ie.hpp 14.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation

#ifndef OPENCV_GAPI_INFER_IE_HPP
#define OPENCV_GAPI_INFER_IE_HPP

#include <unordered_map>
#include <unordered_set>
#include <string>
#include <array>
#include <tuple> // tuple, tuple_size
#include <map>

#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>

#include <opencv2/core/cvdef.h>     // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/infer.hpp>   // Generic

namespace cv {
namespace gapi {
// FIXME: introduce a new sub-namespace for NN?

/**
 * @brief This namespace contains G-API OpenVINO backend functions,
 * structures, and symbols.
 */
namespace ie {

GAPI_EXPORTS cv::gapi::GBackend backend();

/**
 * Specifies how G-API and IE should trait input data
 *
 * In OpenCV, the same cv::Mat is used to represent both
 * image and tensor data. Sometimes those are hardly distinguishable,
 * so this extra parameter is used to give G-API a hint.
 *
 * This hint controls how G-API reinterprets the data when converting
 * it to IE Blob format (and which layout/etc is assigned to this data).
 */
enum class TraitAs: int
{
    TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor and passes dimensions as-is
    IMAGE   //!< G-API traits an associated cv::Mat as an image so creates an "image" blob (NCHW/NHWC, etc)
};

using IEConfig = std::map<std::string, std::string>;

namespace detail {
struct ParamDesc {
    std::string model_path;
    std::string weights_path;
    std::string device_id;

    std::vector<std::string> input_names;
    std::vector<std::string> output_names;

    using ConstInput = std::pair<cv::Mat, TraitAs>;
    std::unordered_map<std::string, ConstInput> const_inputs;

    std::size_t num_in;
    std::size_t num_out;

    enum class Kind {Load, Import};
    Kind kind;
    bool is_generic;
    IEConfig config;

    std::map<std::string, std::vector<std::size_t>> reshape_table;
    std::unordered_set<std::string> layer_names_to_reshape;

    // NB: Number of asyncrhonious infer requests
    size_t nireq;

    // NB: An optional config to setup RemoteContext for IE
    cv::util::any context_config;
};
} // namespace detail

// FIXME: this is probably a shared (reusable) thing
template<typename Net>
struct PortCfg {
    using In = std::array
        < std::string
        , std::tuple_size<typename Net::InArgs>::value >;
    using Out = std::array
        < std::string
        , std::tuple_size<typename Net::OutArgs>::value >;
};

/**
 * @brief This structure provides functions
 * that fill inference parameters for "OpenVINO Toolkit" model.
 */
template<typename Net> class Params {
public:
    /** @brief Class constructor.

    Constructs Params based on model information and specifies default values for other
    inference description parameters. Model is loaded and compiled using "OpenVINO Toolkit".

    @param model Path to topology IR (.xml file).
    @param weights Path to weights (.bin file).
    @param device target device to use.
    */
    Params(const std::string &model,
           const std::string &weights,
           const std::string &device)
        : desc{ model, weights, device, {}, {}, {}
              , std::tuple_size<typename Net::InArgs>::value  // num_in
              , std::tuple_size<typename Net::OutArgs>::value // num_out
              , detail::ParamDesc::Kind::Load
              , false
              , {}
              , {}
              , {}
              , 1u
              , {}} {
    };

    /** @overload
    Use this constructor to work with pre-compiled network.
    Model is imported from a pre-compiled blob.

    @param model Path to model.
    @param device target device to use.
    */
    Params(const std::string &model,
           const std::string &device)
        : desc{ model, {}, device, {}, {}, {}
              , std::tuple_size<typename Net::InArgs>::value  // num_in
              , std::tuple_size<typename Net::OutArgs>::value // num_out
              , detail::ParamDesc::Kind::Import
              , false
              , {}
              , {}
              , {}
              , 1u
              , {}} {
    };

    /** @brief Specifies sequence of network input layers names for inference.

    The function is used to associate cv::gapi::infer<> inputs with the model inputs.
    Number of names has to match the number of network inputs as defined in G_API_NET().
    In case a network has only single input layer, there is no need to specify name manually.

    @param layer_names std::array<std::string, N> where N is the number of inputs
    as defined in the @ref G_API_NET. Contains names of input layers.
    @return reference to this parameter structure.
    */
    Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &layer_names) {
        desc.input_names.clear();
        desc.input_names.reserve(layer_names.size());
        std::copy(layer_names.begin(), layer_names.end(),
                  std::back_inserter(desc.input_names));
        return *this;
    }

    /** @brief Specifies sequence of network output layers names for inference.

    The function is used to associate cv::gapi::infer<> outputs with the model outputs.
    Number of names has to match the number of network outputs as defined in G_API_NET().
    In case a network has only single output layer, there is no need to specify name manually.

    @param layer_names std::array<std::string, N> where N is the number of outputs
    as defined in the @ref G_API_NET. Contains names of output layers.
    @return reference to this parameter structure.
    */
    Params<Net>& cfgOutputLayers(const typename PortCfg<Net>::Out &layer_names) {
        desc.output_names.clear();
        desc.output_names.reserve(layer_names.size());
        std::copy(layer_names.begin(), layer_names.end(),
                  std::back_inserter(desc.output_names));
        return *this;
    }

    /** @brief Specifies a constant input.

    The function is used to set a constant input. This input has to be
    a preprocessed tensor if its type is TENSOR. Need to provide name of the
    network layer which will receive provided data.

    @param layer_name Name of network layer.
    @param data cv::Mat that contains data which will be associated with network layer.
    @param hint Input type @sa cv::gapi::ie::TraitAs.
    @return reference to this parameter structure.
    */
    Params<Net>& constInput(const std::string &layer_name,
                            const cv::Mat &data,
                            TraitAs hint = TraitAs::TENSOR) {
        desc.const_inputs[layer_name] = {data, hint};
        return *this;
    }

    /** @brief Specifies OpenVINO plugin configuration.

    The function is used to set configuration for OpenVINO plugin. Some parameters
    can be different for each plugin. Please follow https://docs.openvinotoolkit.org/latest/index.html
    to check information about specific plugin.

    @param cfg Map of pairs: (config parameter name, config parameter value).
    @return reference to this parameter structure.
    */
       Params& pluginConfig(const IEConfig& cfg) {
        desc.config = cfg;
        return *this;
    }

    /** @overload
    Function with a rvalue parameter.

    @param cfg rvalue map of pairs: (config parameter name, config parameter value).
    @return reference to this parameter structure.
    */
    Params& pluginConfig(IEConfig&& cfg) {
        desc.config = std::move(cfg);
        return *this;
    }

    /** @brief Specifies configuration for RemoteContext in InferenceEngine.

    When RemoteContext is configured the backend imports the networks using the context.
    It also expects cv::MediaFrames to be actually remote, to operate with blobs via the context.

    @param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap.
    @return reference to this parameter structure.
    */
    Params& cfgContextParams(const cv::util::any& ctx_cfg) {
        desc.context_config = ctx_cfg;
        return *this;
    }

    /** @overload
    Function with an rvalue parameter.

    @param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap.
    @return reference to this parameter structure.
    */
    Params& cfgContextParams(cv::util::any&& ctx_cfg) {
        desc.context_config = std::move(ctx_cfg);
        return *this;
    }

    /** @brief Specifies number of asynchronous inference requests.

    @param nireq Number of inference asynchronous requests.
    @return reference to this parameter structure.
    */
    Params& cfgNumRequests(size_t nireq) {
        GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!");
        desc.nireq = nireq;
        return *this;
    }

    /** @brief Specifies new input shapes for the network inputs.

    The function is used to specify new input shapes for the network inputs.
    Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1networkNetwork.html
    for additional information.

    @param reshape_table Map of pairs: name of corresponding data and its dimension.
    @return reference to this parameter structure.
    */
    Params<Net>& cfgInputReshape(const std::map<std::string, std::vector<std::size_t>>& reshape_table) {
        desc.reshape_table = reshape_table;
        return *this;
    }

    /** @overload */
    Params<Net>& cfgInputReshape(std::map<std::string, std::vector<std::size_t>>&& reshape_table) {
        desc.reshape_table = std::move(reshape_table);
        return *this;
    }

    /** @overload

    @param layer_name Name of layer.
    @param layer_dims New dimensions for this layer.
    @return reference to this parameter structure.
    */
    Params<Net>& cfgInputReshape(const std::string& layer_name, const std::vector<size_t>& layer_dims) {
        desc.reshape_table.emplace(layer_name, layer_dims);
        return *this;
    }

    /** @overload */
    Params<Net>& cfgInputReshape(std::string&& layer_name, std::vector<size_t>&& layer_dims) {
        desc.reshape_table.emplace(layer_name, layer_dims);
        return *this;
    }

    /** @overload

    @param layer_names set of names of network layers that will be used for network reshape.
    @return reference to this parameter structure.
    */
    Params<Net>& cfgInputReshape(const std::unordered_set<std::string>& layer_names) {
        desc.layer_names_to_reshape = layer_names;
        return *this;
    }

    /** @overload

    @param layer_names rvalue set of the selected layers will be reshaped automatically
    its input image size.
    @return reference to this parameter structure.
    */
    Params<Net>& cfgInputReshape(std::unordered_set<std::string>&& layer_names) {
        desc.layer_names_to_reshape = std::move(layer_names);
        return *this;
    }

    // BEGIN(G-API's network parametrization API)
    GBackend      backend()    const { return cv::gapi::ie::backend();  }
    std::string   tag()        const { return Net::tag(); }
    cv::util::any params()     const { return { desc }; }
    // END(G-API's network parametrization API)

protected:
    detail::ParamDesc desc;
};

/*
* @brief This structure provides functions for generic network type that
* fill inference parameters.
* @see struct Generic
*/
template<>
class Params<cv::gapi::Generic> {
public:
    /** @brief Class constructor.

    Constructs Params based on model information and sets default values for other
    inference description parameters. Model is loaded and compiled using OpenVINO Toolkit.

    @param tag string tag of the network for which these parameters are intended.
    @param model path to topology IR (.xml file).
    @param weights path to weights (.bin file).
    @param device target device to use.
    */
    Params(const std::string &tag,
           const std::string &model,
           const std::string &weights,
           const std::string &device)
        : desc{ model, weights, device, {}, {}, {}, 0u, 0u,
                detail::ParamDesc::Kind::Load, true, {}, {}, {}, 1u,
                {}},
          m_tag(tag) {
    };

    /** @overload

    This constructor for pre-compiled networks. Model is imported from pre-compiled
    blob.

    @param tag string tag of the network for which these parameters are intended.
    @param model path to model.
    @param device target device to use.
    */
    Params(const std::string &tag,
           const std::string &model,
           const std::string &device)
        : desc{ model, {}, device, {}, {}, {}, 0u, 0u,
                detail::ParamDesc::Kind::Import, true, {}, {}, {}, 1u,
                {}},
          m_tag(tag) {
    };

    /** @see ie::Params::pluginConfig. */
    Params& pluginConfig(const IEConfig& cfg) {
        desc.config = cfg;
        return *this;
    }

    /** @overload */
    Params& pluginConfig(IEConfig&& cfg) {
        desc.config = std::move(cfg);
        return *this;
    }

    /** @see ie::Params::constInput. */
    Params& constInput(const std::string &layer_name,
                       const cv::Mat &data,
                       TraitAs hint = TraitAs::TENSOR) {
        desc.const_inputs[layer_name] = {data, hint};
        return *this;
    }

    /** @see ie::Params::cfgNumRequests. */
    Params& cfgNumRequests(size_t nireq) {
        GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!");
        desc.nireq = nireq;
        return *this;
    }

    /** @see ie::Params::cfgInputReshape */
    Params& cfgInputReshape(const std::map<std::string, std::vector<std::size_t>>&reshape_table) {
        desc.reshape_table = reshape_table;
        return *this;
    }

    /** @overload */
    Params& cfgInputReshape(std::map<std::string, std::vector<std::size_t>> && reshape_table) {
        desc.reshape_table = std::move(reshape_table);
        return *this;
    }

    /** @overload */
    Params& cfgInputReshape(std::string && layer_name, std::vector<size_t> && layer_dims) {
        desc.reshape_table.emplace(layer_name, layer_dims);
        return *this;
    }

    /** @overload */
    Params& cfgInputReshape(const std::string & layer_name, const std::vector<size_t>&layer_dims) {
        desc.reshape_table.emplace(layer_name, layer_dims);
        return *this;
    }

    /** @overload */
    Params& cfgInputReshape(std::unordered_set<std::string> && layer_names) {
        desc.layer_names_to_reshape = std::move(layer_names);
        return *this;
    }

    /** @overload */
    Params& cfgInputReshape(const std::unordered_set<std::string>&layer_names) {
        desc.layer_names_to_reshape = layer_names;
        return *this;
    }

    // BEGIN(G-API's network parametrization API)
    GBackend      backend()    const { return cv::gapi::ie::backend();  }
    std::string   tag()        const { return m_tag; }
    cv::util::any params()     const { return { desc }; }
    // END(G-API's network parametrization API)

protected:
    detail::ParamDesc desc;
    std::string m_tag;
};

} // namespace ie
} // namespace gapi
} // namespace cv

#endif // OPENCV_GAPI_INFER_IE_HPP