variant.hpp
26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_VARIANT_HPP
#define OPENCV_GAPI_UTIL_VARIANT_HPP
#include <array>
#include <type_traits>
#include <opencv2/gapi/util/compiler_hints.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/util/util.hpp> // max_of_t
#include <opencv2/gapi/util/type_traits.hpp>
// A poor man's `variant` implementation, incompletely modeled against C++17 spec.
namespace cv
{
namespace util
{
namespace detail
{
template<std::size_t I, typename Target, typename First, typename... Remaining>
struct type_list_index_helper
{
static const constexpr bool is_same = std::is_same<Target, First>::value;
static const constexpr std::size_t value =
std::conditional<is_same, std::integral_constant<std::size_t, I>, type_list_index_helper<I + 1, Target, Remaining...>>::type::value;
};
template<std::size_t I, typename Target, typename First>
struct type_list_index_helper<I, Target, First>
{
static_assert(std::is_same<Target, First>::value, "Type not found");
static const constexpr std::size_t value = I;
};
}
template<typename Target, typename... Types>
struct type_list_index
{
static const constexpr std::size_t value = detail::type_list_index_helper<0, Target, Types...>::value;
};
template<std::size_t Index, class... Types >
struct type_list_element
{
using type = typename std::tuple_element<Index, std::tuple<Types...> >::type;
};
class bad_variant_access: public std::exception
{
public:
virtual const char *what() const noexcept override
{
return "Bad variant access";
}
};
// Interface ///////////////////////////////////////////////////////////////
struct monostate {};
inline bool operator==(const util::monostate&, const util::monostate&)
{
return true;
}
template<typename... Ts> // FIXME: no references, arrays, and void
class variant
{
// FIXME: Replace with std::aligned_union after gcc4.8 support is dropped
static constexpr const std::size_t S = cv::detail::max_of_t<sizeof(Ts)...>::value;
static constexpr const std::size_t A = cv::detail::max_of_t<alignof(Ts)...>::value;
using Memory = typename std::aligned_storage<S, A>::type[1];
template<typename T> struct cctr_h {
static void help(Memory memory, const Memory from) {
new (memory) T(*reinterpret_cast<const T*>(from));
}
};
template<typename T> struct mctr_h {
static void help(Memory memory, void *pval) {
new (memory) T(std::move(*reinterpret_cast<T*>(pval)));
}
};
//FIXME: unify with cctr_h and mctr_h
template<typename T> struct cnvrt_ctor_h {
static void help(Memory memory, void* from) {
using util::decay_t;
new (memory) decay_t<T>(std::forward<T>(*reinterpret_cast<decay_t<T>*>(from)));
}
};
template<typename T> struct copy_h {
static void help(Memory to, const Memory from) {
*reinterpret_cast<T*>(to) = *reinterpret_cast<const T*>(from);
}
};
template<typename T> struct move_h {
static void help(Memory to, Memory from) {
*reinterpret_cast<T*>(to) = std::move(*reinterpret_cast<T*>(from));
}
};
//FIXME: unify with copy_h and move_h
template<typename T> struct cnvrt_assign_h {
static void help(Memory to, void* from) {
using util::decay_t;
*reinterpret_cast<decay_t<T>*>(to) = std::forward<T>(*reinterpret_cast<decay_t<T>*>(from));
}
};
template<typename T> struct swap_h {
static void help(Memory to, Memory from) {
std::swap(*reinterpret_cast<T*>(to), *reinterpret_cast<T*>(from));
}
};
template<typename T> struct dtor_h {
static void help(Memory memory) {
(void) memory; // MSCV warning
reinterpret_cast<T*>(memory)->~T();
}
};
template<typename T> struct equal_h {
static bool help(const Memory lhs, const Memory rhs) {
const T& t_lhs = *reinterpret_cast<const T*>(lhs);
const T& t_rhs = *reinterpret_cast<const T*>(rhs);
return t_lhs == t_rhs;
}
};
typedef void (*CCtr) (Memory, const Memory); // Copy c-tor (variant)
typedef void (*MCtr) (Memory, void*); // Generic move c-tor
typedef void (*Copy) (Memory, const Memory); // Copy assignment
typedef void (*Move) (Memory, Memory); // Move assignment
typedef void (*Swap) (Memory, Memory); // Swap
typedef void (*Dtor) (Memory); // Destructor
using cnvrt_assgn_t = void (*) (Memory, void*); // Converting assignment (via std::forward)
using cnvrt_ctor_t = void (*) (Memory, void*); // Converting constructor (via std::forward)
typedef bool (*Equal)(const Memory, const Memory); // Equality test (external)
static constexpr std::array<CCtr, sizeof...(Ts)> cctrs(){ return {{(&cctr_h<Ts>::help)...}};}
static constexpr std::array<MCtr, sizeof...(Ts)> mctrs(){ return {{(&mctr_h<Ts>::help)...}};}
static constexpr std::array<Copy, sizeof...(Ts)> cpyrs(){ return {{(©_h<Ts>::help)...}};}
static constexpr std::array<Move, sizeof...(Ts)> mvers(){ return {{(&move_h<Ts>::help)...}};}
static constexpr std::array<Swap, sizeof...(Ts)> swprs(){ return {{(&swap_h<Ts>::help)...}};}
static constexpr std::array<Dtor, sizeof...(Ts)> dtors(){ return {{(&dtor_h<Ts>::help)...}};}
template<bool cond, typename T>
struct conditional_ref : std::conditional<cond, typename std::remove_reference<T>::type&, typename std::remove_reference<T>::type > {};
template<bool cond, typename T>
using conditional_ref_t = typename conditional_ref<cond, T>::type;
template<bool is_lvalue_arg>
static constexpr std::array<cnvrt_assgn_t, sizeof...(Ts)> cnvrt_assgnrs(){
return {{(&cnvrt_assign_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
}
template<bool is_lvalue_arg>
static constexpr std::array<cnvrt_ctor_t, sizeof...(Ts)> cnvrt_ctors(){
return {{(&cnvrt_ctor_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
}
std::size_t m_index = 0;
protected:
template<typename T, typename... Us> friend T& get(variant<Us...> &v);
template<typename T, typename... Us> friend const T& get(const variant<Us...> &v);
template<typename T, typename... Us> friend T* get_if(variant<Us...> *v) noexcept;
template<typename T, typename... Us> friend const T* get_if(const variant<Us...> *v) noexcept;
template<typename... Us> friend bool operator==(const variant<Us...> &lhs,
const variant<Us...> &rhs);
Memory memory;
public:
// Constructors
variant() noexcept;
variant(const variant& other);
variant(variant&& other) noexcept;
// are_different_t is a SFINAE trick to avoid variant(T &&t) with T=variant
// for some reason, this version is called instead of variant(variant&& o) when
// variant is used in STL containers (examples: vector assignment).
template<
typename T,
typename = util::are_different_t<variant, T>
>
explicit variant(T&& t);
// template<class T, class... Args> explicit variant(Args&&... args);
// FIXME: other constructors
// Destructor
~variant();
// Assignment
variant& operator=(const variant& rhs);
variant& operator=(variant &&rhs) noexcept;
// SFINAE trick to avoid operator=(T&&) with T=variant<>, see comment above
template<
typename T,
typename = util::are_different_t<variant, T>
>
variant& operator=(T&& t) noexcept;
// Observers
std::size_t index() const noexcept;
// FIXME: valueless_by_exception()
// Modifiers
// FIXME: emplace()
void swap(variant &rhs) noexcept;
// Non-C++17x!
template<typename T> static constexpr std::size_t index_of();
};
// FIMXE: visit
template<typename T, typename... Types>
T* get_if(util::variant<Types...>* v) noexcept;
template<typename T, typename... Types>
const T* get_if(const util::variant<Types...>* v) noexcept;
template<typename T, typename... Types>
T& get(util::variant<Types...> &v);
template<typename T, typename... Types>
const T& get(const util::variant<Types...> &v);
template<std::size_t Index, typename... Types>
typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v);
template<std::size_t Index, typename... Types>
const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v);
template<typename T, typename... Types>
bool holds_alternative(const util::variant<Types...> &v) noexcept;
// Visitor
namespace detail
{
struct visitor_interface {};
// Class `visitor_return_type_deduction_helper`
// introduces solution for deduction `return_type` in `visit` function in common way
// for both Lambda and class Visitor and keep one interface invocation point: `visit` only
// his helper class is required to unify return_type deduction mechanism because
// for Lambda it is possible to take type of `decltype(visitor(get<0>(var)))`
// but for class Visitor there is no operator() in base case,
// because it provides `operator() (std::size_t index, ...)`
// So `visitor_return_type_deduction_helper` expose `operator()`
// uses only for class Visitor only for deduction `return type` in visit()
template<typename R>
struct visitor_return_type_deduction_helper
{
using return_type = R;
// to be used in Lambda return type deduction context only
template<typename T>
return_type operator() (T&&);
};
}
// Special purpose `static_visitor` can receive additional arguments
template<typename R, typename Impl>
struct static_visitor : public detail::visitor_interface,
public detail::visitor_return_type_deduction_helper<R> {
// assign responsibility for return type deduction to helper class
using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
using detail::visitor_return_type_deduction_helper<R>::operator();
friend Impl;
template<typename VariantValue, typename ...Args>
return_type operator() (std::size_t index, VariantValue&& value, Args&& ...args)
{
suppress_unused_warning(index);
return static_cast<Impl*>(this)-> visit(
std::forward<VariantValue>(value),
std::forward<Args>(args)...);
}
};
// Special purpose `static_indexed_visitor` can receive additional arguments
// And make forwarding current variant index as runtime function argument to its `Impl`
template<typename R, typename Impl>
struct static_indexed_visitor : public detail::visitor_interface,
public detail::visitor_return_type_deduction_helper<R> {
// assign responsibility for return type deduction to helper class
using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
using detail::visitor_return_type_deduction_helper<R>::operator();
friend Impl;
template<typename VariantValue, typename ...Args>
return_type operator() (std::size_t Index, VariantValue&& value, Args&& ...args)
{
return static_cast<Impl*>(this)-> visit(Index,
std::forward<VariantValue>(value),
std::forward<Args>(args)...);
}
};
template <class T>
struct variant_size;
template <class... Types>
struct variant_size<util::variant<Types...>>
: std::integral_constant<std::size_t, sizeof...(Types)> { };
// FIXME: T&&, const TT&& versions.
// Implementation //////////////////////////////////////////////////////////
template<typename... Ts>
variant<Ts...>::variant() noexcept
{
typedef typename std::tuple_element<0, std::tuple<Ts...> >::type TFirst;
new (memory) TFirst();
}
template<typename... Ts>
variant<Ts...>::variant(const variant &other)
: m_index(other.m_index)
{
(cctrs()[m_index])(memory, other.memory);
}
template<typename... Ts>
variant<Ts...>::variant(variant &&other) noexcept
: m_index(other.m_index)
{
(mctrs()[m_index])(memory, other.memory);
}
template<typename... Ts>
template<class T, typename>
variant<Ts...>::variant(T&& t)
: m_index(util::type_list_index<util::decay_t<T>, Ts...>::value)
{
const constexpr bool is_lvalue_arg = std::is_lvalue_reference<T>::value;
(cnvrt_ctors<is_lvalue_arg>()[m_index])(memory, const_cast<util::decay_t<T> *>(&t));
}
template<typename... Ts>
variant<Ts...>::~variant()
{
(dtors()[m_index])(memory);
}
template<typename... Ts>
variant<Ts...>& variant<Ts...>::operator=(const variant<Ts...> &rhs)
{
if (m_index != rhs.m_index)
{
(dtors()[ m_index])(memory);
(cctrs()[rhs.m_index])(memory, rhs.memory);
m_index = rhs.m_index;
}
else
{
(cpyrs()[rhs.m_index])(memory, rhs.memory);
}
return *this;
}
template<typename... Ts>
variant<Ts...>& variant<Ts...>::operator=(variant<Ts...> &&rhs) noexcept
{
if (m_index != rhs.m_index)
{
(dtors()[ m_index])(memory);
(mctrs()[rhs.m_index])(memory, rhs.memory);
m_index = rhs.m_index;
}
else
{
(mvers()[rhs.m_index])(memory, rhs.memory);
}
return *this;
}
template<typename... Ts>
template<typename T, typename>
variant<Ts...>& variant<Ts...>::operator=(T&& t) noexcept
{
using decayed_t = util::decay_t<T>;
// FIXME: No version with implicit type conversion available!
const constexpr std::size_t t_index =
util::type_list_index<decayed_t, Ts...>::value;
const constexpr bool is_lvalue_arg = std::is_lvalue_reference<T>::value;
if (t_index != m_index)
{
(dtors()[m_index])(memory);
(cnvrt_ctors<is_lvalue_arg>()[t_index])(memory, &t);
m_index = t_index;
}
else
{
(cnvrt_assgnrs<is_lvalue_arg>()[m_index])(memory, &t);
}
return *this;
}
template<typename... Ts>
std::size_t util::variant<Ts...>::index() const noexcept
{
return m_index;
}
template<typename... Ts>
void variant<Ts...>::swap(variant<Ts...> &rhs) noexcept
{
if (m_index == rhs.index())
{
(swprs()[m_index](memory, rhs.memory));
}
else
{
variant<Ts...> tmp(std::move(*this));
*this = std::move(rhs);
rhs = std::move(tmp);
}
}
template<typename... Ts>
template<typename T>
constexpr std::size_t variant<Ts...>::index_of()
{
return util::type_list_index<T, Ts...>::value; // FIXME: tests!
}
template<typename T, typename... Types>
T* get_if(util::variant<Types...>* v) noexcept
{
const constexpr std::size_t t_index =
util::type_list_index<T, Types...>::value;
if (v && v->index() == t_index)
return (T*)(&v->memory); // workaround for ICC 2019
// original code: return reinterpret_cast<T&>(v.memory);
return nullptr;
}
template<typename T, typename... Types>
const T* get_if(const util::variant<Types...>* v) noexcept
{
const constexpr std::size_t t_index =
util::type_list_index<T, Types...>::value;
if (v && v->index() == t_index)
return (const T*)(&v->memory); // workaround for ICC 2019
// original code: return reinterpret_cast<const T&>(v.memory);
return nullptr;
}
template<typename T, typename... Types>
T& get(util::variant<Types...> &v)
{
if (auto* p = get_if<T>(&v))
return *p;
else
throw_error(bad_variant_access());
}
template<typename T, typename... Types>
const T& get(const util::variant<Types...> &v)
{
if (auto* p = get_if<T>(&v))
return *p;
else
throw_error(bad_variant_access());
}
template<std::size_t Index, typename... Types>
typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v)
{
using ReturnType = typename util::type_list_element<Index, Types...>::type;
return const_cast<ReturnType&>(get<Index, Types...>(static_cast<const util::variant<Types...> &>(v)));
}
template<std::size_t Index, typename... Types>
const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v)
{
static_assert(Index < sizeof...(Types),
"`Index` it out of bound of `util::variant` type list");
using ReturnType = typename util::type_list_element<Index, Types...>::type;
return get<ReturnType>(v);
}
template<typename T, typename... Types>
bool holds_alternative(const util::variant<Types...> &v) noexcept
{
return v.index() == util::variant<Types...>::template index_of<T>();
}
template<typename... Us> bool operator==(const variant<Us...> &lhs,
const variant<Us...> &rhs)
{
using V = variant<Us...>;
// Instantiate table only here since it requires operator== for <Us...>
// <Us...> should have operator== only if this one is used, not in general
static const std::array<typename V::Equal, sizeof...(Us)> eqs = {
{(&V::template equal_h<Us>::help)...}
};
if (lhs.index() != rhs.index())
return false;
return (eqs[lhs.index()])(lhs.memory, rhs.memory);
}
template<typename... Us> bool operator!=(const variant<Us...> &lhs,
const variant<Us...> &rhs)
{
return !(lhs == rhs);
}
namespace detail
{
// terminate recursion implementation for `non-void` ReturnType
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, typename... VisitorArgs>
ReturnType apply_visitor_impl(Visitor&&, Variant&,
std::true_type, std::false_type,
VisitorArgs&& ...)
{
return {};
}
// terminate recursion implementation for `void` ReturnType
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, typename... VisitorArgs>
void apply_visitor_impl(Visitor&&, Variant&,
std::true_type, std::true_type,
VisitorArgs&& ...)
{
}
// Intermediate resursion processor for Lambda Visitors
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
typename std::enable_if<!std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
std::integral_constant<bool, no_return_value> should_no_return,
VisitorArgs&& ...args)
{
static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
"Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
" must return the same type");
suppress_unused_warning(not_processed);
if (v.index() == CurIndex)
{
return visitor.operator()(get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
}
using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
std::forward<Visitor>(visitor),
std::forward<Variant>(v),
is_variant_processed_t{},
should_no_return,
std::forward<VisitorArgs>(args)...);
}
//Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<static_visitor<ReturnType, typename std::decay<Visitor>::type>,
typename std::decay<Visitor>::type>::value, ReturnType>::type
invoke_class_visitor(Visitor& visitor, Value&& v, VisitorArgs&&...args)
{
return static_cast<static_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
}
//Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>,
typename std::decay<Visitor>::type>::value, ReturnType>::type
invoke_class_visitor(Visitor& visitor, Value&& v, VisitorArgs&&...args)
{
return static_cast<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
}
// Intermediate recursion processor for special case `visitor_interface` derived Visitors
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
std::integral_constant<bool, no_return_value> should_no_return,
VisitorArgs&& ...args)
{
static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
"Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
" must return the same type");
suppress_unused_warning(not_processed);
if (v.index() == CurIndex)
{
return invoke_class_visitor<CurIndex, ReturnType>(visitor, get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
}
using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
std::forward<Visitor>(visitor),
std::forward<Variant>(v),
is_variant_processed_t{},
should_no_return,
std::forward<VisitorArgs>(args)...);
}
} // namespace detail
template<typename Visitor, typename Variant, typename... VisitorArg>
auto visit(Visitor &visitor, const Variant& var, VisitorArg &&...args) -> decltype(visitor(get<0>(var)))
{
constexpr std::size_t varsize = util::variant_size<Variant>::value;
static_assert(varsize != 0, "utils::variant must contains one type at least ");
using is_variant_processed_t = std::false_type;
using ReturnType = decltype(visitor(get<0>(var)));
using return_t = std::is_same<ReturnType, void>;
return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
std::forward<Visitor>(visitor),
var, is_variant_processed_t{},
return_t{},
std::forward<VisitorArg>(args)...);
}
template<typename Visitor, typename Variant>
auto visit(Visitor&& visitor, const Variant& var) -> decltype(visitor(get<0>(var)))
{
constexpr std::size_t varsize = util::variant_size<Variant>::value;
static_assert(varsize != 0, "utils::variant must contains one type at least ");
using is_variant_processed_t = std::false_type;
using ReturnType = decltype(visitor(get<0>(var)));
using return_t = std::is_same<ReturnType, void>;
return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
std::forward<Visitor>(visitor),
var, is_variant_processed_t{},
return_t{});
}
} // namespace util
} // namespace cv
#endif // OPENCV_GAPI_UTIL_VARIANT_HPP