
        Ymat = np.tile(Y, (1, N))
        P_dist_squared = np.power(Xmat - Xmat.transpose(1, 0), 2) + np.power(Ymat - Ymat.transpose(1, 0), 2)

        P_dist_squared[P_dist_squared == 0] = 1
        K = np.multiply(P_dist_squared, np.log(P_dist_squared))

        O = np.ones([N, 1], dtype=np.float32)
        Z = np.zeros([3, 3], dtype=np.float32)
        P = np.concatenate([O, X, Y], axis=1)
        first = np.concatenate((K, P), axis=1)
        second = np.concatenate((P.transpose(1, 0), Z), axis=1)
        L = np.concatenate((first, second), axis=0)
        Li = linalg.inv(L)
        return Li

    def _prepare_to_transform(self, out_h=256, out_w=192, grid_size=5):
        grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
        grid_X = np.expand_dims(np.expand_dims(grid_X, axis=0), axis=3)
        grid_Y = np.expand_dims(np.expand_dims(grid_Y, axis=0), axis=3)

        axis_coords = np.linspace(-1, 1, grid_size)
        N = grid_size ** 2
        P_Y, P_X = np.meshgrid(axis_coords, axis_coords)

        P_X = np.reshape(P_X,(-1, 1))
        P_Y = np.reshape(P_Y,(-1, 1))

        P_X = np.expand_dims(np.expand_dims(np.expand_dims(P_X, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0)
        P_Y = np.expand_dims(np.expand_dims(np.expand_dims(P_Y, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0)
        return grid_X, grid_Y, N, P_X, P_Y

    def _expand_torch(self, X, shape):
        if len(X.shape) != len(shape):
            return X.flatten().reshape(shape)
        else:
            axis = [1 if src == dst else dst for src, dst in zip(X.shape, shape)]
            return np.tile(X, axis)

    def _apply_transformation(self, theta, points, N, P_X, P_Y):
        if len(theta.shape) == 2:
            theta = np.expand_dims(np.expand_dims(theta, axis=2), axis=3)

        batch_size = theta.shape[0]

        P_X_base = np.copy(P_X)
        P_Y_base = np.copy(P_Y)

        Li = self._compute_L_inverse(np.reshape(P_X, (N, -1)), np.reshape(P_Y, (N, -1)))
        Li = np.expand_dims(Li, axis=0)

        # split theta into point coordinates
        Q_X = np.squeeze(theta[:, :N, :, :], axis=3)
        Q_Y = np.squeeze(theta[:, N:, :, :], axis=3)

        Q_X += self._expand_torch(P_X_base, Q_X.shape)
        Q_Y += self._expand_torch(P_Y_base, Q_Y.shape)

        points_b = points.shape[0]
        points_h = points.shape[1]
        points_w = points.shape[2]

        P_X = self._expand_torch(P_X, (1, points_h, points_w, 1, N))
        P_Y = self._expand_torch(P_Y, (1, points_h, points_w, 1, N))

        W_X = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_X
        W_Y = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_Y

        W_X = np.expand_dims(np.expand_dims(W_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
        W_X = np.repeat(W_X, points_h, axis=1)
        W_X = np.repeat(W_X, points_w, axis=2)

        W_Y = np.expand_dims(np.expand_dims(W_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
        W_Y = np.repeat(W_Y, points_h, axis=1)
        W_Y = np.repeat(W_Y, points_w, axis=2)

        A_X = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_X
        A_Y = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_Y

        A_X = np.expand_dims(np.expand_dims(A_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
        A_X = np.repeat(A_X, points_h, axis=1)
        A_X = np.repeat(A_X, points_w, axis=2)

        A_Y = np.expand_dims(np.expand_dims(A_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
        A_Y = np.repeat(A_Y, points_h, axis=1)
        A_Y = np.repeat(A_Y, points_w, axis=2)

        points_X_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 0], axis=3), axis=4)
        points_X_for_summation = self._expand_torch(points_X_for_summation, points[:, :, :, 0].shape + (1, N))

        points_Y_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 1], axis=3), axis=4)
        points_Y_for_summation = self._expand_torch(points_Y_for_summation, points[:, :, :, 0].shape + (1, N))

        if points_b == 1:
            delta_X = points_X_for_summation - P_X
            delta_Y = points_Y_for_summation - P_Y
        else:
            delta_X = points_X_for_summation - self._expand_torch(P_X, points_X_for_summation.shape)
            delta_Y = points_Y_for_summation - self._expand_torch(P_Y, points_Y_for_summation.shape)

        dist_squared = np.power(delta_X, 2) + np.power(delta_Y, 2)
        dist_squared[dist_squared == 0] = 1
        U = np.multiply(dist_squared, np.log(dist_squared))

        points_X_batch = np.expand_dims(points[:,:,:,0], axis=3)
        points_Y_batch = np.expand_dims(points[:,:,:,1], axis=3)

        if points_b == 1:
            points_X_batch = self._expand_torch(points_X_batch, (batch_size, ) + points_X_batch.shape[1:])
            points_Y_batch = self._expand_torch(points_Y_batch, (batch_size, ) + points_Y_batch.shape[1:])

        points_X_prime = A_X[:,:,:,:,0]+ \
                        np.multiply(A_X[:,:,:,:,1], points_X_batch) + \
                        np.multiply(A_X[:,:,:,:,2], points_Y_batch) + \
                        np.sum(np.multiply(W_X, self._expand_torch(U, W_X.shape)), 4)

        points_Y_prime = A_Y[:,:,:,:,0]+ \
                        np.multiply(A_Y[:,:,:,:,1], points_X_batch) + \
                        np.multiply(A_Y[:,:,:,:,2], points_Y_batch) + \
                        np.sum(np.multiply(W_Y, self._expand_torch(U, W_Y.shape)), 4)

        return np.concatenate((points_X_prime, points_Y_prime), 3)

    def _generate_grid(self, theta):
        grid_X, grid_Y, N, P_X, P_Y = self._prepare_to_transform()
        warped_grid = self._apply_transformation(theta, np.concatenate((grid_X, grid_Y), axis=3), N, P_X, P_Y)
        return warped_grid

    def _bilinear_sampler(self, img, grid):
        x, y = grid[:,:,:,0], grid[:,:,:,1]

        H = img.shape[2]
        W = img.shape[3]
        max_y = H - 1
        max_x = W - 1

        # rescale x and y to [0, W-1/H-1]
        x = 0.5 * (x + 1.0) * (max_x - 1)
        y = 0.5 * (y + 1.0) * (max_y - 1)

        # grab 4 nearest corner points for each (x_i, y_i)
        x0 = np.floor(x).astype(int)
        x1 = x0 + 1
        y0 = np.floor(y).astype(int)
        y1 = y0 + 1

        # calculate deltas
        wa = (x1 - x) * (y1 - y)
        wb = (x1 - x) * (y  - y0)
        wc = (x - x0) * (y1 - y)
        wd = (x - x0) * (y  - y0)

        # clip to range [0, H-1/W-1] to not violate img boundaries
        x0 = np.clip(x0, 0, max_x)
        x1 = np.clip(x1, 0, max_x)
        y0 = np.clip(y0, 0, max_y)
        y1 = np.clip(y1, 0, max_y)

        # get pixel value at corner coords
        img = img.reshape(-1, H, W)
        Ia = img[:, y0, x0].swapaxes(0, 1)
        Ib = img[:, y1, x0].swapaxes(0, 1)
        Ic = img[:, y0, x1].swapaxes(0, 1)
        Id = img[:, y1, x1].swapaxes(0, 1)

        wa = np.expand_dims(wa, axis=0)
        wb = np.expand_dims(wb, axis=0)
        wc = np.expand_dims(wc, axis=0)
        wd = np.expand_dims(wd, axis=0)

        # compute output
        out = wa*Ia + wb*Ib + wc*Ic + wd*Id
        return out


class CorrelationLayer(object):
    def __init__(self, params, blobs):
        super(CorrelationLayer, self).__init__()

    def getMemoryShapes(self, inputs):
        fetureAShape = inputs[0]
        b, _, h, w = fetureAShape
        return [[b, h * w, h, w]]

    def forward(self, inputs):
        feature_A, feature_B = inputs
        b, c, h, w = feature_A.shape
        feature_A = feature_A.transpose(0, 1, 3, 2)
        feature_A = np.reshape(feature_A, (b, c, h * w))
        feature_B = np.reshape(feature_B, (b, c, h * w))
        feature_B = feature_B.transpose(0, 2, 1)
        feature_mul = feature_B @ feature_A
        feature_mul= np.reshape(feature_mul, (b, h, w, h * w))
        feature_mul = feature_mul.transpose(0, 1, 3, 2)
        correlation_tensor = feature_mul.transpose(0, 2, 1, 3)
        correlation_tensor = np.ascontiguousarray(correlation_tensor)
        return [correlation_tensor]


if __name__ == "__main__":
    if not os.path.isfile(args.gmm_model):
        raise OSError("GMM model not exist")
    if not os.path.isfile(args.tom_model):
        raise OSError("TOM model not exist")
    if not os.path.isfile(args.segmentation_model):
        raise OSError("Segmentation model not exist")
    if not os.path.isfile(findFile(args.openpose_proto)):
        raise OSError("OpenPose proto not exist")
    if not os.path.isfile(findFile(args.openpose_model)):
        raise OSError("OpenPose model not exist")

    person_img = cv.imread(args.input_image)
    ratio = 256 / 192
    inp_h, inp_w, _ = person_img.shape
    current_ratio = inp_h / inp_w
    if current_ratio > ratio:
        center_h = inp_h // 2
        out_h = inp_w * ratio
        start = int(center_h - out_h // 2)
        end = int(center_h + out_h // 2)
        person_img = person_img[start:end, ...]
    else:
        center_w = inp_w // 2
        out_w = inp_h / ratio
        start = int(center_w - out_w // 2)
        end = int(center_w + out_w // 2)
        person_img = person_img[:, start:end, :]

    cloth_img = cv.imread(args.input_cloth)
    pose = get_pose_map(person_img, findFile(args.openpose_proto),
                        findFile(args.openpose_model), args.backend, args.target)
    segm_image = parse_human(person_img, args.segmentation_model)
    segm_image = cv.resize(segm_image, (192, 256), cv.INTER_LINEAR)

    cv.dnn_registerLayer('Correlation', CorrelationLayer)

    model = CpVton(args.gmm_model, args.tom_model, args.backend, args.target)
    agnostic = model.prepare_agnostic(segm_image, person_img, pose)
    warped_cloth = model.get_warped_cloth(cloth_img, agnostic)
    output = model.get_tryon(agnostic, warped_cloth)

    cv.dnn_unregisterLayer('Correlation')

    winName = 'Virtual Try-On'
    cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
    cv.imshow(winName, output)
    cv.waitKey()