garray.hpp 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation


#ifndef OPENCV_GAPI_GARRAY_HPP
#define OPENCV_GAPI_GARRAY_HPP

#include <functional>
#include <ostream>
#include <vector>
#include <memory>

#include <opencv2/gapi/own/exports.hpp>
#include <opencv2/gapi/opencv_includes.hpp>

#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/own/assert.hpp>

#include <opencv2/gapi/gmat.hpp>    // flatten_g only!
#include <opencv2/gapi/gscalar.hpp> // flatten_g only!

namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
template<typename T> class GArray;

/**
 * \addtogroup gapi_meta_args
 * @{
 */
struct GAPI_EXPORTS_W_SIMPLE GArrayDesc
{
    // FIXME: Body
    // FIXME: Also implement proper operator== then
    bool operator== (const GArrayDesc&) const { return true; }
};
template<typename U> GArrayDesc descr_of(const std::vector<U> &) { return {};}
GAPI_EXPORTS_W inline GArrayDesc empty_array_desc() {return {}; }
/** @} */

std::ostream& operator<<(std::ostream& os, const cv::GArrayDesc &desc);

namespace detail
{
    // ConstructVec is a callback which stores information about T and is used by
    // G-API runtime to construct arrays in host memory (T remains opaque for G-API).
    // ConstructVec is carried into G-API internals by GArrayU.
    // Currently it is suitable for Host (CPU) plugins only, real offload may require
    // more information for manual memory allocation on-device.
    class VectorRef;
    using ConstructVec = std::function<void(VectorRef&)>;

    // This is the base struct for GArrayU type holder
    struct TypeHintBase{virtual ~TypeHintBase() = default;};

    // This class holds type of initial GArray to be checked from GArrayU
    template <typename T>
    struct TypeHint final : public TypeHintBase{};

    // This class strips type information from GArray<T> and makes it usable
    // in the G-API graph compiler (expression unrolling, graph generation, etc).
    // Part of GProtoArg.
    class GAPI_EXPORTS GArrayU
    {
    public:
        GArrayU(const GNode &n, std::size_t out); // Operation result constructor

        template <typename T>
        bool holds() const;                       // Check if was created from GArray<T>

        GOrigin& priv();                          // Internal use only
        const GOrigin& priv() const;              // Internal use only

    protected:
        GArrayU();                                // Default constructor
        GArrayU(const detail::VectorRef& vref);   // Constant value constructor
        template<class> friend class cv::GArray;  //  (available to GArray<T> only)

        void setConstructFcn(ConstructVec &&cv);  // Store T-aware constructor

        template <typename T>
        void specifyType();                       // Store type of initial GArray<T>

        template <typename T>
        void storeKind();

        void setKind(cv::detail::OpaqueKind);

        std::shared_ptr<GOrigin> m_priv;
        std::shared_ptr<TypeHintBase> m_hint;
    };

    template <typename T>
    bool GArrayU::holds() const{
        GAPI_Assert(m_hint != nullptr);
        using U = typename std::decay<T>::type;
        return dynamic_cast<TypeHint<U>*>(m_hint.get()) != nullptr;
    };

    template <typename T>
    void GArrayU::specifyType(){
        m_hint.reset(new TypeHint<typename std::decay<T>::type>);
    };

    template <typename T>
    void GArrayU::storeKind(){
        setKind(cv::detail::GOpaqueTraits<T>::kind);
    };

    // This class represents a typed STL vector reference.
    // Depending on origins, this reference may be either "just a" reference to
    // an object created externally, OR actually own the underlying object
    // (be value holder).
    class BasicVectorRef
    {
    public:
        // These fields are set by the derived class(es)
        std::size_t    m_elemSize = 0ul;
        cv::GArrayDesc m_desc;
        virtual ~BasicVectorRef() {}

        virtual void mov(BasicVectorRef &ref) = 0;
        virtual const void* ptr() const = 0;
        virtual std::size_t size() const = 0;
    };

    template<typename T> class VectorRefT final: public BasicVectorRef
    {
        using empty_t  = util::monostate;
        using ro_ext_t = const std::vector<T> *;
        using rw_ext_t =       std::vector<T> *;
        using rw_own_t =       std::vector<T>  ;
        util::variant<empty_t, ro_ext_t, rw_ext_t, rw_own_t> m_ref;

        inline bool isEmpty() const { return util::holds_alternative<empty_t>(m_ref);  }
        inline bool isROExt() const { return util::holds_alternative<ro_ext_t>(m_ref); }
        inline bool isRWExt() const { return util::holds_alternative<rw_ext_t>(m_ref); }
        inline bool isRWOwn() const { return util::holds_alternative<rw_own_t>(m_ref); }

        void init(const std::vector<T>* vec = nullptr)
        {
            m_elemSize = sizeof(T);
            if (vec) m_desc = cv::descr_of(*vec);
        }

    public:
        VectorRefT() { init(); }
        virtual ~VectorRefT() {}

        explicit VectorRefT(const std::vector<T>& vec) : m_ref(&vec)      { init(&vec); }
        explicit VectorRefT(std::vector<T>& vec)  : m_ref(&vec)           { init(&vec); }
        explicit VectorRefT(std::vector<T>&& vec) : m_ref(std::move(vec)) { init(&vec); }

        // Reset a VectorRefT. Called only for objects instantiated
        // internally in G-API (e.g. temporary GArray<T>'s within a
        // computation).  Reset here means both initialization
        // (creating an object) and reset (discarding its existing
        // content before the next execution).  Must never be called
        // for external VectorRefTs.
        void reset()
        {
            if (isEmpty())
            {
                std::vector<T> empty_vector;
                m_desc = cv::descr_of(empty_vector);
                m_ref  = std::move(empty_vector);
                GAPI_Assert(isRWOwn());
            }
            else if (isRWOwn())
            {
                util::get<rw_own_t>(m_ref).clear();
            }
            else GAPI_Assert(false); // shouldn't be called in *EXT modes
        }

        // Obtain a WRITE reference to underlying object
        // Used by CPU kernel API wrappers when a kernel execution frame
        // is created
        std::vector<T>& wref()
        {
            GAPI_Assert(isRWExt() || isRWOwn());
            if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
            if (isRWOwn()) return  util::get<rw_own_t>(m_ref);
            util::throw_error(std::logic_error("Impossible happened"));
        }

        // Obtain a READ reference to underlying object
        // Used by CPU kernel API wrappers when a kernel execution frame
        // is created
        const std::vector<T>& rref() const
        {
            // ANY vector can be accessed for reading, even if it declared for
            // output. Example -- a GComputation from [in] to [out1,out2]
            // where [out2] is a result of operation applied to [out1]:
            //
            //            GComputation boundary
            //            . . . . . . .
            //            .           .
            //     [in] ----> foo() ----> [out1]
            //            .           .    :
            //            .           . . .:. . .
            //            .                V    .
            //            .              bar() ---> [out2]
            //            . . . . . . . . . . . .
            //
            if (isROExt()) return *util::get<ro_ext_t>(m_ref);
            if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
            if (isRWOwn()) return  util::get<rw_own_t>(m_ref);
            util::throw_error(std::logic_error("Impossible happened"));
        }

        virtual void mov(BasicVectorRef &v) override {
            VectorRefT<T> *tv = dynamic_cast<VectorRefT<T>*>(&v);
            GAPI_Assert(tv != nullptr);
            wref() = std::move(tv->wref());
        }

        virtual const void* ptr() const override { return &rref(); }
        virtual std::size_t size() const override { return rref().size(); }
    };

    // This class strips type information from VectorRefT<> and makes it usable
    // in the G-API executables (carrying run-time data/information to kernels).
    // Part of GRunArg.
    // Its methods are typed proxies to VectorRefT<T>.
    // VectorRef maintains "reference" semantics so two copies of VectoRef refer
    // to the same underlying object.
    // FIXME: Put a good explanation on why cv::OutputArray doesn't fit this role
    class VectorRef
    {
        std::shared_ptr<BasicVectorRef> m_ref;
        cv::detail::OpaqueKind m_kind;

        template<typename T> inline void check() const
        {
            GAPI_DbgAssert(dynamic_cast<VectorRefT<T>*>(m_ref.get()) != nullptr);
            GAPI_Assert(sizeof(T) == m_ref->m_elemSize);
        }

    public:
        VectorRef() = default;
        template<typename T> explicit VectorRef(const std::vector<T>& vec)
            : m_ref(new VectorRefT<T>(vec))
            , m_kind(GOpaqueTraits<T>::kind)
        {}
        template<typename T> explicit VectorRef(std::vector<T>& vec)
            : m_ref(new VectorRefT<T>(vec))
            , m_kind(GOpaqueTraits<T>::kind)
        {}
        template<typename T> explicit VectorRef(std::vector<T>&& vec)
            : m_ref(new VectorRefT<T>(std::move(vec)))
            , m_kind(GOpaqueTraits<T>::kind)
        {}

        cv::detail::OpaqueKind getKind() const
        {
            return m_kind;
        }

        template<typename T> void reset()
        {
            if (!m_ref) m_ref.reset(new VectorRefT<T>());
            check<T>();
            storeKind<T>();
            static_cast<VectorRefT<T>&>(*m_ref).reset();
        }

        template <typename T>
        void storeKind()
        {
            m_kind = cv::detail::GOpaqueTraits<T>::kind;
        }

        template<typename T> std::vector<T>& wref()
        {
            check<T>();
            return static_cast<VectorRefT<T>&>(*m_ref).wref();
        }

        template<typename T> const std::vector<T>& rref() const
        {
            check<T>();
            return static_cast<VectorRefT<T>&>(*m_ref).rref();
        }

        // Check if was created for/from std::vector<T>
        template <typename T> bool holds() const
        {
            if (!m_ref) return false;
            using U = typename std::decay<T>::type;
            return dynamic_cast<VectorRefT<U>*>(m_ref.get()) != nullptr;
        }

        void mov(VectorRef &v)
        {
            m_ref->mov(*v.m_ref);
        }

        cv::GArrayDesc descr_of() const
        {
            return m_ref->m_desc;
        }

        std::size_t size() const
        {
            return m_ref->size();
        }

        // May be used to uniquely identify this object internally
        const void *ptr() const { return m_ref->ptr(); }
    };

    // Helper (FIXME: work-around?)
    // stripping G types to their host types
    // like cv::GArray<GMat> would still map to std::vector<cv::Mat>
    // but not to std::vector<cv::GMat>
#if defined(GAPI_STANDALONE)
#  define FLATTEN_NS cv::gapi::own
#else
#  define FLATTEN_NS cv
#endif
    template<class T> struct flatten_g;
    template<> struct flatten_g<cv::GMat>         { using type = FLATTEN_NS::Mat; };
    template<> struct flatten_g<cv::GScalar>      { using type = FLATTEN_NS::Scalar; };
    template<class T> struct flatten_g<GArray<T>> { using type = std::vector<T>; };
    template<class T> struct flatten_g            { using type = T; };
#undef FLATTEN_NS
    // FIXME: the above mainly duplicates "ProtoToParam" thing from gtyped.hpp
    // but I decided not to include gtyped here - probably worth moving that stuff
    // to some common place? (DM)
} // namespace detail

/** \addtogroup gapi_data_objects
 * @{
 */
/**
 * @brief `cv::GArray<T>` template class represents a list of objects
 * of class `T` in the graph.
 *
 * `cv::GArray<T>` describes a functional relationship between
 * operations consuming and producing arrays of objects of class
 * `T`. The primary purpose of `cv::GArray<T>` is to represent a
 * dynamic list of objects -- where the size of the list is not known
 * at the graph construction or compile time. Examples include: corner
 * and feature detectors (`cv::GArray<cv::Point>`), object detection
 * and tracking  results (`cv::GArray<cv::Rect>`). Programmers can use
 * their own types with `cv::GArray<T>` in the custom operations.
 *
 * Similar to `cv::GScalar`, `cv::GArray<T>` may be value-initialized
 * -- in this case a graph-constant value is associated with the object.
 *
 * `GArray<T>` is a virtual counterpart of `std::vector<T>`, which is
 * usually used to represent the `GArray<T>` data in G-API during the
 * execution.
 *
 * @sa `cv::GOpaque<T>`
 */
template<typename T> class GArray
{
public:
    // Host type (or Flat type) - the type this GArray is actually
    // specified to.
    /// @private
    using HT = typename detail::flatten_g<typename std::decay<T>::type>::type;

    /**
     * @brief Constructs a value-initialized `cv::GArray<T>`
     *
     * `cv::GArray<T>` objects  may have their values
     * be associated at graph construction time. It is useful when
     * some operation has a `cv::GArray<T>` input which doesn't change during
     * the program execution, and is set only once. In this case,
     * there is no need to declare such `cv::GArray<T>` as a graph input.
     *
     * @note The value of `cv::GArray<T>` may be overwritten by assigning some
     * other `cv::GArray<T>` to the object using `operator=` -- on the
     * assigment, the old association or value is discarded.
     *
     * @param v a std::vector<T> to associate with this
     * `cv::GArray<T>` object. Vector data is copied into the
     * `cv::GArray<T>` (no reference to the passed data is held).
     */
    explicit GArray(const std::vector<HT>& v) // Constant value constructor
        : m_ref(detail::GArrayU(detail::VectorRef(v))) { putDetails(); }

    /**
     * @overload
     * @brief Constructs a value-initialized `cv::GArray<T>`
     *
     * @param v a std::vector<T> to associate with this
     * `cv::GArray<T>` object. Vector data is moved into the `cv::GArray<T>`.
     */
    explicit GArray(std::vector<HT>&& v)      // Move-constructor
        : m_ref(detail::GArrayU(detail::VectorRef(std::move(v)))) { putDetails(); }

    /**
     * @brief Constructs an empty `cv::GArray<T>`
     *
     * Normally, empty G-API data objects denote a starting point of
     * the graph. When an empty `cv::GArray<T>` is assigned to a result
     * of some operation, it obtains a functional link to this
     * operation (and is not empty anymore).
     */
    GArray() { putDetails(); }                // Empty constructor

    /// @private
    explicit GArray(detail::GArrayU &&ref)    // GArrayU-based constructor
        : m_ref(ref) { putDetails(); }        //   (used by GCall, not for users)

    /// @private
    detail::GArrayU strip() const {
        return m_ref;
    }
    /// @private
    static void VCtor(detail::VectorRef& vref) {
        vref.reset<HT>();
    }

private:
    void putDetails() {
        m_ref.setConstructFcn(&VCtor);
        m_ref.specifyType<HT>();  // FIXME: to unify those 2 to avoid excessive dynamic_cast
        m_ref.storeKind<HT>();    //
    }

    detail::GArrayU m_ref;
};

/** @} */

} // namespace cv

#endif // OPENCV_GAPI_GARRAY_HPP