infer.hpp
24.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation
#ifndef OPENCV_GAPI_INFER_HPP
#define OPENCV_GAPI_INFER_HPP
// FIXME: Inference API is currently only available in full mode
#if !defined(GAPI_STANDALONE)
#include <functional>
#include <string> // string
#include <utility> // tuple
#include <type_traits> // is_same, false_type
#include <opencv2/gapi/util/util.hpp> // all_satisfy
#include <opencv2/gapi/util/any.hpp> // any<>
#include <opencv2/gapi/gkernel.hpp> // GKernelType[M], GBackend
#include <opencv2/gapi/garg.hpp> // GArg
#include <opencv2/gapi/gcommon.hpp> // CompileArgTag
#include <opencv2/gapi/gmetaarg.hpp> // GMetaArg
namespace cv {
template<typename, typename> class GNetworkType;
namespace detail {
// Infer ///////////////////////////////////////////////////////////////////////
template<typename T>
struct accepted_infer_types {
static constexpr const auto value =
std::is_same<typename std::decay<T>::type, cv::GMat>::value
|| std::is_same<typename std::decay<T>::type, cv::GFrame>::value;
};
template<typename... Ts>
using valid_infer_types = all_satisfy<accepted_infer_types, Ts...>;
// Infer2 //////////////////////////////////////////////////////////////////////
template<typename, typename>
struct valid_infer2_types;
// Terminal case 1 (50/50 success)
template<typename T>
struct valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> > {
// By default, Nets are limited to GMat argument types only
// for infer2, every GMat argument may translate to either
// GArray<GMat> or GArray<Rect>. GArray<> part is stripped
// already at this point.
static constexpr const auto value =
std::is_same<typename std::decay<T>::type, cv::GMat>::value
|| std::is_same<typename std::decay<T>::type, cv::Rect>::value;
};
// Terminal case 2 (100% failure)
template<typename... Ts>
struct valid_infer2_types< std::tuple<>, std::tuple<Ts...> >
: public std::false_type {
};
// Terminal case 3 (100% failure)
template<typename... Ns>
struct valid_infer2_types< std::tuple<Ns...>, std::tuple<> >
: public std::false_type {
};
// Recursion -- generic
template<typename... Ns, typename T, typename...Ts>
struct valid_infer2_types< std::tuple<cv::GMat,Ns...>, std::tuple<T,Ts...> > {
static constexpr const auto value =
valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> >::value
&& valid_infer2_types< std::tuple<Ns...>, std::tuple<Ts...> >::value;
};
// Struct stores network input/output names.
// Used by infer<Generic>
struct InOutInfo
{
std::vector<std::string> in_names;
std::vector<std::string> out_names;
};
template <typename OutT>
class GInferOutputsTyped
{
public:
GInferOutputsTyped() = default;
GInferOutputsTyped(std::shared_ptr<cv::GCall> call)
: m_priv(std::make_shared<Priv>(std::move(call)))
{
}
OutT at(const std::string& name)
{
auto it = m_priv->blobs.find(name);
if (it == m_priv->blobs.end()) {
// FIXME: Avoid modifying GKernel
auto shape = cv::detail::GTypeTraits<OutT>::shape;
m_priv->call->kernel().outShapes.push_back(shape);
m_priv->call->kernel().outCtors.emplace_back(cv::detail::GObtainCtor<OutT>::get());
auto out_idx = static_cast<int>(m_priv->blobs.size());
it = m_priv->blobs.emplace(name,
cv::detail::Yield<OutT>::yield(*(m_priv->call), out_idx)).first;
m_priv->info->out_names.push_back(name);
}
return it->second;
}
private:
struct Priv
{
Priv(std::shared_ptr<cv::GCall> c)
: call(std::move(c)), info(cv::util::any_cast<InOutInfo>(&call->params()))
{
}
std::shared_ptr<cv::GCall> call;
InOutInfo* info = nullptr;
std::unordered_map<std::string, OutT> blobs;
};
std::shared_ptr<Priv> m_priv;
};
template <typename... Ts>
class GInferInputsTyped
{
public:
GInferInputsTyped()
: m_priv(std::make_shared<Priv>())
{
}
template <typename U>
GInferInputsTyped<Ts...>& setInput(const std::string& name, U in)
{
m_priv->blobs.emplace(std::piecewise_construct,
std::forward_as_tuple(name),
std::forward_as_tuple(in));
return *this;
}
using StorageT = cv::util::variant<Ts...>;
StorageT& operator[](const std::string& name) {
return m_priv->blobs[name];
}
using Map = std::unordered_map<std::string, StorageT>;
const Map& getBlobs() const {
return m_priv->blobs;
}
private:
struct Priv
{
std::unordered_map<std::string, StorageT> blobs;
};
std::shared_ptr<Priv> m_priv;
};
template<typename InferT>
std::shared_ptr<cv::GCall> makeCall(const std::string &tag,
std::vector<cv::GArg> &&args,
std::vector<std::string> &&names,
cv::GKinds &&kinds) {
auto call = std::make_shared<cv::GCall>(GKernel{
InferT::id(),
tag,
InferT::getOutMeta,
{}, // outShape will be filled later
std::move(kinds),
{}, // outCtors will be filled later
});
call->setArgs(std::move(args));
call->params() = cv::detail::InOutInfo{std::move(names), {}};
return call;
}
} // namespace detail
// TODO: maybe tuple_wrap_helper from util.hpp may help with this.
// Multiple-return-value network definition (specialized base class)
template<typename K, typename... R, typename... Args>
class GNetworkType<K, std::function<std::tuple<R...>(Args...)> >
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R...>;
using Result = OutArgs;
using API = std::function<Result(Args...)>;
using ResultL = std::tuple< cv::GArray<R>... >;
};
// Single-return-value network definition (specialized base class)
template<typename K, typename R, typename... Args>
class GNetworkType<K, std::function<R(Args...)> >
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R>;
using Result = R;
using API = std::function<R(Args...)>;
using ResultL = cv::GArray<R>;
};
// InferAPI: Accepts either GMat or GFrame for very individual network's input
template<class Net, class... Ts>
struct InferAPI {
using type = typename std::enable_if
< detail::valid_infer_types<Ts...>::value
&& std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
, std::function<typename Net::Result(Ts...)>
>::type;
};
// InferAPIRoi: Accepts a rectangle and either GMat or GFrame
template<class Net, class T>
struct InferAPIRoi {
using type = typename std::enable_if
< detail::valid_infer_types<T>::value
&& std::tuple_size<typename Net::InArgs>::value == 1u
, std::function<typename Net::Result(cv::GOpaque<cv::Rect>, T)>
>::type;
};
// InferAPIList: Accepts a list of rectangles and list of GMat/GFrames;
// crops every input.
template<class Net, class... Ts>
struct InferAPIList {
using type = typename std::enable_if
< detail::valid_infer_types<Ts...>::value
&& std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
, std::function<typename Net::ResultL(cv::GArray<cv::Rect>, Ts...)>
>::type;
};
// APIList2 is also template to allow different calling options
// (GArray<cv::Rect> vs GArray<cv::GMat> per input)
template<class Net, typename T, class... Ts>
struct InferAPIList2 {
using type = typename std::enable_if
< detail::valid_infer_types<T>::value &&
cv::detail::valid_infer2_types< typename Net::InArgs
, std::tuple<Ts...> >::value,
std::function<typename Net::ResultL(T, cv::GArray<Ts>...)>
>::type;
};
// Base "Infer" kernel. Note - for whatever network, kernel ID
// is always the same. Different inference calls are distinguished by
// network _tag_ (an extra field in GCall)
//
// getOutMeta is a stub callback collected by G-API kernel subsystem
// automatically. This is a rare case when this callback is defined by
// a particular backend, not by a network itself.
struct GInferBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "InferROI" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferROIBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "Infer list" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferListBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi-list-1"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "Infer list 2" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferList2Base {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi-list-2"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// A generic inference kernel. API (::on()) is fully defined by the Net
// template parameter.
// Acts as a regular kernel in graph (via KernelTypeMedium).
template<typename Net, typename... Args>
struct GInfer final
: public GInferBase
, public detail::KernelTypeMedium< GInfer<Net, Args...>
, typename InferAPI<Net, Args...>::type > {
using GInferBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// A specific roi-inference kernel. API (::on()) is fixed here and
// verified against Net.
template<typename Net, typename T>
struct GInferROI final
: public GInferROIBase
, public detail::KernelTypeMedium< GInferROI<Net, T>
, typename InferAPIRoi<Net, T>::type > {
using GInferROIBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// A generic roi-list inference kernel. API (::on()) is derived from
// the Net template parameter (see more in infer<> overload).
template<typename Net, typename... Args>
struct GInferList final
: public GInferListBase
, public detail::KernelTypeMedium< GInferList<Net, Args...>
, typename InferAPIList<Net, Args...>::type > {
using GInferListBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// An even more generic roi-list inference kernel. API (::on()) is
// derived from the Net template parameter (see more in infer<>
// overload).
// Takes an extra variadic template list to reflect how this network
// was called (with Rects or GMats as array parameters)
template<typename Net, typename T, typename... Args>
struct GInferList2 final
: public GInferList2Base
, public detail::KernelTypeMedium< GInferList2<Net, T, Args...>
, typename InferAPIList2<Net, T, Args...>::type > {
using GInferList2Base::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
/**
* @brief G-API object used to collect network inputs
*/
using GInferInputs = cv::detail::GInferInputsTyped<cv::GMat, cv::GFrame>;
/**
* @brief G-API object used to collect the list of network inputs
*/
using GInferListInputs = cv::detail::GInferInputsTyped<cv::GArray<cv::GMat>, cv::GArray<cv::Rect>>;
/**
* @brief G-API object used to collect network outputs
*/
using GInferOutputs = cv::detail::GInferOutputsTyped<cv::GMat>;
/**
* @brief G-API object used to collect the list of network outputs
*/
using GInferListOutputs = cv::detail::GInferOutputsTyped<cv::GArray<cv::GMat>>;
namespace detail {
void inline unpackBlobs(const cv::GInferInputs::Map& blobs,
std::vector<cv::GArg>& args,
std::vector<std::string>& names,
cv::GKinds& kinds)
{
for (auto&& p : blobs) {
names.emplace_back(p.first);
switch (p.second.index()) {
case cv::GInferInputs::StorageT::index_of<cv::GMat>():
args.emplace_back(cv::util::get<cv::GMat>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
break;
case cv::GInferInputs::StorageT::index_of<cv::GFrame>():
args.emplace_back(cv::util::get<cv::GFrame>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_UNKNOWN);
break;
default:
GAPI_Assert(false);
}
}
}
template <typename InferType>
struct InferROITraits;
template <>
struct InferROITraits<GInferROIBase>
{
using outType = cv::GInferOutputs;
using inType = cv::GOpaque<cv::Rect>;
};
template <>
struct InferROITraits<GInferListBase>
{
using outType = cv::GInferListOutputs;
using inType = cv::GArray<cv::Rect>;
};
template<typename InferType>
typename InferROITraits<InferType>::outType
inferGenericROI(const std::string& tag,
const typename InferROITraits<InferType>::inType& in,
const cv::GInferInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
args.emplace_back(in);
kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
unpackBlobs(inputs.getBlobs(), args, names, kinds);
auto call = cv::detail::makeCall<InferType>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return {std::move(call)};
}
} // namespace detail
} // namespace cv
// FIXME: Probably the <API> signature makes a function/tuple/function round-trip
#define G_API_NET(Class, API, Tag) \
struct Class final: public cv::GNetworkType<Class, std::function API> { \
static constexpr const char * tag() { return Tag; } \
}
namespace cv {
namespace gapi {
/** @brief Calculates response for the specified network (template
* parameter) for the specified region in the source image.
* Currently expects a single-input network only.
*
* @tparam A network type defined with G_API_NET() macro.
* @param in input image where to take ROI from.
* @param roi an object describing the region of interest
* in the source image. May be calculated in the same graph dynamically.
* @return an object of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* objects of appropriate type is returned.
* @sa G_API_NET()
*/
template<typename Net, typename T>
typename Net::Result infer(cv::GOpaque<cv::Rect> roi, T in) {
return GInferROI<Net, T>::on(roi, in);
}
/** @brief Calculates responses for the specified network (template
* parameter) for every region in the source image.
*
* @tparam A network type defined with G_API_NET() macro.
* @param roi a list of rectangles describing regions of interest
* in the source image. Usually an output of object detector or tracker.
* @param args network's input parameters as specified in G_API_NET() macro.
* NOTE: verified to work reliably with 1-input topologies only.
* @return a list of objects of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* GArray<> objects is returned with the appropriate types inside.
* @sa G_API_NET()
*/
template<typename Net, typename... Args>
typename Net::ResultL infer(cv::GArray<cv::Rect> roi, Args&&... args) {
return GInferList<Net, Args...>::on(roi, std::forward<Args>(args)...);
}
/** @brief Calculates responses for the specified network (template
* parameter) for every region in the source image, extended version.
*
* @tparam A network type defined with G_API_NET() macro.
* @param image A source image containing regions of interest
* @param args GArray<> objects of cv::Rect or cv::GMat, one per every
* network input:
* - If a cv::GArray<cv::Rect> is passed, the appropriate
* regions are taken from `image` and preprocessed to this particular
* network input;
* - If a cv::GArray<cv::GMat> is passed, the underlying data traited
* as tensor (no automatic preprocessing happen).
* @return a list of objects of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* GArray<> objects is returned with the appropriate types inside.
* @sa G_API_NET()
*/
template<typename Net, typename T, typename... Args>
typename Net::ResultL infer2(T image, cv::GArray<Args>... args) {
// FIXME: Declared as "2" because in the current form it steals
// overloads from the regular infer
return GInferList2<Net, T, Args...>::on(image, args...);
}
/**
* @brief Calculates response for the specified network (template
* parameter) given the input data.
*
* @tparam A network type defined with G_API_NET() macro.
* @param args network's input parameters as specified in G_API_NET() macro.
* @return an object of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* objects of appropriate type is returned.
* @sa G_API_NET()
*/
template<typename Net, typename... Args>
typename Net::Result infer(Args&&... args) {
return GInfer<Net, Args...>::on(std::forward<Args>(args)...);
}
/**
* @brief Generic network type: input and output layers are configured dynamically at runtime
*
* Unlike the network types defined with G_API_NET macro, this one
* doesn't fix number of network inputs and outputs at the compilation stage
* thus providing user with an opportunity to program them in runtime.
*/
struct Generic { };
/**
* @brief Calculates response for generic network
*
* @param tag a network tag
* @param inputs networks's inputs
* @return a GInferOutputs
*/
template<typename T = Generic> cv::GInferOutputs
infer(const std::string& tag, const cv::GInferInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
cv::detail::unpackBlobs(inputs.getBlobs(), args, names, kinds);
auto call = cv::detail::makeCall<GInferBase>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return cv::GInferOutputs{std::move(call)};
}
/** @brief Calculates response for the generic network
* for the specified region in the source image.
* Currently expects a single-input network only.
*
* @param tag a network tag
* @param roi a an object describing the region of interest
* in the source image. May be calculated in the same graph dynamically.
* @param inputs networks's inputs
* @return a cv::GInferOutputs
*/
template<typename T = Generic> cv::GInferOutputs
infer(const std::string& tag, const cv::GOpaque<cv::Rect>& roi, const cv::GInferInputs& inputs)
{
return cv::detail::inferGenericROI<GInferROIBase>(tag, roi, inputs);
}
/** @brief Calculates responses for the specified network
* for every region in the source image.
*
* @param tag a network tag
* @param rois a list of rectangles describing regions of interest
* in the source image. Usually an output of object detector or tracker.
* @param inputs networks's inputs
* @return a cv::GInferListOutputs
*/
template<typename T = Generic> cv::GInferListOutputs
infer(const std::string& tag, const cv::GArray<cv::Rect>& rois, const cv::GInferInputs& inputs)
{
return cv::detail::inferGenericROI<GInferListBase>(tag, rois, inputs);
}
/** @brief Calculates responses for the specified network
* for every region in the source image, extended version.
*
* @param tag a network tag
* @param in a source image containing regions of interest.
* @param inputs networks's inputs
* @return a cv::GInferListOutputs
*/
template<typename T = Generic, typename Input>
typename std::enable_if<cv::detail::accepted_infer_types<Input>::value, cv::GInferListOutputs>::type
infer2(const std::string& tag,
const Input& in,
const cv::GInferListInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
args.emplace_back(in);
auto k = cv::detail::GOpaqueTraits<Input>::kind;
kinds.emplace_back(k);
for (auto&& p : inputs.getBlobs()) {
names.emplace_back(p.first);
switch (p.second.index()) {
case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::GMat>>():
args.emplace_back(cv::util::get<cv::GArray<cv::GMat>>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
break;
case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::Rect>>():
args.emplace_back(cv::util::get<cv::GArray<cv::Rect>>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
break;
default:
GAPI_Assert(false);
}
}
auto call = cv::detail::makeCall<GInferList2Base>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return cv::GInferListOutputs{std::move(call)};
}
} // namespace gapi
} // namespace cv
#endif // GAPI_STANDALONE
namespace cv {
namespace gapi {
// Note: the below code _is_ part of STANDALONE build,
// just to make our compiler code compileable.
// A type-erased form of network parameters.
// Similar to how a type-erased GKernel is represented and used.
/// @private
struct GAPI_EXPORTS_W_SIMPLE GNetParam {
std::string tag; // FIXME: const?
GBackend backend; // Specifies the execution model
util::any params; // Backend-interpreted parameter structure
};
/** \addtogroup gapi_compile_args
* @{
*/
/**
* @brief A container class for network configurations. Similar to
* GKernelPackage. Use cv::gapi::networks() to construct this object.
*
* @sa cv::gapi::networks
*/
struct GAPI_EXPORTS_W_SIMPLE GNetPackage {
GAPI_WRAP GNetPackage() = default;
GAPI_WRAP explicit GNetPackage(std::vector<GNetParam> nets);
explicit GNetPackage(std::initializer_list<GNetParam> ii);
std::vector<GBackend> backends() const;
std::vector<GNetParam> networks;
};
/** @} gapi_compile_args */
} // namespace gapi
namespace detail {
template<typename T>
gapi::GNetParam strip(T&& t) {
return gapi::GNetParam { t.tag()
, t.backend()
, t.params()
};
}
template<> struct CompileArgTag<cv::gapi::GNetPackage> {
static const char* tag() { return "gapi.net_package"; }
};
} // namespace cv::detail
namespace gapi {
template<typename... Args>
cv::gapi::GNetPackage networks(Args&&... args) {
return cv::gapi::GNetPackage({ cv::detail::strip(args)... });
}
inline cv::gapi::GNetPackage& operator += ( cv::gapi::GNetPackage& lhs,
const cv::gapi::GNetPackage& rhs) {
lhs.networks.reserve(lhs.networks.size() + rhs.networks.size());
lhs.networks.insert(lhs.networks.end(), rhs.networks.begin(), rhs.networks.end());
return lhs;
}
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_HPP