imgproc.hpp
74.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_IMGPROC_HPP
#define OPENCV_GAPI_IMGPROC_HPP
#include <opencv2/imgproc.hpp>
#include <utility> // std::tuple
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
/** \defgroup gapi_imgproc G-API Image processing functionality
@{
@defgroup gapi_filters Graph API: Image filters
@defgroup gapi_colorconvert Graph API: Converting image from one color space to another
@defgroup gapi_feature Graph API: Image Feature Detection
@defgroup gapi_shape Graph API: Image Structural Analysis and Shape Descriptors
@}
*/
namespace {
void validateFindingContoursMeta(const int depth, const int chan, const int mode)
{
GAPI_Assert(chan == 1);
switch (mode)
{
case cv::RETR_CCOMP:
GAPI_Assert(depth == CV_8U || depth == CV_32S);
break;
case cv::RETR_FLOODFILL:
GAPI_Assert(depth == CV_32S);
break;
default:
GAPI_Assert(depth == CV_8U);
break;
}
}
} // anonymous namespace
namespace cv { namespace gapi {
/**
* @brief This namespace contains G-API Operation Types for OpenCV
* ImgProc module functionality.
*/
namespace imgproc {
using GMat2 = std::tuple<GMat,GMat>;
using GMat3 = std::tuple<GMat,GMat,GMat>; // FIXME: how to avoid this?
using GFindContoursOutput = std::tuple<GArray<GArray<Point>>,GArray<Vec4i>>;
G_TYPED_KERNEL(GFilter2D, <GMat(GMat,int,Mat,Point,Scalar,int,Scalar)>,"org.opencv.imgproc.filters.filter2D") {
static GMatDesc outMeta(GMatDesc in, int ddepth, Mat, Point, Scalar, int, Scalar) {
return in.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GSepFilter, <GMat(GMat,int,Mat,Mat,Point,Scalar,int,Scalar)>, "org.opencv.imgproc.filters.sepfilter") {
static GMatDesc outMeta(GMatDesc in, int ddepth, Mat, Mat, Point, Scalar, int, Scalar) {
return in.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GBoxFilter, <GMat(GMat,int,Size,Point,bool,int,Scalar)>, "org.opencv.imgproc.filters.boxfilter") {
static GMatDesc outMeta(GMatDesc in, int ddepth, Size, Point, bool, int, Scalar) {
return in.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GBlur, <GMat(GMat,Size,Point,int,Scalar)>, "org.opencv.imgproc.filters.blur"){
static GMatDesc outMeta(GMatDesc in, Size, Point, int, Scalar) {
return in;
}
};
G_TYPED_KERNEL(GGaussBlur, <GMat(GMat,Size,double,double,int,Scalar)>, "org.opencv.imgproc.filters.gaussianBlur") {
static GMatDesc outMeta(GMatDesc in, Size, double, double, int, Scalar) {
return in;
}
};
G_TYPED_KERNEL(GMedianBlur, <GMat(GMat,int)>, "org.opencv.imgproc.filters.medianBlur") {
static GMatDesc outMeta(GMatDesc in, int) {
return in;
}
};
G_TYPED_KERNEL(GErode, <GMat(GMat,Mat,Point,int,int,Scalar)>, "org.opencv.imgproc.filters.erode") {
static GMatDesc outMeta(GMatDesc in, Mat, Point, int, int, Scalar) {
return in;
}
};
G_TYPED_KERNEL(GDilate, <GMat(GMat,Mat,Point,int,int,Scalar)>, "org.opencv.imgproc.filters.dilate") {
static GMatDesc outMeta(GMatDesc in, Mat, Point, int, int, Scalar) {
return in;
}
};
G_TYPED_KERNEL(GMorphologyEx, <GMat(GMat,MorphTypes,Mat,Point,int,BorderTypes,Scalar)>,
"org.opencv.imgproc.filters.morphologyEx") {
static GMatDesc outMeta(const GMatDesc &in, MorphTypes, Mat, Point, int,
BorderTypes, Scalar) {
return in;
}
};
G_TYPED_KERNEL(GSobel, <GMat(GMat,int,int,int,int,double,double,int,Scalar)>, "org.opencv.imgproc.filters.sobel") {
static GMatDesc outMeta(GMatDesc in, int ddepth, int, int, int, double, double, int, Scalar) {
return in.withDepth(ddepth);
}
};
G_TYPED_KERNEL_M(GSobelXY, <GMat2(GMat,int,int,int,double,double,int,Scalar)>, "org.opencv.imgproc.filters.sobelxy") {
static std::tuple<GMatDesc, GMatDesc> outMeta(GMatDesc in, int ddepth, int, int, double, double, int, Scalar) {
return std::make_tuple(in.withDepth(ddepth), in.withDepth(ddepth));
}
};
G_TYPED_KERNEL(GLaplacian, <GMat(GMat,int, int, double, double, int)>,
"org.opencv.imgproc.filters.laplacian") {
static GMatDesc outMeta(GMatDesc in, int ddepth, int, double, double, int) {
return in.withDepth(ddepth);
}
};
G_TYPED_KERNEL(GBilateralFilter, <GMat(GMat,int, double, double, int)>,
"org.opencv.imgproc.filters.bilateralfilter") {
static GMatDesc outMeta(GMatDesc in, int, double, double, int) {
return in;
}
};
G_TYPED_KERNEL(GEqHist, <GMat(GMat)>, "org.opencv.imgproc.equalizeHist"){
static GMatDesc outMeta(GMatDesc in) {
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GCanny, <GMat(GMat,double,double,int,bool)>, "org.opencv.imgproc.feature.canny"){
static GMatDesc outMeta(GMatDesc in, double, double, int, bool) {
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GGoodFeatures,
<cv::GArray<cv::Point2f>(GMat,int,double,double,Mat,int,bool,double)>,
"org.opencv.imgproc.feature.goodFeaturesToTrack") {
static GArrayDesc outMeta(GMatDesc, int, double, double, const Mat&, int, bool, double) {
return empty_array_desc();
}
};
using RetrMode = RetrievalModes;
using ContMethod = ContourApproximationModes;
G_TYPED_KERNEL(GFindContours, <GArray<GArray<Point>>(GMat,RetrMode,ContMethod,GOpaque<Point>)>,
"org.opencv.imgproc.shape.findContours")
{
static GArrayDesc outMeta(GMatDesc in, RetrMode mode, ContMethod, GOpaqueDesc)
{
validateFindingContoursMeta(in.depth, in.chan, mode);
return empty_array_desc();
}
};
// FIXME oc: make default value offset = Point()
G_TYPED_KERNEL(GFindContoursNoOffset, <GArray<GArray<Point>>(GMat,RetrMode,ContMethod)>,
"org.opencv.imgproc.shape.findContoursNoOffset")
{
static GArrayDesc outMeta(GMatDesc in, RetrMode mode, ContMethod)
{
validateFindingContoursMeta(in.depth, in.chan, mode);
return empty_array_desc();
}
};
G_TYPED_KERNEL(GFindContoursH,<GFindContoursOutput(GMat,RetrMode,ContMethod,GOpaque<Point>)>,
"org.opencv.imgproc.shape.findContoursH")
{
static std::tuple<GArrayDesc,GArrayDesc>
outMeta(GMatDesc in, RetrMode mode, ContMethod, GOpaqueDesc)
{
validateFindingContoursMeta(in.depth, in.chan, mode);
return std::make_tuple(empty_array_desc(), empty_array_desc());
}
};
// FIXME oc: make default value offset = Point()
G_TYPED_KERNEL(GFindContoursHNoOffset,<GFindContoursOutput(GMat,RetrMode,ContMethod)>,
"org.opencv.imgproc.shape.findContoursHNoOffset")
{
static std::tuple<GArrayDesc,GArrayDesc>
outMeta(GMatDesc in, RetrMode mode, ContMethod)
{
validateFindingContoursMeta(in.depth, in.chan, mode);
return std::make_tuple(empty_array_desc(), empty_array_desc());
}
};
G_TYPED_KERNEL(GBoundingRectMat, <GOpaque<Rect>(GMat)>,
"org.opencv.imgproc.shape.boundingRectMat") {
static GOpaqueDesc outMeta(GMatDesc in) {
if (in.depth == CV_8U)
{
GAPI_Assert(in.chan == 1);
}
else
{
GAPI_Assert (in.depth == CV_32S || in.depth == CV_32F);
int amount = detail::checkVector(in, 2u);
GAPI_Assert(amount != -1 &&
"Input Mat can't be described as vector of 2-dimentional points");
}
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GBoundingRectVector32S, <GOpaque<Rect>(GArray<Point2i>)>,
"org.opencv.imgproc.shape.boundingRectVector32S") {
static GOpaqueDesc outMeta(GArrayDesc) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GBoundingRectVector32F, <GOpaque<Rect>(GArray<Point2f>)>,
"org.opencv.imgproc.shape.boundingRectVector32F") {
static GOpaqueDesc outMeta(GArrayDesc) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine2DMat, <GOpaque<Vec4f>(GMat,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine2DMat") {
static GOpaqueDesc outMeta(GMatDesc in,DistanceTypes,double,double,double) {
int amount = detail::checkVector(in, 2u);
GAPI_Assert(amount != -1 &&
"Input Mat can't be described as vector of 2-dimentional points");
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine2DVector32S,
<GOpaque<Vec4f>(GArray<Point2i>,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine2DVector32S") {
static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine2DVector32F,
<GOpaque<Vec4f>(GArray<Point2f>,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine2DVector32F") {
static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine2DVector64F,
<GOpaque<Vec4f>(GArray<Point2d>,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine2DVector64F") {
static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine3DMat, <GOpaque<Vec6f>(GMat,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine3DMat") {
static GOpaqueDesc outMeta(GMatDesc in,int,double,double,double) {
int amount = detail::checkVector(in, 3u);
GAPI_Assert(amount != -1 &&
"Input Mat can't be described as vector of 3-dimentional points");
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine3DVector32S,
<GOpaque<Vec6f>(GArray<Point3i>,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine3DVector32S") {
static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine3DVector32F,
<GOpaque<Vec6f>(GArray<Point3f>,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine3DVector32F") {
static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GFitLine3DVector64F,
<GOpaque<Vec6f>(GArray<Point3d>,DistanceTypes,double,double,double)>,
"org.opencv.imgproc.shape.fitLine3DVector64F") {
static GOpaqueDesc outMeta(GArrayDesc,DistanceTypes,double,double,double) {
return empty_gopaque_desc();
}
};
G_TYPED_KERNEL(GBGR2RGB, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2rgb") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GRGB2YUV, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GYUV2RGB, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2rgb") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GBGR2I420, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2i420") {
static GMatDesc outMeta(GMatDesc in) {
GAPI_Assert(in.depth == CV_8U);
GAPI_Assert(in.chan == 3);
GAPI_Assert(in.size.height % 2 == 0);
return in.withType(in.depth, 1).withSize(Size(in.size.width, in.size.height * 3 / 2));
}
};
G_TYPED_KERNEL(GRGB2I420, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2i420") {
static GMatDesc outMeta(GMatDesc in) {
GAPI_Assert(in.depth == CV_8U);
GAPI_Assert(in.chan == 3);
GAPI_Assert(in.size.height % 2 == 0);
return in.withType(in.depth, 1).withSize(Size(in.size.width, in.size.height * 3 / 2));
}
};
G_TYPED_KERNEL(GI4202BGR, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202bgr") {
static GMatDesc outMeta(GMatDesc in) {
GAPI_Assert(in.depth == CV_8U);
GAPI_Assert(in.chan == 1);
GAPI_Assert(in.size.height % 3 == 0);
return in.withType(in.depth, 3).withSize(Size(in.size.width, in.size.height * 2 / 3));
}
};
G_TYPED_KERNEL(GI4202RGB, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.i4202rgb") {
static GMatDesc outMeta(GMatDesc in) {
GAPI_Assert(in.depth == CV_8U);
GAPI_Assert(in.chan == 1);
GAPI_Assert(in.size.height % 3 == 0);
return in.withType(in.depth, 3).withSize(Size(in.size.width, in.size.height * 2 / 3));
}
};
G_TYPED_KERNEL(GNV12toRGB, <GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12torgb") {
static GMatDesc outMeta(GMatDesc in_y, GMatDesc in_uv) {
GAPI_Assert(in_y.chan == 1);
GAPI_Assert(in_uv.chan == 2);
GAPI_Assert(in_y.depth == CV_8U);
GAPI_Assert(in_uv.depth == CV_8U);
// UV size should be aligned with Y
GAPI_Assert(in_y.size.width == 2 * in_uv.size.width);
GAPI_Assert(in_y.size.height == 2 * in_uv.size.height);
return in_y.withType(CV_8U, 3); // type will be CV_8UC3;
}
};
G_TYPED_KERNEL(GNV12toBGR, <GMat(GMat, GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgr") {
static GMatDesc outMeta(GMatDesc in_y, GMatDesc in_uv) {
GAPI_Assert(in_y.chan == 1);
GAPI_Assert(in_uv.chan == 2);
GAPI_Assert(in_y.depth == CV_8U);
GAPI_Assert(in_uv.depth == CV_8U);
// UV size should be aligned with Y
GAPI_Assert(in_y.size.width == 2 * in_uv.size.width);
GAPI_Assert(in_y.size.height == 2 * in_uv.size.height);
return in_y.withType(CV_8U, 3); // type will be CV_8UC3;
}
};
G_TYPED_KERNEL(GRGB2Lab, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2lab") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GBGR2LUV, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2luv") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GLUV2BGR, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.luv2bgr") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GYUV2BGR, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.yuv2bgr") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GBGR2YUV, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2yuv") {
static GMatDesc outMeta(GMatDesc in) {
return in; // type still remains CV_8UC3;
}
};
G_TYPED_KERNEL(GRGB2Gray, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.rgb2gray") {
static GMatDesc outMeta(GMatDesc in) {
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GRGB2GrayCustom, <GMat(GMat,float,float,float)>, "org.opencv.imgproc.colorconvert.rgb2graycustom") {
static GMatDesc outMeta(GMatDesc in, float, float, float) {
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GBGR2Gray, <GMat(GMat)>, "org.opencv.imgproc.colorconvert.bgr2gray") {
static GMatDesc outMeta(GMatDesc in) {
return in.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GBayerGR2RGB, <cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.bayergr2rgb") {
static cv::GMatDesc outMeta(cv::GMatDesc in) {
return in.withType(CV_8U, 3);
}
};
G_TYPED_KERNEL(GRGB2HSV, <cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.rgb2hsv") {
static cv::GMatDesc outMeta(cv::GMatDesc in) {
return in;
}
};
G_TYPED_KERNEL(GRGB2YUV422, <cv::GMat(cv::GMat)>, "org.opencv.imgproc.colorconvert.rgb2yuv422") {
static cv::GMatDesc outMeta(cv::GMatDesc in) {
GAPI_Assert(in.depth == CV_8U);
GAPI_Assert(in.chan == 3);
return in.withType(in.depth, 2);
}
};
G_TYPED_KERNEL(GNV12toRGBp, <GMatP(GMat,GMat)>, "org.opencv.imgproc.colorconvert.nv12torgbp") {
static GMatDesc outMeta(GMatDesc inY, GMatDesc inUV) {
GAPI_Assert(inY.depth == CV_8U);
GAPI_Assert(inUV.depth == CV_8U);
GAPI_Assert(inY.chan == 1);
GAPI_Assert(inY.planar == false);
GAPI_Assert(inUV.chan == 2);
GAPI_Assert(inUV.planar == false);
GAPI_Assert(inY.size.width == 2 * inUV.size.width);
GAPI_Assert(inY.size.height == 2 * inUV.size.height);
return inY.withType(CV_8U, 3).asPlanar();
}
};
G_TYPED_KERNEL(GNV12toGray, <GMat(GMat,GMat)>, "org.opencv.imgproc.colorconvert.nv12togray") {
static GMatDesc outMeta(GMatDesc inY, GMatDesc inUV) {
GAPI_Assert(inY.depth == CV_8U);
GAPI_Assert(inUV.depth == CV_8U);
GAPI_Assert(inY.chan == 1);
GAPI_Assert(inY.planar == false);
GAPI_Assert(inUV.chan == 2);
GAPI_Assert(inUV.planar == false);
GAPI_Assert(inY.size.width == 2 * inUV.size.width);
GAPI_Assert(inY.size.height == 2 * inUV.size.height);
return inY.withType(CV_8U, 1);
}
};
G_TYPED_KERNEL(GNV12toBGRp, <GMatP(GMat,GMat)>, "org.opencv.imgproc.colorconvert.nv12tobgrp") {
static GMatDesc outMeta(GMatDesc inY, GMatDesc inUV) {
GAPI_Assert(inY.depth == CV_8U);
GAPI_Assert(inUV.depth == CV_8U);
GAPI_Assert(inY.chan == 1);
GAPI_Assert(inY.planar == false);
GAPI_Assert(inUV.chan == 2);
GAPI_Assert(inUV.planar == false);
GAPI_Assert(inY.size.width == 2 * inUV.size.width);
GAPI_Assert(inY.size.height == 2 * inUV.size.height);
return inY.withType(CV_8U, 3).asPlanar();
}
};
} //namespace imgproc
//! @addtogroup gapi_filters
//! @{
/** @brief Applies a separable linear filter to a matrix(image).
The function applies a separable linear filter to the matrix. That is, first, every row of src is
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
kernel kernelY. The final result is returned.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- In case of floating-point computation, rounding to nearest even is procedeed
if hardware supports it (if not - to nearest value).
- Function textual ID is "org.opencv.imgproc.filters.sepfilter"
@param src Source image.
@param ddepth desired depth of the destination image (the following combinations of src.depth() and ddepth are supported:
src.depth() = CV_8U, ddepth = -1/CV_16S/CV_32F/CV_64F
src.depth() = CV_16U/CV_16S, ddepth = -1/CV_32F/CV_64F
src.depth() = CV_32F, ddepth = -1/CV_32F/CV_64F
src.depth() = CV_64F, ddepth = -1/CV_64F
when ddepth=-1, the output image will have the same depth as the source)
@param kernelX Coefficients for filtering each row.
@param kernelY Coefficients for filtering each column.
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.
@param delta Value added to the filtered results before storing them.
@param borderType Pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa boxFilter, gaussianBlur, medianBlur
*/
GAPI_EXPORTS GMat sepFilter(const GMat& src, int ddepth, const Mat& kernelX, const Mat& kernelY, const Point& anchor /*FIXME: = Point(-1,-1)*/,
const Scalar& delta /*FIXME = GScalar(0)*/, int borderType = BORDER_DEFAULT,
const Scalar& borderValue = Scalar(0));
/** @brief Convolves an image with the kernel.
The function applies an arbitrary linear filter to an image. When
the aperture is partially outside the image, the function interpolates outlier pixel values
according to the specified border mode.
The function does actually compute correlation, not the convolution:
\f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
the kernel using flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
anchor.y - 1)`.
Supported matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same size and number of channels an input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.filter2D"
@param src input image.
@param ddepth desired depth of the destination image
@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
matrix; if you want to apply different kernels to different channels, split the image into
separate color planes using split and process them individually.
@param anchor anchor of the kernel that indicates the relative position of a filtered point within
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
is at the kernel center.
@param delta optional value added to the filtered pixels before storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa sepFilter
*/
GAPI_EXPORTS GMat filter2D(const GMat& src, int ddepth, const Mat& kernel, const Point& anchor = Point(-1,-1), const Scalar& delta = Scalar(0),
int borderType = BORDER_DEFAULT, const Scalar& borderValue = Scalar(0));
/** @brief Blurs an image using the box filter.
The function smooths an image using the kernel:
\f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f]
where
\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise} \end{cases}\f]
Unnormalized box filter is useful for computing various integral characteristics over each pixel
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use cv::integral.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.boxfilter"
@param src Source image.
@param dtype the output image depth (-1 to set the input image data type).
@param ksize blurring kernel size.
@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.
@param normalize flag, specifying whether the kernel is normalized by its area or not.
@param borderType Pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa sepFilter, gaussianBlur, medianBlur, integral
*/
GAPI_EXPORTS GMat boxFilter(const GMat& src, int dtype, const Size& ksize, const Point& anchor = Point(-1,-1),
bool normalize = true, int borderType = BORDER_DEFAULT,
const Scalar& borderValue = Scalar(0));
/** @brief Blurs an image using the normalized box filter.
The function smooths an image using the kernel:
\f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f]
The call `blur(src, ksize, anchor, borderType)` is equivalent to `boxFilter(src, src.type(), ksize, anchor,
true, borderType)`.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.blur"
@param src Source image.
@param ksize blurring kernel size.
@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.
@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa boxFilter, bilateralFilter, GaussianBlur, medianBlur
*/
GAPI_EXPORTS GMat blur(const GMat& src, const Size& ksize, const Point& anchor = Point(-1,-1),
int borderType = BORDER_DEFAULT, const Scalar& borderValue = Scalar(0));
//GAPI_EXPORTS_W void blur( InputArray src, OutputArray dst,
// Size ksize, Point anchor = Point(-1,-1),
// int borderType = BORDER_DEFAULT );
/** @brief Blurs an image using a Gaussian filter.
The function filter2Ds the source image with the specified Gaussian kernel.
Output image must have the same type and number of channels an input image.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.gaussianBlur"
@param src input image;
@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
positive and odd. Or, they can be zero's and then they are computed from sigma.
@param sigmaX Gaussian kernel standard deviation in X direction.
@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
respectively (see cv::getGaussianKernel for details); to fully control the result regardless of
possible future modifications of all this semantics, it is recommended to specify all of ksize,
sigmaX, and sigmaY.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa sepFilter, boxFilter, medianBlur
*/
GAPI_EXPORTS GMat gaussianBlur(const GMat& src, const Size& ksize, double sigmaX, double sigmaY = 0,
int borderType = BORDER_DEFAULT, const Scalar& borderValue = Scalar(0));
/** @brief Blurs an image using the median filter.
The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
The median filter uses cv::BORDER_REPLICATE internally to cope with border pixels, see cv::BorderTypes
- Function textual ID is "org.opencv.imgproc.filters.medianBlur"
@param src input matrix (image)
@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
@sa boxFilter, gaussianBlur
*/
GAPI_EXPORTS_W GMat medianBlur(const GMat& src, int ksize);
/** @brief Erodes an image by using a specific structuring element.
The function erodes the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the minimum is taken:
\f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
Erosion can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.erode"
@param src input image
@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
structuring element is used. Kernel can be created using getStructuringElement.
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times erosion is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa dilate, morphologyEx
*/
GAPI_EXPORTS GMat erode(const GMat& src, const Mat& kernel, const Point& anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue());
/** @brief Erodes an image by using 3 by 3 rectangular structuring element.
The function erodes the source image using the rectangular structuring element with rectangle center as an anchor.
Erosion can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.erode"
@param src input image
@param iterations number of times erosion is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa erode, dilate3x3
*/
GAPI_EXPORTS GMat erode3x3(const GMat& src, int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue());
/** @brief Dilates an image by using a specific structuring element.
The function dilates the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the maximum is taken:
\f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
Dilation can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.dilate"
@param src input image.
@param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
structuring element is used. Kernel can be created using getStructuringElement
@param anchor position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.
@param iterations number of times dilation is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa erode, morphologyEx, getStructuringElement
*/
GAPI_EXPORTS GMat dilate(const GMat& src, const Mat& kernel, const Point& anchor = Point(-1,-1), int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue());
/** @brief Dilates an image by using 3 by 3 rectangular structuring element.
The function dilates the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the maximum is taken:
\f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
Dilation can be applied several (iterations) times. In case of multi-channel images, each channel is processed independently.
Supported input matrix data types are @ref CV_8UC1, @ref CV_8UC3, @ref CV_16UC1, @ref CV_16SC1, and @ref CV_32FC1.
Output image must have the same type, size, and number of channels as the input image.
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.dilate"
@param src input image.
@param iterations number of times dilation is applied.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of a constant border
@sa dilate, erode3x3
*/
GAPI_EXPORTS GMat dilate3x3(const GMat& src, int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar& borderValue = morphologyDefaultBorderValue());
/** @brief Performs advanced morphological transformations.
The function can perform advanced morphological transformations using an erosion and dilation as
basic operations.
Any of the operations can be done in-place. In case of multi-channel images, each channel is
processed independently.
@note
- Function textual ID is "org.opencv.imgproc.filters.morphologyEx"
- The number of iterations is the number of times erosion or dilatation operation will be
applied. For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to
apply successively: erode -> erode -> dilate -> dilate
(and not erode -> dilate -> erode -> dilate).
@param src Input image.
@param op Type of a morphological operation, see #MorphTypes
@param kernel Structuring element. It can be created using #getStructuringElement.
@param anchor Anchor position within the element. Both negative values mean that the anchor is at
the kernel center.
@param iterations Number of times erosion and dilation are applied.
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@param borderValue Border value in case of a constant border. The default value has a special
meaning.
@sa dilate, erode, getStructuringElement
*/
GAPI_EXPORTS GMat morphologyEx(const GMat &src, const MorphTypes op, const Mat &kernel,
const Point &anchor = Point(-1,-1),
const int iterations = 1,
const BorderTypes borderType = BORDER_CONSTANT,
const Scalar &borderValue = morphologyDefaultBorderValue());
/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
or the second x- or y- derivatives.
There is also the special value `ksize = FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
for the x-derivative, or transposed for the y-derivative.
The function calculates an image derivative by convolving the image with the appropriate kernel:
\f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
case corresponds to a kernel of:
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
The second case corresponds to a kernel of:
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
@note
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.sobel"
@param src input image.
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
8-bit input images it will result in truncated derivatives.
@param dx order of the derivative x.
@param dy order of the derivative y.
@param ksize size of the extended Sobel kernel; it must be odd.
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see cv::getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa filter2D, gaussianBlur, cartToPolar
*/
GAPI_EXPORTS GMat Sobel(const GMat& src, int ddepth, int dx, int dy, int ksize = 3,
double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT,
const Scalar& borderValue = Scalar(0));
/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
or the second x- or y- derivatives.
There is also the special value `ksize = FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
for the x-derivative, or transposed for the y-derivative.
The function calculates an image derivative by convolving the image with the appropriate kernel:
\f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
case corresponds to a kernel of:
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
The second case corresponds to a kernel of:
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
@note
- First returned matrix correspons to dx derivative while the second one to dy.
- Rounding to nearest even is procedeed if hardware supports it, if not - to nearest.
- Function textual ID is "org.opencv.imgproc.filters.sobelxy"
@param src input image.
@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
8-bit input images it will result in truncated derivatives.
@param order order of the derivatives.
@param ksize size of the extended Sobel kernel; it must be odd.
@param scale optional scale factor for the computed derivative values; by default, no scaling is
applied (see cv::getDerivKernels for details).
@param delta optional delta value that is added to the results prior to storing them in dst.
@param borderType pixel extrapolation method, see cv::BorderTypes
@param borderValue border value in case of constant border type
@sa filter2D, gaussianBlur, cartToPolar
*/
GAPI_EXPORTS std::tuple<GMat, GMat> SobelXY(const GMat& src, int ddepth, int order, int ksize = 3,
double scale = 1, double delta = 0,
int borderType = BORDER_DEFAULT,
const Scalar& borderValue = Scalar(0));
/** @brief Calculates the Laplacian of an image.
The function calculates the Laplacian of the source image by adding up the second x and y
derivatives calculated using the Sobel operator:
\f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
with the following \f$3 \times 3\f$ aperture:
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
@note Function textual ID is "org.opencv.imgproc.filters.laplacian"
@param src Source image.
@param ddepth Desired depth of the destination image.
@param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
details. The size must be positive and odd.
@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
applied. See #getDerivKernels for details.
@param delta Optional delta value that is added to the results prior to storing them in dst .
@param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
@return Destination image of the same size and the same number of channels as src.
@sa Sobel, Scharr
*/
GAPI_EXPORTS GMat Laplacian(const GMat& src, int ddepth, int ksize = 1,
double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT);
/** @brief Applies the bilateral filter to an image.
The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
very slow compared to most filters.
_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
strong effect, making the image look "cartoonish".
_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
applications, and perhaps d=9 for offline applications that need heavy noise filtering.
This filter does not work inplace.
@note Function textual ID is "org.opencv.imgproc.filters.bilateralfilter"
@param src Source 8-bit or floating-point, 1-channel or 3-channel image.
@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
it is computed from sigmaSpace.
@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
in larger areas of semi-equal color.
@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
proportional to sigmaSpace.
@param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
@return Destination image of the same size and type as src.
*/
GAPI_EXPORTS GMat bilateralFilter(const GMat& src, int d, double sigmaColor, double sigmaSpace,
int borderType = BORDER_DEFAULT);
//! @} gapi_filters
//! @addtogroup gapi_feature
//! @{
/** @brief Finds edges in an image using the Canny algorithm.
The function finds edges in the input image and marks them in the output map edges using the
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
largest value is used to find initial segments of strong edges. See
<http://en.wikipedia.org/wiki/Canny_edge_detector>
@note Function textual ID is "org.opencv.imgproc.feature.canny"
@param image 8-bit input image.
@param threshold1 first threshold for the hysteresis procedure.
@param threshold2 second threshold for the hysteresis procedure.
@param apertureSize aperture size for the Sobel operator.
@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
L2gradient=false ).
*/
GAPI_EXPORTS GMat Canny(const GMat& image, double threshold1, double threshold2,
int apertureSize = 3, bool L2gradient = false);
/** @brief Determines strong corners on an image.
The function finds the most prominent corners in the image or in the specified image region, as
described in @cite Shi94
- Function calculates the corner quality measure at every source image pixel using the
#cornerMinEigenVal or #cornerHarris .
- Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
retained).
- The corners with the minimal eigenvalue less than
\f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
- The remaining corners are sorted by the quality measure in the descending order.
- Function throws away each corner for which there is a stronger corner at a distance less than
maxDistance.
The function can be used to initialize a point-based tracker of an object.
@note
- If the function is called with different values A and B of the parameter qualityLevel , and
A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
with qualityLevel=B .
- Function textual ID is "org.opencv.imgproc.feature.goodFeaturesToTrack"
@param image Input 8-bit or floating-point 32-bit, single-channel image.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
and all detected corners are returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param mask Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
or #cornerMinEigenVal.
@param k Free parameter of the Harris detector.
@return vector of detected corners.
*/
GAPI_EXPORTS_W GArray<Point2f> goodFeaturesToTrack(const GMat &image,
int maxCorners,
double qualityLevel,
double minDistance,
const Mat &mask = Mat(),
int blockSize = 3,
bool useHarrisDetector = false,
double k = 0.04);
/** @brief Equalizes the histogram of a grayscale image.
//! @} gapi_feature
The function equalizes the histogram of the input image using the following algorithm:
- Calculate the histogram \f$H\f$ for src .
- Normalize the histogram so that the sum of histogram bins is 255.
- Compute the integral of the histogram:
\f[H'_i = \sum _{0 \le j < i} H(j)\f]
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
The algorithm normalizes the brightness and increases the contrast of the image.
@note
- The returned image is of the same size and type as input.
- Function textual ID is "org.opencv.imgproc.equalizeHist"
@param src Source 8-bit single channel image.
*/
GAPI_EXPORTS GMat equalizeHist(const GMat& src);
//! @addtogroup gapi_shape
//! @{
/** @brief Finds contours in a binary image.
The function retrieves contours from the binary image using the algorithm @cite Suzuki85 .
The contours are a useful tool for shape analysis and object detection and recognition.
See squares.cpp in the OpenCV sample directory.
@note Function textual ID is "org.opencv.imgproc.shape.findContours"
@param src Input gray-scale image @ref CV_8UC1. Non-zero pixels are treated as 1's. Zero
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
If mode equals to #RETR_CCOMP, the input can also be a 32-bit integer
image of labels ( @ref CV_32SC1 ). If #RETR_FLOODFILL then @ref CV_32SC1 is supported only.
@param mode Contour retrieval mode, see #RetrievalModes
@param method Contour approximation method, see #ContourApproximationModes
@param offset Optional offset by which every contour point is shifted. This is useful if the
contours are extracted from the image ROI and then they should be analyzed in the whole image
context.
@return GArray of detected contours. Each contour is stored as a GArray of points.
*/
GAPI_EXPORTS GArray<GArray<Point>>
findContours(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method,
const GOpaque<Point> &offset);
// FIXME oc: make default value offset = Point()
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.findContoursNoOffset"
*/
GAPI_EXPORTS GArray<GArray<Point>>
findContours(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method);
/** @brief Finds contours and their hierarchy in a binary image.
The function retrieves contours from the binary image using the algorithm @cite Suzuki85
and calculates their hierarchy.
The contours are a useful tool for shape analysis and object detection and recognition.
See squares.cpp in the OpenCV sample directory.
@note Function textual ID is "org.opencv.imgproc.shape.findContoursH"
@param src Input gray-scale image @ref CV_8UC1. Non-zero pixels are treated as 1's. Zero
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
If mode equals to #RETR_CCOMP, the input can also be a 32-bit integer
image of labels ( @ref CV_32SC1 ). If #RETR_FLOODFILL -- @ref CV_32SC1 supports only.
@param mode Contour retrieval mode, see #RetrievalModes
@param method Contour approximation method, see #ContourApproximationModes
@param offset Optional offset by which every contour point is shifted. This is useful if the
contours are extracted from the image ROI and then they should be analyzed in the whole image
context.
@return
- GArray of detected contours. Each contour is stored as a GArray of points.
- Optional output GArray of cv::Vec4i, containing information about the image topology.
It has as many elements as the number of contours. For each i-th contour contours[i], the elements
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based
indices in contours of the next and previous contours at the same hierarchical level, the first
child contour and the parent contour, respectively. If for the contour i there are no next,
previous, parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
*/
GAPI_EXPORTS std::tuple<GArray<GArray<Point>>,GArray<Vec4i>>
findContoursH(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method,
const GOpaque<Point> &offset);
// FIXME oc: make default value offset = Point()
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.findContoursHNoOffset"
*/
GAPI_EXPORTS std::tuple<GArray<GArray<Point>>,GArray<Vec4i>>
findContoursH(const GMat &src, const RetrievalModes mode, const ContourApproximationModes method);
/** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels
of gray-scale image.
The function calculates and returns the minimal up-right bounding rectangle for the specified
point set or non-zero pixels of gray-scale image.
@note
- Function textual ID is "org.opencv.imgproc.shape.boundingRectMat"
- In case of a 2D points' set given, Mat should be 2-dimensional, have a single row or column
if there are 2 channels, or have 2 columns if there is a single channel. Mat should have either
@ref CV_32S or @ref CV_32F depth
@param src Input gray-scale image @ref CV_8UC1; or input set of @ref CV_32S or @ref CV_32F
2D points stored in Mat.
*/
GAPI_EXPORTS_W GOpaque<Rect> boundingRect(const GMat& src);
/** @overload
Calculates the up-right bounding rectangle of a point set.
@note Function textual ID is "org.opencv.imgproc.shape.boundingRectVector32S"
@param src Input 2D point set, stored in std::vector<cv::Point2i>.
*/
GAPI_EXPORTS_W GOpaque<Rect> boundingRect(const GArray<Point2i>& src);
/** @overload
Calculates the up-right bounding rectangle of a point set.
@note Function textual ID is "org.opencv.imgproc.shape.boundingRectVector32F"
@param src Input 2D point set, stored in std::vector<cv::Point2f>.
*/
GAPI_EXPORTS GOpaque<Rect> boundingRect(const GArray<Point2f>& src);
/** @brief Fits a line to a 2D point set.
The function fits a line to a 2D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance
function, one of the following:
- DIST_L2
\f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f]
- DIST_L1
\f[\rho (r) = r\f]
- DIST_L12
\f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
- DIST_FAIR
\f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f]
- DIST_WELSCH
\f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f]
- DIST_HUBER
\f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
@note
- Function textual ID is "org.opencv.imgproc.shape.fitLine2DMat"
- In case of an N-dimentional points' set given, Mat should be 2-dimensional, have a single row
or column if there are N channels, or have N columns if there is a single channel.
@param src Input set of 2D points stored in one of possible containers: Mat,
std::vector<cv::Point2i>, std::vector<cv::Point2f>, std::vector<cv::Point2d>.
@param distType Distance used by the M-estimator, see #DistanceTypes. @ref DIST_USER
and @ref DIST_C are not suppored.
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
is chosen.
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the
line). 1.0 would be a good default value for reps. If it is 0, a default value is chosen.
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for aeps.
If it is 0, a default value is chosen.
@return Output line parameters: a vector of 4 elements (like Vec4f) - (vx, vy, x0, y0),
where (vx, vy) is a normalized vector collinear to the line and (x0, y0) is a point on the line.
*/
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GMat& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.fitLine2DVector32S"
*/
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GArray<Point2i>& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.fitLine2DVector32F"
*/
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GArray<Point2f>& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.fitLine2DVector64F"
*/
GAPI_EXPORTS GOpaque<Vec4f> fitLine2D(const GArray<Point2d>& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
/** @brief Fits a line to a 3D point set.
The function fits a line to a 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance
function, one of the following:
- DIST_L2
\f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f]
- DIST_L1
\f[\rho (r) = r\f]
- DIST_L12
\f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
- DIST_FAIR
\f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f]
- DIST_WELSCH
\f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f]
- DIST_HUBER
\f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
@note
- Function textual ID is "org.opencv.imgproc.shape.fitLine3DMat"
- In case of an N-dimentional points' set given, Mat should be 2-dimensional, have a single row
or column if there are N channels, or have N columns if there is a single channel.
@param src Input set of 3D points stored in one of possible containers: Mat,
std::vector<cv::Point3i>, std::vector<cv::Point3f>, std::vector<cv::Point3d>.
@param distType Distance used by the M-estimator, see #DistanceTypes. @ref DIST_USER
and @ref DIST_C are not suppored.
@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
is chosen.
@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the
line). 1.0 would be a good default value for reps. If it is 0, a default value is chosen.
@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for aeps.
If it is 0, a default value is chosen.
@return Output line parameters: a vector of 6 elements (like Vec6f) - (vx, vy, vz, x0, y0, z0),
where (vx, vy, vz) is a normalized vector collinear to the line and (x0, y0, z0) is a point on
the line.
*/
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GMat& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.fitLine3DVector32S"
*/
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GArray<Point3i>& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.fitLine3DVector32F"
*/
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GArray<Point3f>& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
/** @overload
@note Function textual ID is "org.opencv.imgproc.shape.fitLine3DVector64F"
*/
GAPI_EXPORTS GOpaque<Vec6f> fitLine3D(const GArray<Point3d>& src, const DistanceTypes distType,
const double param = 0., const double reps = 0.,
const double aeps = 0.);
//! @} gapi_shape
//! @addtogroup gapi_colorconvert
//! @{
/** @brief Converts an image from BGR color space to RGB color space.
The function converts an input image from BGR color space to RGB.
The conventional ranges for B, G, and R channel values are 0 to 255.
Output image is 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2rgb"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa RGB2BGR
*/
GAPI_EXPORTS_W GMat BGR2RGB(const GMat& src);
/** @brief Converts an image from RGB color space to gray-scaled.
The conventional ranges for R, G, and B channel values are 0 to 255.
Resulting gray color value computed as
\f[\texttt{dst} (I)= \texttt{0.299} * \texttt{src}(I).R + \texttt{0.587} * \texttt{src}(I).G + \texttt{0.114} * \texttt{src}(I).B \f]
@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2gray"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@sa RGB2YUV
*/
GAPI_EXPORTS_W GMat RGB2Gray(const GMat& src);
/** @overload
Resulting gray color value computed as
\f[\texttt{dst} (I)= \texttt{rY} * \texttt{src}(I).R + \texttt{gY} * \texttt{src}(I).G + \texttt{bY} * \texttt{src}(I).B \f]
@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2graycustom"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@param rY float multiplier for R channel.
@param gY float multiplier for G channel.
@param bY float multiplier for B channel.
@sa RGB2YUV
*/
GAPI_EXPORTS GMat RGB2Gray(const GMat& src, float rY, float gY, float bY);
/** @brief Converts an image from BGR color space to gray-scaled.
The conventional ranges for B, G, and R channel values are 0 to 255.
Resulting gray color value computed as
\f[\texttt{dst} (I)= \texttt{0.114} * \texttt{src}(I).B + \texttt{0.587} * \texttt{src}(I).G + \texttt{0.299} * \texttt{src}(I).R \f]
@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2gray"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@sa BGR2LUV
*/
GAPI_EXPORTS GMat BGR2Gray(const GMat& src);
/** @brief Converts an image from RGB color space to YUV color space.
The function converts an input image from RGB color space to YUV.
The conventional ranges for R, G, and B channel values are 0 to 255.
In case of linear transformations, the range does not matter. But in case of a non-linear
transformation, an input RGB image should be normalized to the proper value range to get the correct
results, like here, at RGB \f$\rightarrow\f$ Y\*u\*v\* transformation.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2yuv"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa YUV2RGB, RGB2Lab
*/
GAPI_EXPORTS GMat RGB2YUV(const GMat& src);
/** @brief Converts an image from BGR color space to I420 color space.
The function converts an input image from BGR color space to I420.
The conventional ranges for R, G, and B channel values are 0 to 255.
Output image must be 8-bit unsigned 1-channel image. @ref CV_8UC1.
Width of I420 output image must be the same as width of input image.
Height of I420 output image must be equal 3/2 from height of input image.
@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2i420"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa I4202BGR
*/
GAPI_EXPORTS GMat BGR2I420(const GMat& src);
/** @brief Converts an image from RGB color space to I420 color space.
The function converts an input image from RGB color space to I420.
The conventional ranges for R, G, and B channel values are 0 to 255.
Output image must be 8-bit unsigned 1-channel image. @ref CV_8UC1.
Width of I420 output image must be the same as width of input image.
Height of I420 output image must be equal 3/2 from height of input image.
@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2i420"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa I4202RGB
*/
GAPI_EXPORTS GMat RGB2I420(const GMat& src);
/** @brief Converts an image from I420 color space to BGR color space.
The function converts an input image from I420 color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image. @ref CV_8UC3.
Width of BGR output image must be the same as width of input image.
Height of BGR output image must be equal 2/3 from height of input image.
@note Function textual ID is "org.opencv.imgproc.colorconvert.i4202bgr"
@param src input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@sa BGR2I420
*/
GAPI_EXPORTS GMat I4202BGR(const GMat& src);
/** @brief Converts an image from I420 color space to BGR color space.
The function converts an input image from I420 color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image. @ref CV_8UC3.
Width of RGB output image must be the same as width of input image.
Height of RGB output image must be equal 2/3 from height of input image.
@note Function textual ID is "org.opencv.imgproc.colorconvert.i4202rgb"
@param src input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@sa RGB2I420
*/
GAPI_EXPORTS GMat I4202RGB(const GMat& src);
/** @brief Converts an image from BGR color space to LUV color space.
The function converts an input image from BGR color space to LUV.
The conventional ranges for B, G, and R channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2luv"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa RGB2Lab, RGB2LUV
*/
GAPI_EXPORTS GMat BGR2LUV(const GMat& src);
/** @brief Converts an image from LUV color space to BGR color space.
The function converts an input image from LUV color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.luv2bgr"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa BGR2LUV
*/
GAPI_EXPORTS GMat LUV2BGR(const GMat& src);
/** @brief Converts an image from YUV color space to BGR color space.
The function converts an input image from YUV color space to BGR.
The conventional ranges for B, G, and R channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.yuv2bgr"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa BGR2YUV
*/
GAPI_EXPORTS GMat YUV2BGR(const GMat& src);
/** @brief Converts an image from BGR color space to YUV color space.
The function converts an input image from BGR color space to YUV.
The conventional ranges for B, G, and R channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.bgr2yuv"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa YUV2BGR
*/
GAPI_EXPORTS GMat BGR2YUV(const GMat& src);
/** @brief Converts an image from RGB color space to Lab color space.
The function converts an input image from BGR color space to Lab.
The conventional ranges for R, G, and B channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC1.
@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2lab"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC1.
@sa RGB2YUV, RGB2LUV
*/
GAPI_EXPORTS GMat RGB2Lab(const GMat& src);
/** @brief Converts an image from YUV color space to RGB.
The function converts an input image from YUV color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.yuv2rgb"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa RGB2Lab, RGB2YUV
*/
GAPI_EXPORTS GMat YUV2RGB(const GMat& src);
/** @brief Converts an image from NV12 (YUV420p) color space to RGB.
The function converts an input image from NV12 color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12torgb"
@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.
@sa YUV2RGB, NV12toBGR
*/
GAPI_EXPORTS GMat NV12toRGB(const GMat& src_y, const GMat& src_uv);
/** @brief Converts an image from NV12 (YUV420p) color space to gray-scaled.
The function converts an input image from NV12 color space to gray-scaled.
The conventional ranges for Y, U, and V channel values are 0 to 255.
Output image must be 8-bit unsigned 1-channel image @ref CV_8UC1.
@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12togray"
@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.
@sa YUV2RGB, NV12toBGR
*/
GAPI_EXPORTS GMat NV12toGray(const GMat& src_y, const GMat& src_uv);
/** @brief Converts an image from NV12 (YUV420p) color space to BGR.
The function converts an input image from NV12 color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12tobgr"
@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.
@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat NV12toBGR(const GMat& src_y, const GMat& src_uv);
/** @brief Converts an image from BayerGR color space to RGB.
The function converts an input image from BayerGR color space to RGB.
The conventional ranges for G, R, and B channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.bayergr2rgb"
@param src_gr input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat BayerGR2RGB(const GMat& src_gr);
/** @brief Converts an image from RGB color space to HSV.
The function converts an input image from RGB color space to HSV.
The conventional ranges for R, G, and B channel values are 0 to 255.
Output image must be 8-bit unsigned 3-channel image @ref CV_8UC3.
@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2hsv"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat RGB2HSV(const GMat& src);
/** @brief Converts an image from RGB color space to YUV422.
The function converts an input image from RGB color space to YUV422.
The conventional ranges for R, G, and B channel values are 0 to 255.
Output image must be 8-bit unsigned 2-channel image @ref CV_8UC2.
@note Function textual ID is "org.opencv.imgproc.colorconvert.rgb2yuv422"
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@sa YUV2BGR, NV12toRGB
*/
GAPI_EXPORTS GMat RGB2YUV422(const GMat& src);
/** @brief Converts an image from NV12 (YUV420p) color space to RGB.
The function converts an input image from NV12 color space to RGB.
The conventional ranges for Y, U, and V channel values are 0 to 255.
Output image must be 8-bit unsigned planar 3-channel image @ref CV_8UC1.
Planar image memory layout is three planes laying in the memory contiguously,
so the image height should be plane_height*plane_number,
image type is @ref CV_8UC1.
@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12torgbp"
@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.
@sa YUV2RGB, NV12toBGRp, NV12toRGB
*/
GAPI_EXPORTS GMatP NV12toRGBp(const GMat &src_y, const GMat &src_uv);
/** @brief Converts an image from NV12 (YUV420p) color space to BGR.
The function converts an input image from NV12 color space to BGR.
The conventional ranges for Y, U, and V channel values are 0 to 255.
Output image must be 8-bit unsigned planar 3-channel image @ref CV_8UC1.
Planar image memory layout is three planes laying in the memory contiguously,
so the image height should be plane_height*plane_number,
image type is @ref CV_8UC1.
@note Function textual ID is "org.opencv.imgproc.colorconvert.nv12torgbp"
@param src_y input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param src_uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2.
@sa YUV2RGB, NV12toRGBp, NV12toBGR
*/
GAPI_EXPORTS GMatP NV12toBGRp(const GMat &src_y, const GMat &src_uv);
//! @} gapi_colorconvert
} //namespace gapi
} //namespace cv
#endif // OPENCV_GAPI_IMGPROC_HPP