imgproc.hpp 74.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation


#ifndef OPENCV_GAPI_IMGPROC_HPP
#define OPENCV_GAPI_IMGPROC_HPP

#include <opencv2/imgproc.hpp>

#include <utility> // std::tuple

#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>


/** \defgroup gapi_imgproc G-API Image processing functionality
@{
    @defgroup gapi_filters Graph API: Image filters
    @defgroup gapi_colorconvert Graph API: Converting image from one color space to another
    @defgroup gapi_feature Graph API: Image Feature Detection
    @defgroup gapi_shape Graph API: Image Structural Analysis and Shape Descriptors
@}
 */

namespace {
void validateFindingContoursMeta(const int depth, const int chan, const int mode)
{
    GAPI_Assert(chan == 1);
    switch (mode)
    {
    case cv::RETR_CCOMP:
        GAPI_Assert(depth == CV_8U || depth == CV_32S);
        break;
    case cv::RETR_FLOODFILL:
        GAPI_Assert(depth == CV_32S);
        break;
    default:
        GAPI_Assert(depth == CV_8U);
        break;
    }
}
} // anonymous namespace

namespace cv { namespace gapi {

/**
 * @brief This namespace contains G-API Operation Types for OpenCV
 * ImgProc module functionality.
 */
namespace imgproc {
    using GMat2 = std::tuple<GMat,GMat>;
    using GMat3 = std::tuple<GMat,GMat,GMat>; // FIXME: how to avoid this?
    using GFindContoursOutput = std::tuple<GArray<GArray<Point>>,GArray<Vec4i>>;

    G_TYPED_KERNEL(GFilter2D, <GMat(GMat,int,Mat,Point,Scalar,int,Scalar)>,"org.opencv.imgproc.filters.filter2D") {
        static GMatDesc outMeta(GMatDesc in, int ddepth, Mat, Point, Scalar, int, Scalar) {
            return in.withDepth(ddepth);
        }
    };

    G_TYPED_KERNEL(GSepFilter, <GMat(GMat,int,Mat,Mat,Point,Scalar,int,Scalar)>, "org.opencv.imgproc.filters.sepfilter") {
        static GMatDesc outMeta(GMatDesc in, int ddepth, Mat, Mat, Point, Scalar, int, Scalar) {
            return in.withDepth(ddepth);
        }
    };

    G_TYPED_KERNEL(GBoxFilter, <GMat(GMat,int,Size,Point,bool,int,Scalar)>, "org.opencv.imgproc.filters.boxfilter") {
        static GMatDesc outMeta(GMatDesc in, int ddepth, Size, Point, bool, int, Scalar) {
            return in.withDepth(ddepth);
        }
    };

    G_TYPED_KERNEL(GBlur, <GMat(GMat,Size,Point,int,Scalar)>,         "org.opencv.imgproc.filters.blur"){
        static GMatDesc outMeta(GMatDesc in, Size, Point, int, Scalar) {
            return in;
        }
    };

    G_TYPED_KERNEL(GGaussBlur, <GMat(GMat,Size,double,double,int,Scalar)>, "org.opencv.imgproc.filters.gaussianBlur") {
        static GMatDesc outMeta(GMatDesc in, Size, double, double, int, Scalar) {
            return in;
        }
    };

    G_TYPED_KERNEL(GMedianBlur, <GMat(GMat,int)>, "org.opencv.imgproc.filters.medianBlur") {
        static GMatDesc outMeta(GMatDesc in, int) {
            return in;
        }
    };

    G_TYPED_KERNEL(GErode, <GMat(GMat,Mat,Point,int,int,Scalar)>, "org.opencv.imgproc.filters.erode") {
        static GMatDesc outMeta(GMatDesc in, Mat, Point, int, int, Scalar) {
            return in;
        }
    };

    G_TYPED_KERNEL(GDilate, <GMat(GMat,Mat,Point,int,int,Scalar)>, "org.opencv.imgproc.filters.dilate") {
        static GMatDesc outMeta(GMatDesc in, Mat, Point, int, int, Scalar) {
            return in;
        }
    };

    G_TYPED_KERNEL(GMorphologyEx, <GMat(GMat,MorphTypes,Mat,Point,int,BorderTypes,Scalar)>,
                   "org.opencv.imgproc.filters.morphologyEx") {
        static GMatDesc outMeta(const GMatDesc &in, MorphTypes, Mat, Point, int,
                                BorderTypes, Scalar) {
            return in;
        }
    };

    G_TYPED_KERNEL(GSobel, <GMat(GMat,int,int,int,int,double,double,int,Scalar)>, "org.opencv.imgproc.filters.sobel") {
        static GMatDesc outMeta(GMatDesc in, int ddepth, int, int, int, double, double, int, Scalar) {
            return in.withDepth(ddepth);
        }
    };

    G_TYPED_KERNEL_M(GSobelXY, <GMat2(GMat,int,int,int,double,double,int,Scalar)>, "org.opencv.imgproc.filters.sobelxy") {
        static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc in, int ddepth, int, int, double, double, int, Scalar) {
            return std::make_tuple(in.withDepth(ddepth), in.withDepth(ddepth));
        }
    };

    G_TYPED_KERNEL(GLaplacian, <GMat(GMat,int, int, double, double, int)>,
                   "org.opencv.imgproc.filters.laplacian") {
        static GMatDesc outMeta(GMatDesc in, int ddepth, int, double, double, int) {
            return in.withDepth(ddepth);
        }
    };

    G_TYPED_KERNEL(GBilateralFilter, <GMat(GMat,int, double, double, int)>,
                   "org.opencv.imgproc.filters.bilateralfilter") {
        static GMatDesc outMeta(GMatDesc in, int, double, double, int) {
            return in;
        }
    };

    G_TYPED_KERNEL(GEqHist, <GMat(GMat)>, "org.opencv.imgproc.equalizeHist"){
        static GMatDesc outMeta(GMatDesc in) {
            return in.withType(CV_8U, 1);
        }
    };

    G_TYPED_KERNEL(GCanny, <GMat(GMat,double,double,int,bool)>, "org.opencv.imgproc.feature.canny"){
        static GMatDesc outMeta(GMatDesc in, double, double, int, bool) {
            return in.withType(CV_8U, 1);
        }
    };

    G_TYPED_KERNEL(GGoodFeatures,
                   <cv::GArray<cv::Point2f>(GMat,int,double,double,Mat,int,bool,double)>,
                   "org.opencv.imgproc.feature.goodFeaturesToTrack") {
        static GArrayDesc outMeta(GMatDesc, int, double, double, const Mat&, int, bool, double) {
            return empty_array_desc();
        }
    };

    using RetrMode = RetrievalModes;
    using ContMethod = ContourApproximationModes;
    G_TYPED_KERNEL(GFindContours, <GArray<GArray<Point>>(GMat,RetrMode,ContMethod,GOpaque<Point>)>,
                   "org.opencv.imgproc.shape.findContours")
    {
        static GArrayDesc outMeta(GMatDesc in, RetrMode mode, ContMethod, GOpaqueDesc)
        {
            validateFindingContoursMeta(in.depth, in.chan, mode);
            return empty_array_desc();
        }
    };

    // FIXME oc: make default value offset = Point()
    G_TYPED_KERNEL(GFindContoursNoOffset, <GArray<GArray<Point>>(GMat,RetrMode,ContMethod)>,
                   "org.opencv.imgproc.shape.findContoursNoOffset")
    {
        static GArrayDesc outMeta(GMatDesc in, RetrMode mode, ContMethod)
        {
            validateFindingContoursMeta(in.depth, in.chan, mode);
            return empty_array_desc();
        }
    };

    G_TYPED_KERNEL(GFindContoursH,<GFindContoursOutput(GMat,RetrMode,ContMethod,GOpaque<Point>)>,
                   "org.opencv.imgproc.shape.findContoursH")
    {
        static std::tuple<GArrayDesc,GArrayDesc>
        outMeta(GMatDesc in, RetrMode mode, ContMethod, GOpaqueDesc)
        {
            validateFindingContoursMeta(in.depth, in.chan, mode);
            return std::make_tuple(empty_array_desc(), empty_array_desc());
        }
    };

    // FIXME oc: make default value offset = Point()
    G_TYPED_KERNEL(GFindContoursHNoOffset,<GFindContoursOutput(GMat,RetrMode,ContMethod)>,
                   "org.opencv.imgproc.shape.findContoursHNoOffset")
    {
        static std::tuple<GArrayDesc,GArrayDesc>
        outMeta(GMatDesc in, RetrMode mode, ContMethod)
        {
            validateFindingContoursMeta(in.depth, in.chan, mode);
            return std::make_tuple(empty_array_desc(), empty_array_desc());
        }
    };

    G_TYPED_KERNEL(GBoundingRectMat, <GOpaque<Rect>(GMat)>,
                   "org.opencv.imgproc.shape.boundingRectMat") {
        static GOpaqueDesc outMeta(GMatDesc in) {
            if (in.depth == CV_8U)
            {
                GAPI_Assert(in.chan == 1);
            }
            else
            {
                GAPI_Assert (in.depth == CV_32S || in.depth == CV_32F);
                int amount = detail::checkVector(in, 2u);
                GAPI_Assert(amount != -1 &&
                            "Input Mat can't be described as vector of 2-dimentional points");
            }
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GBoundingRectVector32S, <GOpaque<Rect>(GArray<Point2i>)>,
                   "org.opencv.imgproc.shape.boundingRectVector32S") {
        static GOpaqueDesc outMeta(GArrayDesc) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GBoundingRectVector32F, <GOpaque<Rect>(GArray<Point2f>)>,
                   "org.opencv.imgproc.shape.boundingRectVector32F") {
        static GOpaqueDesc outMeta(GArrayDesc) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine2DMat, <GOpaque<Vec4f>(GMat,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine2DMat") {
        static GOpaqueDesc outMeta(GMatDesc in,DistanceTypes,double,double,double) {
            int amount = detail::checkVector(in, 2u);
            GAPI_Assert(amount != -1 &&
                        "Input Mat can't be described as vector of 2-dimentional points");
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine2DVector32S,
                   <GOpaque<Vec4f>(GArray<Point2i>,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine2DVector32S") {
        static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine2DVector32F,
                   <GOpaque<Vec4f>(GArray<Point2f>,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine2DVector32F") {
        static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine2DVector64F,
                   <GOpaque<Vec4f>(GArray<Point2d>,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine2DVector64F") {
        static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine3DMat, <GOpaque<Vec6f>(GMat,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine3DMat") {
        static GOpaqueDesc outMeta(GMatDesc in,int,double,double,double) {
            int amount = detail::checkVector(in, 3u);
            GAPI_Assert(amount != -1 &&
                        "Input Mat can't be described as vector of 3-dimentional points");
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine3DVector32S,
                   <GOpaque<Vec6f>(GArray<Point3i>,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine3DVector32S") {
        static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine3DVector32F,
                   <GOpaque<Vec6f>(GArray<Point3f>,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine3DVector32F") {
        static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GFitLine3DVector64F,
                   <GOpaque<Vec6f>(GArray<Point3d>,DistanceTypes,double,double,double)>,
                   "org.opencv.imgproc.shape.fitLine3DVector64F") {
        static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
            return empty_gopaque_desc();
        }
    };

    G_TYPED_KERNEL(GBGR2RGB, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2rgb") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GRGB2YUV, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GYUV2RGB, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2rgb") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GBGR2I420, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2i420") {
        static GMatDesc outMeta(GMatDesc in) {
            GAPI_Assert(in.depth == CV_8U);
            GAPI_Assert(in.chan == 3);
            GAPI_Assert(in.size.height % 2 == 0);
            return in.withType(in.depth, 1).withSize(Size(in.size.width, in.size.height * 3 / 2));
        }
    };

    G_TYPED_KERNEL(GRGB2I420, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2i420") {
        static GMatDesc outMeta(GMatDesc in) {
            GAPI_Assert(in.depth == CV_8U);
            GAPI_Assert(in.chan == 3);
            GAPI_Assert(in.size.height % 2 == 0);
            return in.withType(in.depth, 1).withSize(Size(in.size.width, in.size.height * 3 / 2));
        }
    };

    G_TYPED_KERNEL(GI4202BGR, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202bgr") {
        static GMatDesc outMeta(GMatDesc in) {
            GAPI_Assert(in.depth == CV_8U);
            GAPI_Assert(in.chan == 1);
            GAPI_Assert(in.size.height % 3 == 0);
            return in.withType(in.depth, 3).withSize(Size(in.size.width, in.size.height * 2 / 3));
        }
    };

    G_TYPED_KERNEL(GI4202RGB, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202rgb") {
        static GMatDesc outMeta(GMatDesc in) {
            GAPI_Assert(in.depth == CV_8U);
            GAPI_Assert(in.chan == 1);
            GAPI_Assert(in.size.height % 3 == 0);
            return in.withType(in.depth, 3).withSize(Size(in.size.width, in.size.height * 2 / 3));
        }
    };

    G_TYPED_KERNEL(GNV12toRGB, <GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12torgb") {
        static GMatDesc outMeta(GMatDesc in_y, GMatDesc in_uv) {
            GAPI_Assert(in_y.chan == 1);
            GAPI_Assert(in_uv.chan == 2);
            GAPI_Assert(in_y.depth == CV_8U);
            GAPI_Assert(in_uv.depth == CV_8U);
            // UV size should be aligned with Y
            GAPI_Assert(in_y.size.width == 2 * in_uv.size.width);
            GAPI_Assert(in_y.size.height == 2 * in_uv.size.height);
            return in_y.withType(CV_8U, 3); // type will be CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GNV12toBGR, <GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgr") {
        static GMatDesc outMeta(GMatDesc in_y, GMatDesc in_uv) {
            GAPI_Assert(in_y.chan == 1);
            GAPI_Assert(in_uv.chan == 2);
            GAPI_Assert(in_y.depth == CV_8U);
            GAPI_Assert(in_uv.depth == CV_8U);
            // UV size should be aligned with Y
            GAPI_Assert(in_y.size.width == 2 * in_uv.size.width);
            GAPI_Assert(in_y.size.height == 2 * in_uv.size.height);
            return in_y.withType(CV_8U, 3); // type will be CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GRGB2Lab, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2lab") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GBGR2LUV, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2luv") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GLUV2BGR, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.luv2bgr") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GYUV2BGR, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2bgr") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GBGR2YUV, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2yuv") {
        static GMatDesc outMeta(GMatDesc in) {
            return in; // type still remains CV_8UC3;
        }
    };

    G_TYPED_KERNEL(GRGB2Gray, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2gray") {
        static GMatDesc outMeta(GMatDesc in) {
            return in.withType(CV_8U, 1);
        }
    };

    G_TYPED_KERNEL(GRGB2GrayCustom, <GMat(GMat,float,float,float)>, "org.opencv.imgproc.colorconvert.rgb2graycustom") {
        static GMatDesc outMeta(GMatDesc in, float, float, float) {
            return in.withType(CV_8U, 1);
        }
    };

    G_TYPED_KERNEL(GBGR2Gray, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2gray") {
        static GMatDesc outMeta(GMatDesc in) {
            return in.withType(CV_8U, 1);
        }
    };

    G_TYPED_KERNEL(GBayerGR2RGB, <cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.bayergr2rgb") {
        static cv::GMatDesc outMeta(cv::GMatDesc in) {
            return in.withType(CV_8U, 3);
        }
    };

    G_TYPED_KERNEL(GRGB2HSV, <cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.rgb2hsv") {
        static cv::GMatDesc outMeta(cv::GMatDesc in) {
            return in;
        }
    };

    G_TYPED_KERNEL(GRGB2YUV422, <cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv422") {
        static cv::GMatDesc outMeta(cv::GMatDesc in) {
            GAPI_Assert(in.depth == CV_8U);
            GAPI_Assert(in.chan == 3);
            return in.withType(in.depth, 2);
        }
    };

    G_TYPED_KERNEL(GNV12toRGBp, <GMatP(GMat,GMat)>, "org.opencv.imgproc.colorconvert.nv12torgbp") {
        static GMatDesc outMeta(GMatDesc inY, GMatDesc inUV) {
            GAPI_Assert(inY.depth == CV_8U);
            GAPI_Assert(inUV.depth == CV_8U);
            GAPI_Assert(inY.chan == 1);
            GAPI_Assert(inY.planar == false);
            GAPI_Assert(inUV.chan == 2);
            GAPI_Assert(inUV.planar == false);
            GAPI_Assert(inY.size.width  == 2 * inUV.size.width);
            GAPI_Assert(inY.size.height == 2 * inUV.size.height);
            return inY.withType(CV_8U, 3).asPlanar();
        }
    };

    G_TYPED_KERNEL(GNV12toGray, <GMat(GMat,GMat)>, "org.opencv.imgproc.colorconvert.nv12togray") {
        static GMatDesc outMeta(GMatDesc inY, GMatDesc inUV) {
            GAPI_Assert(inY.depth   == CV_8U);
            GAPI_Assert(inUV.depth  == CV_8U);
            GAPI_Assert(inY.chan    == 1);
            GAPI_Assert(inY.planar  == false);
            GAPI_Assert(inUV.chan   == 2);
            GAPI_Assert(inUV.planar == false);

            GAPI_Assert(inY.size.width  == 2 * inUV.size.width);
            GAPI_Assert(inY.size.height == 2 * inUV.size.height);
            return inY.withType(CV_8U, 1);
        }
    };

    G_TYPED_KERNEL(GNV12toBGRp, <GMatP(GMat,GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgrp") {
        static GMatDesc outMeta(GMatDesc inY, GMatDesc inUV) {
            GAPI_Assert(inY.depth == CV_8U);
            GAPI_Assert(inUV.depth == CV_8U);
            GAPI_Assert(inY.chan == 1);
            GAPI_Assert(inY.planar == false);
            GAPI_Assert(inUV.chan == 2);
            GAPI_Assert(inUV.planar == false);
            GAPI_Assert(inY.size.width  == 2 * inUV.size.width);
            GAPI_Assert(inY.size.height == 2 * inUV.size.height);
            return inY.withType(CV_8U, 3).asPlanar();
        }
    };

} //namespace imgproc

//! @addtogroup gapi_filters
//! @{
/** @brief Applies a separable linear filter to a matrix(image).

The function applies a separable linear filter to the matrix. That is, first, every row of src is
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
kernel kernelY. The final result is returned.

Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - In case of floating-point computation, rounding to nearest even is procedeed
if hardware supports it (if not - to nearest value).
 - Function textual ID is "org.opencv.imgproc.filters.sepfilter"
@param src Source image.
@param ddepth desired depth of the destination image (the following combinations of src.depth() and ddepth are supported:

        src.depth() = CV_8U, ddepth = -1/CV_16S/CV_32F/CV_64F
        src.depth() = CV_16U/CV_16S, ddepth = -1/CV_32F/CV_64F
        src.depth() = CV_32F, ddepth = -1/CV_32F/CV_64F
        src.depth() = CV_64F, ddepth = -1/CV_64F

when ddepth=-1, the output image will have the same depth as the source)
@param kernelX Coefficients for filtering each row.
@param kernelY Coefficients for filtering each column.
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.
@param delta Value added to the filtered results before storing them.
@param borderType Pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa  boxFilter, gaussianBlur, medianBlur
 */
GAPI_EXPORTS GMat sepFilter(const GMat& src, int ddepth, const Mat& kernelX, const Mat& kernelY, const Point& anchor /*FIXME: = Point(-1,-1)*/,
                            const Scalar& delta /*FIXME = GScalar(0)*/, int borderType = BORDER_DEFAULT,
                            const Scalar& borderValue = Scalar(0));

/** @brief Convolves an image with the kernel.

The function applies an arbitrary linear filter to an image. When
the aperture is partially outside the image, the function interpolates outlier pixel values
according to the specified border mode.

The function does actually compute correlation, not the convolution:

\f[\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]

That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
the kernel using flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
anchor.y - 1)`.

Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same size and number of channels an input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.filter2D"

@param src input image.
@param ddepth desired depth of the destination image
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
matrix; if you want to apply different kernels to different channels, split the image into
separate color planes using split and process them individually.
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
is at the kernel center.
@param delta optional value added to the filtered pixels before storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa  sepFilter
 */
GAPI_EXPORTS GMat filter2D(const GMat& src, int ddepth, const Mat& kernel, const Point& anchor = Point(-1,-1), const Scalar& delta = Scalar(0),
                           int borderType = BORDER_DEFAULT, const Scalar& borderValue = Scalar(0));


/** @brief Blurs an image using the box filter.

The function smooths an image using the kernel:

\f[\texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}\f]

where

\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true}  \\1 & \texttt{otherwise} \end{cases}\f]

Unnormalized box filter is useful for computing various integral characteristics over each pixel
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use cv::integral.

Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.boxfilter"

@param src Source image.
@param dtype the output image depth (-1 to set the input image data type).
@param ksize blurring kernel size.
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.
@param normalize flag, specifying whether the kernel is normalized by its area or not.
@param borderType Pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa  sepFilter, gaussianBlur, medianBlur, integral
 */
GAPI_EXPORTS GMat boxFilter(const GMat& src, int dtype, const Size& ksize, const Point& anchor = Point(-1,-1),
                            bool normalize = true, int borderType = BORDER_DEFAULT,
                            const Scalar& borderValue = Scalar(0));

/** @brief Blurs an image using the normalized box filter.

The function smooths an image using the kernel:

\f[\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}\f]

The call `blur(src, ksize, anchor, borderType)` is equivalent to `boxFilter(src, src.type(), ksize, anchor,
true, borderType)`.

Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.blur"

@param src Source image.
@param ksize blurring kernel size.
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.
@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa  boxFilter, bilateralFilter, GaussianBlur, medianBlur
 */
GAPI_EXPORTS GMat blur(const GMat& src, const Size& ksize, const Point& anchor = Point(-1,-1),
                       int borderType = BORDER_DEFAULT, const Scalar& borderValue = Scalar(0));


//GAPI_EXPORTS_W void blur( InputArray src, OutputArray dst,
 //                       Size ksize, Point anchor = Point(-1,-1),
 //                       int borderType = BORDER_DEFAULT );


/** @brief Blurs an image using a Gaussian filter.

The function filter2Ds the source image with the specified Gaussian kernel.
Output image must have the same type and number of channels an input image.

Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.gaussianBlur"

@param src input image;
@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
positive and odd. Or, they can be zero's and then they are computed from sigma.
@param sigmaX Gaussian kernel standard deviation in X direction.
@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
respectively (see cv::getGaussianKernel for details); to fully control the result regardless of
possible future modifications of all this semantics, it is recommended to specify all of ksize,
sigmaX, and sigmaY.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa  sepFilter, boxFilter, medianBlur
 */
GAPI_EXPORTS GMat gaussianBlur(const GMat& src, const Size& ksize, double sigmaX, double sigmaY = 0,
                               int borderType = BORDER_DEFAULT, const Scalar& borderValue = Scalar(0));

/** @brief Blurs an image using the median filter.

The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
The median filter uses cv::BORDER_REPLICATE internally to cope with border pixels, see cv::BorderTypes
 - Function textual ID is "org.opencv.imgproc.filters.medianBlur"

@param src input matrix (image)
@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
@sa  boxFilter, gaussianBlur
 */
GAPI_EXPORTS_W GMat medianBlur(const GMat& src, int ksize);

/** @brief Erodes an image by using a specific structuring element.

The function erodes the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the minimum is taken:

\f[\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]

Erosion can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.erode"

@param src input image
@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
structuring element is used. Kernel can be created using getStructuringElement.
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times erosion is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa  dilate, morphologyEx
 */
GAPI_EXPORTS GMat erode(const GMat& src, const Mat& kernel, const Point& anchor = Point(-1,-1), int iterations = 1,
                        int borderType = BORDER_CONSTANT,
                        const  Scalar& borderValue = morphologyDefaultBorderValue());

/** @brief Erodes an image by using 3 by 3 rectangular structuring element.

The function erodes the source image using the rectangular structuring element with rectangle center as an anchor.
Erosion can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.erode"

@param src input image
@param iterations number of times erosion is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa  erode, dilate3x3
 */
GAPI_EXPORTS GMat erode3x3(const GMat& src, int iterations = 1,
                           int borderType = BORDER_CONSTANT,
                           const  Scalar& borderValue = morphologyDefaultBorderValue());

/** @brief Dilates an image by using a specific structuring element.

The function dilates the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the maximum is taken:
\f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]

Dilation can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.dilate"

@param src input image.
@param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
structuring element is used. Kernel can be created using getStructuringElement
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times dilation is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa  erode, morphologyEx, getStructuringElement
 */
GAPI_EXPORTS GMat dilate(const GMat& src, const Mat& kernel, const Point& anchor = Point(-1,-1), int iterations = 1,
                         int borderType = BORDER_CONSTANT,
                         const  Scalar& borderValue = morphologyDefaultBorderValue());

/** @brief Dilates an image by using 3 by 3 rectangular structuring element.

The function dilates the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the maximum is taken:
\f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]

Dilation can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.dilate"

@param src input image.
@param iterations number of times dilation is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa  dilate, erode3x3
 */

GAPI_EXPORTS GMat dilate3x3(const GMat& src, int iterations = 1,
                            int borderType = BORDER_CONSTANT,
                            const  Scalar& borderValue = morphologyDefaultBorderValue());

/** @brief Performs advanced morphological transformations.

The function can perform advanced morphological transformations using an erosion and dilation as
basic operations.

Any of the operations can be done in-place. In case of multi-channel images, each channel is
processed independently.

@note
 - Function textual ID is "org.opencv.imgproc.filters.morphologyEx"
 - The number of iterations is the number of times erosion or dilatation operation will be
applied. For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to
apply successively: erode -> erode -> dilate -> dilate
(and not erode -> dilate -> erode -> dilate).

@param src Input image.
@param op Type of a morphological operation, see #MorphTypes
@param kernel Structuring element. It can be created using #getStructuringElement.
@param anchor Anchor position within the element. Both negative values mean that the anchor is at
the kernel center.
@param iterations Number of times erosion and dilation are applied.
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@param borderValue Border value in case of a constant border. The default value has a special
meaning.
@sa  dilate, erode, getStructuringElement
 */
GAPI_EXPORTS GMat morphologyEx(const GMat &src, const MorphTypes op, const Mat &kernel,
                               const Point       &anchor      = Point(-1,-1),
                               const int          iterations  = 1,
                               const BorderTypes  borderType  = BORDER_CONSTANT,
                               const Scalar      &borderValue = morphologyDefaultBorderValue());

/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
or the second x- or y- derivatives.

There is also the special value `ksize = FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is

\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]

for the x-derivative, or transposed for the y-derivative.

The function calculates an image derivative by convolving the image with the appropriate kernel:

\f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]

The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
case corresponds to a kernel of:

\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]

The second case corresponds to a kernel of:

\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]

@note
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.sobel"

@param src input image.
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
    8-bit input images it will result in truncated derivatives.
@param dx order of the derivative x.
@param dy order of the derivative y.
@param ksize size of the extended Sobel kernel; it must be odd.
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see cv::getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa filter2D, gaussianBlur, cartToPolar
 */
GAPI_EXPORTS GMat Sobel(const GMat& src, int ddepth, int dx, int dy, int ksize = 3,
                        double scale = 1, double delta = 0,
                        int borderType = BORDER_DEFAULT,
                        const Scalar& borderValue = Scalar(0));

/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
or the second x- or y- derivatives.

There is also the special value `ksize = FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is

\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]

for the x-derivative, or transposed for the y-derivative.

The function calculates an image derivative by convolving the image with the appropriate kernel:

\f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]

The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
case corresponds to a kernel of:

\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]

The second case corresponds to a kernel of:

\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]

@note
 - First returned matrix correspons to dx derivative while the second one to dy.
 - Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
 - Function textual ID is "org.opencv.imgproc.filters.sobelxy"

@param src input image.
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
    8-bit input images it will result in truncated derivatives.
@param order order of the derivatives.
@param ksize size of the extended Sobel kernel; it must be odd.
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see cv::getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa filter2D, gaussianBlur, cartToPolar
 */
GAPI_EXPORTS std::tuple<GMat, GMat> SobelXY(const GMat& src, int ddepth, int order, int ksize = 3,
                        double scale = 1, double delta = 0,
                        int borderType = BORDER_DEFAULT,
                        const Scalar& borderValue = Scalar(0));

/** @brief Calculates the Laplacian of an image.

The function calculates the Laplacian of the source image by adding up the second x and y
derivatives calculated using the Sobel operator:

\f[\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\f]

This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
with the following \f$3 \times 3\f$ aperture:

\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]

@note Function textual ID is "org.opencv.imgproc.filters.laplacian"

@param src Source image.
@param ddepth Desired depth of the destination image.
@param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
details. The size must be positive and odd.
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
applied. See #getDerivKernels for details.
@param delta Optional delta value that is added to the results prior to storing them in dst .
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@return Destination image of the same size and the same number of channels as src.
@sa  Sobel, Scharr
 */
GAPI_EXPORTS GMat Laplacian(const GMat& src, int ddepth, int ksize = 1,
                            double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT);

/** @brief Applies the bilateral filter to an image.

The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
very slow compared to most filters.

_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
strong effect, making the image look "cartoonish".

_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
applications, and perhaps d=9 for offline applications that need heavy noise filtering.

This filter does not work inplace.

@note Function textual ID is "org.opencv.imgproc.filters.bilateralfilter"

@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
it is computed from sigmaSpace.
@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
in larger areas of semi-equal color.
@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
proportional to sigmaSpace.
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
@return Destination image of the same size and type as src.
 */
GAPI_EXPORTS GMat bilateralFilter(const GMat& src, int d, double sigmaColor, double sigmaSpace,
                                  int borderType = BORDER_DEFAULT);

//! @} gapi_filters

//! @addtogroup gapi_feature
//! @{
/** @brief Finds edges in an image using the Canny algorithm.

The function finds edges in the input image and marks them in the output map edges using the
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
largest value is used to find initial segments of strong edges. See
<http://en.wikipedia.org/wiki/Canny_edge_detector>

@note Function textual ID is "org.opencv.imgproc.feature.canny"

@param image 8-bit input image.
@param threshold1 first threshold for the hysteresis procedure.
@param threshold2 second threshold for the hysteresis procedure.
@param apertureSize aperture size for the Sobel operator.
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
L2gradient=false ).
 */
GAPI_EXPORTS GMat Canny(const GMat& image, double threshold1, double threshold2,
                        int apertureSize = 3, bool L2gradient = false);

/** @brief Determines strong corners on an image.

The function finds the most prominent corners in the image or in the specified image region, as
described in @cite Shi94

-   Function calculates the corner quality measure at every source image pixel using the
    #cornerMinEigenVal or #cornerHarris .
-   Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
    retained).
-   The corners with the minimal eigenvalue less than
    \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
-   The remaining corners are sorted by the quality measure in the descending order.
-   Function throws away each corner for which there is a stronger corner at a distance less than
    maxDistance.

The function can be used to initialize a point-based tracker of an object.

@note
 - If the function is called with different values A and B of the parameter qualityLevel , and
A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
with qualityLevel=B .
 - Function textual ID is "org.opencv.imgproc.feature.goodFeaturesToTrack"

@param image Input 8-bit or floating-point 32-bit, single-channel image.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
and all detected corners are returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param mask Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
or #cornerMinEigenVal.
@param k Free parameter of the Harris detector.

@return vector of detected corners.
 */
GAPI_EXPORTS_W GArray<Point2f> goodFeaturesToTrack(const GMat  &image,
                                                       int    maxCorners,
                                                       double qualityLevel,
                                                       double minDistance,
                                                 const Mat   &mask = Mat(),
                                                       int    blockSize = 3,
                                                       bool   useHarrisDetector = false,
                                                       double k = 0.04);

/** @brief Equalizes the histogram of a grayscale image.

//! @} gapi_feature

The function equalizes the histogram of the input image using the following algorithm:

- Calculate the histogram \f$H\f$ for src .
- Normalize the histogram so that the sum of histogram bins is 255.
- Compute the integral of the histogram:
\f[H'_i =  \sum _{0  \le j < i} H(j)\f]
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$

The algorithm normalizes the brightness and increases the contrast of the image.
@note
 - The returned image is of the same size and type as input.
 - Function textual ID is "org.opencv.imgproc.equalizeHist"

@param src Source 8-bit single channel image.
 */
GAPI_EXPORTS GMat equalizeHist(const GMat& src);

//! @addtogroup gapi_shape
//! @{
/** @brief Finds contours in a binary image.

The function retrieves contours from the binary image using the algorithm @cite Suzuki85 .
The contours are a useful tool for shape analysis and object detection and recognition.
See squares.cpp in the OpenCV sample directory.

@note Function textual ID is "org.opencv.imgproc.shape.findContours"

@param src Input gray-scale image @ref CV_8UC1. Non-zero pixels are treated as 1's. Zero
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
If mode equals to #RETR_CCOMP, the input can also be a 32-bit integer
image of labels ( @ref CV_32SC1 ). If #RETR_FLOODFILL then @ref CV_32SC1 is supported only.
@param mode Contour retrieval mode, see #RetrievalModes
@param method Contour approximation method, see #ContourApproximationModes
@param offset Optional offset by which every contour point is shifted. This is useful if the
contours are extracted from the image ROI and then they should be analyzed in the whole image
context.

@return GArray of detected contours. Each contour is stored as a GArray of points.
 */
GAPI_EXPORTS GArray<GArray<Point>>
findContours(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method,
             const GOpaque<Point> &offset);

// FIXME oc: make default value offset = Point()
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.findContoursNoOffset"
 */
GAPI_EXPORTS GArray<GArray<Point>>
findContours(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method);

/** @brief Finds contours and their hierarchy in a binary image.

The function retrieves contours from the binary image using the algorithm @cite Suzuki85
and calculates their hierarchy.
The contours are a useful tool for shape analysis and object detection and recognition.
See squares.cpp in the OpenCV sample directory.

@note Function textual ID is "org.opencv.imgproc.shape.findContoursH"

@param src Input gray-scale image @ref CV_8UC1. Non-zero pixels are treated as 1's. Zero
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
If mode equals to #RETR_CCOMP, the input can also be a 32-bit integer
image of labels ( @ref CV_32SC1 ). If #RETR_FLOODFILL -- @ref CV_32SC1 supports only.
@param mode Contour retrieval mode, see #RetrievalModes
@param method Contour approximation method, see #ContourApproximationModes
@param offset Optional offset by which every contour point is shifted. This is useful if the
contours are extracted from the image ROI and then they should be analyzed in the whole image
context.

@return
 - GArray of detected contours. Each contour is stored as a GArray of points.
 - Optional output GArray of cv::Vec4i, containing information about the image topology.
It has as many elements as the number of contours. For each i-th contour contours[i], the elements
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based
indices in contours of the next and previous contours at the same hierarchical level, the first
child contour and the parent contour, respectively. If for the contour i there are no next,
previous, parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
 */
GAPI_EXPORTS std::tuple<GArray<GArray<Point>>,GArray<Vec4i>>
findContoursH(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method,
              const GOpaque<Point> &offset);

// FIXME oc: make default value offset = Point()
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.findContoursHNoOffset"
 */
GAPI_EXPORTS std::tuple<GArray<GArray<Point>>,GArray<Vec4i>>
findContoursH(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method);

/** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels
of gray-scale image.

The function calculates and returns the minimal up-right bounding rectangle for the specified
point set or non-zero pixels of gray-scale image.

@note
 - Function textual ID is "org.opencv.imgproc.shape.boundingRectMat"
 - In case of a 2D points' set given, Mat should be 2-dimensional, have a single row or column
if there are 2 channels, or have 2 columns if there is a single channel. Mat should have either
@ref CV_32S or @ref CV_32F depth

@param src Input gray-scale image @ref CV_8UC1; or input set of @ref CV_32S or @ref CV_32F
2D points stored in Mat.
 */
GAPI_EXPORTS_W GOpaque<Rect> boundingRect(const GMat& src);

/** @overload

Calculates the up-right bounding rectangle of a point set.

@note Function textual ID is "org.opencv.imgproc.shape.boundingRectVector32S"

@param src Input 2D point set, stored in std::vector<cv::Point2i>.
 */
GAPI_EXPORTS_W GOpaque<Rect> boundingRect(const GArray<Point2i>& src);

/** @overload

Calculates the up-right bounding rectangle of a point set.

@note Function textual ID is "org.opencv.imgproc.shape.boundingRectVector32F"

@param src Input 2D point set, stored in std::vector<cv::Point2f>.
 */
GAPI_EXPORTS GOpaque<Rect> boundingRect(const GArray<Point2f>& src);

/** @brief Fits a line to a 2D point set.

The function fits a line to a 2D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance
function, one of the following:
-  DIST_L2
\f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f]
- DIST_L1
\f[\rho (r) = r\f]
- DIST_L12
\f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
- DIST_FAIR
\f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f]
- DIST_WELSCH
\f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f]
- DIST_HUBER
\f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]

The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .

@note
 - Function textual ID is "org.opencv.imgproc.shape.fitLine2DMat"
 - In case of an N-dimentional points' set given, Mat should be 2-dimensional, have a single row
or column if there are N channels, or have N columns if there is a single channel.

@param src Input set of 2D points stored in one of possible containers: Mat,
std::vector<cv::Point2i>, std::vector<cv::Point2f>, std::vector<cv::Point2d>.
@param distType Distance used by the M-estimator, see #DistanceTypes. @ref DIST_USER
and @ref DIST_C are not suppored.
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
is chosen.
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the
line). 1.0 would be a good default value for reps. If it is 0, a default value is chosen.
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for aeps.
If it is 0, a default value is chosen.

@return Output line parameters: a vector of 4 elements (like Vec4f) - (vx, vy, x0, y0),
where (vx, vy) is a normalized vector collinear to the line and (x0, y0) is a point on the line.
 */
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GMat& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

/** @overload

@note Function textual ID is "org.opencv.imgproc.shape.fitLine2DVector32S"

 */
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GArray<Point2i>& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

/** @overload

@note Function textual ID is "org.opencv.imgproc.shape.fitLine2DVector32F"

 */
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GArray<Point2f>& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

/** @overload

@note Function textual ID is "org.opencv.imgproc.shape.fitLine2DVector64F"

 */
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GArray<Point2d>& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

/** @brief Fits a line to a 3D point set.

The function fits a line to a 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance
function, one of the following:
-  DIST_L2
\f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f]
- DIST_L1
\f[\rho (r) = r\f]
- DIST_L12
\f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
- DIST_FAIR
\f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f]
- DIST_WELSCH
\f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f]
- DIST_HUBER
\f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]

The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .

@note
 - Function textual ID is "org.opencv.imgproc.shape.fitLine3DMat"
 - In case of an N-dimentional points' set given, Mat should be 2-dimensional, have a single row
or column if there are N channels, or have N columns if there is a single channel.

@param src Input set of 3D points stored in one of possible containers: Mat,
std::vector<cv::Point3i>, std::vector<cv::Point3f>, std::vector<cv::Point3d>.
@param distType Distance used by the M-estimator, see #DistanceTypes. @ref DIST_USER
and @ref DIST_C are not suppored.
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
is chosen.
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the
line). 1.0 would be a good default value for reps. If it is 0, a default value is chosen.
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for aeps.
If it is 0, a default value is chosen.

@return Output line parameters: a vector of 6 elements (like Vec6f) - (vx, vy, vz, x0, y0, z0),
where (vx, vy, vz) is a normalized vector collinear to the line and (x0, y0, z0) is a point on
the line.
 */
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GMat& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

/** @overload

@note Function textual ID is "org.opencv.imgproc.shape.fitLine3DVector32S"

 */
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GArray<Point3i>& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

/** @overload

@note Function textual ID is "org.opencv.imgproc.shape.fitLine3DVector32F"

 */
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GArray<Point3f>& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

/** @overload

@note Function textual ID is "org.opencv.imgproc.shape.fitLine3DVector64F"

 */
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GArray<Point3d>& src, const DistanceTypes distType,
                                      const double param = 0., const double reps = 0.,
                                      const double aeps = 0.);

//! @} gapi_shape

//! @addtogroup gapi_colorconvert
//! @{
/** @brief Converts an image from BGR color space to RGB color space.

The function converts an input image from BGR color space to RGB.
The conventional ranges for B, G, and R channel values are 0 to 255.

Output image is 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2rgb"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa RGB2BGR
*/
GAPI_EXPORTS_W GMat BGR2RGB(const GMat& src);

/** @brief Converts an image from RGB color space to gray-scaled.

The conventional ranges for R, G, and B channel values are 0 to 255.
Resulting gray color value computed as
\f[\texttt{dst} (I)= \texttt{0.299} * \texttt{src}(I).R + \texttt{0.587} * \texttt{src}(I).G  + \texttt{0.114} * \texttt{src}(I).B \f]

@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2gray"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@sa RGB2YUV
 */
GAPI_EXPORTS_W GMat RGB2Gray(const GMat& src);

/** @overload
Resulting gray color value computed as
\f[\texttt{dst} (I)= \texttt{rY} * \texttt{src}(I).R + \texttt{gY} * \texttt{src}(I).G  + \texttt{bY} * \texttt{src}(I).B \f]

@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2graycustom"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@param rY float multiplier for R channel.
@param gY float multiplier for G channel.
@param bY float multiplier for B channel.
@sa RGB2YUV
 */
GAPI_EXPORTS GMat RGB2Gray(const GMat& src, float rY, float gY, float bY);

/** @brief Converts an image from BGR color space to gray-scaled.

The conventional ranges for B, G, and R channel values are 0 to 255.
Resulting gray color value computed as
\f[\texttt{dst} (I)= \texttt{0.114} * \texttt{src}(I).B + \texttt{0.587} * \texttt{src}(I).G  + \texttt{0.299} * \texttt{src}(I).R \f]

@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2gray"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@sa BGR2LUV
 */
GAPI_EXPORTS GMat BGR2Gray(const GMat& src);

/** @brief Converts an image from RGB color space to YUV color space.

The function converts an input image from RGB color space to YUV.
The conventional ranges for R, G, and B channel values are 0 to 255.

In case of linear transformations, the range does not matter. But in case of a non-linear
transformation, an input RGB image should be normalized to the proper value range to get the correct
results, like here, at RGB \f$\rightarrow\f$ Y\*u\*v\* transformation.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2yuv"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa YUV2RGB, RGB2Lab
*/
GAPI_EXPORTS GMat RGB2YUV(const GMat& src);

/** @brief Converts an image from BGR color space to I420 color space.

The function converts an input image from BGR color space to I420.
The conventional ranges for R, G, and B channel values are 0 to 255.

Output image must be 8-bit unsigned 1-channel image. @ref CV_8UC1.
Width of I420 output image must be the same as width of input image.
Height of I420 output image must be equal 3/2 from height of input image.

@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2i420"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa I4202BGR
*/
GAPI_EXPORTS GMat BGR2I420(const GMat& src);

/** @brief Converts an image from RGB color space to I420 color space.

The function converts an input image from RGB color space to I420.
The conventional ranges for R, G, and B channel values are 0 to 255.

Output image must be 8-bit unsigned 1-channel image. @ref CV_8UC1.
Width of I420 output image must be the same as width of input image.
Height of I420 output image must be equal 3/2 from height of input image.

@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2i420"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa I4202RGB
*/
GAPI_EXPORTS GMat RGB2I420(const GMat& src);

/** @brief Converts an image from I420 color space to BGR color space.

The function converts an input image from I420 color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image. @ref CV_8UC3.
Width of BGR output image must be the same as width of input image.
Height of BGR output image must be equal 2/3 from height of input image.

@note Function textual ID is "org.opencv.imgproc.colorconvert.i4202bgr"

@param src input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@sa BGR2I420
*/
GAPI_EXPORTS GMat I4202BGR(const GMat& src);

/** @brief Converts an image from I420 color space to BGR color space.

The function converts an input image from I420 color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image. @ref CV_8UC3.
Width of RGB output image must be the same as width of input image.
Height of RGB output image must be equal 2/3 from height of input image.

@note Function textual ID is "org.opencv.imgproc.colorconvert.i4202rgb"

@param src input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@sa RGB2I420
*/
GAPI_EXPORTS GMat I4202RGB(const GMat& src);

/** @brief Converts an image from BGR color space to LUV color space.

The function converts an input image from BGR color space to LUV.
The conventional ranges for B, G, and R channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2luv"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa RGB2Lab, RGB2LUV
*/
GAPI_EXPORTS GMat BGR2LUV(const GMat& src);

/** @brief Converts an image from LUV color space to BGR color space.

The function converts an input image from LUV color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.luv2bgr"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa BGR2LUV
*/
GAPI_EXPORTS GMat LUV2BGR(const GMat& src);

/** @brief Converts an image from YUV color space to BGR color space.

The function converts an input image from YUV color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.yuv2bgr"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa BGR2YUV
*/
GAPI_EXPORTS GMat YUV2BGR(const GMat& src);

/** @brief Converts an image from BGR color space to YUV color space.

The function converts an input image from BGR color space to YUV.
The conventional ranges for B, G, and R channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2yuv"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa YUV2BGR
*/
GAPI_EXPORTS GMat BGR2YUV(const GMat& src);

/** @brief Converts an image from RGB color space to Lab color space.

The function converts an input image from BGR color space to Lab.
The conventional ranges for R, G, and B channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC1.

@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2lab"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@sa RGB2YUV, RGB2LUV
*/
GAPI_EXPORTS GMat RGB2Lab(const GMat& src);

/** @brief Converts an image from YUV color space to RGB.
The function converts an input image from YUV color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.yuv2rgb"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.

@sa RGB2Lab, RGB2YUV
*/
GAPI_EXPORTS GMat YUV2RGB(const GMat& src);

/** @brief Converts an image from NV12 (YUV420p) color space to RGB.
The function converts an input image from NV12 color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12torgb"

@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.

@sa YUV2RGB, NV12toBGR
*/
GAPI_EXPORTS GMat NV12toRGB(const GMat& src_y, const GMat& src_uv);

/** @brief Converts an image from NV12 (YUV420p) color space to gray-scaled.
The function converts an input image from NV12 color space to gray-scaled.
The conventional ranges for Y, U, and V channel values are 0 to 255.

Output image must be 8-bit unsigned 1-channel image @ref CV_8UC1.

@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12togray"

@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.

@sa YUV2RGB, NV12toBGR
*/
GAPI_EXPORTS GMat NV12toGray(const GMat& src_y, const GMat& src_uv);

/** @brief Converts an image from NV12 (YUV420p) color space to BGR.
The function converts an input image from NV12 color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12tobgr"

@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.

@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat NV12toBGR(const GMat& src_y, const GMat& src_uv);

/** @brief Converts an image from BayerGR color space to RGB.
The function converts an input image from BayerGR color space to RGB.
The conventional ranges for G, R, and B channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.bayergr2rgb"

@param src_gr input image: 8-bit unsigned 1-channel image @ref CV_8UC1.

@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat BayerGR2RGB(const GMat& src_gr);

/** @brief Converts an image from RGB color space to HSV.
The function converts an input image from RGB color space to HSV.
The conventional ranges for R, G, and B channel values are 0 to 255.

Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.

@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2hsv"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.

@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat RGB2HSV(const GMat& src);

/** @brief Converts an image from RGB color space to YUV422.
The function converts an input image from RGB color space to YUV422.
The conventional ranges for R, G, and B channel values are 0 to 255.

Output image must be 8-bit unsigned 2-channel image @ref CV_8UC2.

@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2yuv422"

@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.

@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat RGB2YUV422(const GMat& src);

/** @brief Converts an image from NV12 (YUV420p) color space to RGB.
The function converts an input image from NV12 color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.

Output image must be 8-bit unsigned planar 3-channel image @ref CV_8UC1.
Planar image memory layout is three planes laying in the memory contiguously,
so the image height should be plane_height*plane_number,
image type is @ref CV_8UC1.

@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12torgbp"

@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.

@sa YUV2RGB, NV12toBGRp, NV12toRGB
*/
GAPI_EXPORTS GMatP NV12toRGBp(const GMat &src_y, const GMat &src_uv);

/** @brief Converts an image from NV12 (YUV420p) color space to BGR.
The function converts an input image from NV12 color space to BGR.
The conventional ranges for Y, U, and V channel values are 0 to 255.

Output image must be 8-bit unsigned planar 3-channel image @ref CV_8UC1.
Planar image memory layout is three planes laying in the memory contiguously,
so the image height should be plane_height*plane_number,
image type is @ref CV_8UC1.

@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12torgbp"

@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.

@sa YUV2RGB, NV12toRGBp, NV12toBGR
*/
GAPI_EXPORTS GMatP NV12toBGRp(const GMat &src_y, const GMat &src_uv);

//! @} gapi_colorconvert
} //namespace gapi
} //namespace cv

#endif // OPENCV_GAPI_IMGPROC_HPP