// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include #include #include "array.hpp" #include "types.hpp" #include "grid_stride_range.hpp" #include "execution.hpp" #include "kernel_dispatcher.hpp" #include "../cuda4dnn/csl/stream.hpp" #include "../cuda4dnn/csl/tensor.hpp" #include "../cuda4dnn/csl/span.hpp" #include "../cuda4dnn/kernels/fill_copy.hpp" #include #include #include #include #include using namespace cv::dnn::cuda4dnn::csl; using namespace cv::dnn::cuda4dnn::csl::device; namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { namespace raw { template __global__ void slice( Span output, array out_strides, View input, array in_strides, array in_offset) { for (auto i : grid_stride_range(output.size())) { index_type out_index = i / out_strides[0]; index_type in_index = in_offset[0] + out_index; index_type iidx = in_index * in_strides[0]; for (int j = 1; j < Rank; j++) { out_index = (i % out_strides[j - 1]) / out_strides[j]; in_index = in_offset[j] + out_index; iidx += in_index * in_strides[j]; } output[i] = input[iidx]; } } } template static void launch_slice( const Stream& stream, Span output, const std::vector& outStride, View input, const std::vector& inStride, const std::vector& inOffset) { CV_Assert(outStride.size() == Rank); CV_Assert(inStride.size() == Rank); CV_Assert(inOffset.size() == Rank); array outStride_k, inStride_k; outStride_k.assign(std::begin(outStride), std::end(outStride)); inStride_k.assign(std::begin(inStride), std::end(inStride)); array inOffset_k; inOffset_k.assign(std::begin(inOffset), std::end(inOffset)); auto kernel = raw::slice; auto policy = make_policy(kernel, output.size(), 0, stream); launch_kernel(kernel, policy, output, outStride_k, input, inStride_k, inOffset_k); } GENERATE_KERNEL_DISPATCHER(slice_dispatcher, launch_slice); template void slice(const Stream& stream, TensorSpan output, TensorView input, std::vector offsets) { CV_Assert(output.rank() == input.rank()); CV_Assert(output.rank() == offsets.size()); /* copy directly if no slicing is required */ if (is_shape_same(output, input)) { CV_Assert(std::all_of(std::begin(offsets), std::end(offsets), [] (std::size_t x) { return x == 0; })); kernels::copy(stream, output, input); return; } /* squeezable axes at the beginning of both tensors can be eliminated * * Reasoning: * ---------- * Suppose an item's indices in the output tensor is [o1, o2, ...]. The indices in the input * tensor will be [o1 + off1, o2 + off2, ...]. The rest of the elements in the input are ignored. * * If the size of the first axis of the input and output tensor is unity, the input and output indices * for all the elements will be of the form be [0, o2 + off2, ...] and [0, o2, ...] respectively. Note that * there cannot be any ignored items since the axes have unit size. The first index does not contribute to the * element's address calculation and hence does nothing apart from eating up few cycles. */ while (input.get_axis_size(0) == 1 && output.get_axis_size(0) == 1) { CV_Assert(offsets[0] == 0); input.squeeze(0); output.squeeze(0); offsets.erase(std::begin(offsets)); CV_Assert(output.rank() == input.rank()); CV_Assert(output.rank() == offsets.size()); } auto inShape = input.shape_as_vector(); auto outShape = output.shape_as_vector(); /* contiguous axes which do not undergo slicing can be combined into one axis * * Reasoning: * ---------- * Suppose an item's indices in the output tensor is [o1, o2, o3, ...]. Let the first two axes not undergo any * slicing. The indices in the input tensor will be [o1, o2, o3 + off3, ...]. * * Each axis in the contiguous unsliced axes sequence will add an offset of iN * strideN. In the above example, * the two axes add a total offset of `o1 * stride1 + o2 * stride2`. We can merge the two axes into one axis with * a size of `size1 * size2`. The new offset added will be o12 * stride2` as the kernel iterates through `o12`. * Note that `o12` is actually `(o1 * size2 + o2)` in the original tensor. */ for (int i = 0; i < inShape.size(); i++) { /* check if axis `i` requires any slicing */ if (offsets[i] == 0 && inShape[i] == outShape[i]) { /* loop invariant: `i` is the first axis in the contiguous unsliced axis sequence */ int j = i + 1; /* `j` is the axis which we will attempt to merge */ while (j < inShape.size() && offsets[j] == 0 && inShape[j] == outShape[j]) { /* `j` axis is also unsliced; merge `i` and `j` */ auto new_size = inShape[i] * inShape[j]; inShape[i] = new_size; outShape[i] = new_size; offsets[i] = 0; /* redundant */ /* delete axis `j` */ inShape.erase(std::begin(inShape) + j); outShape.erase(std::begin(outShape) + j); offsets.erase(std::begin(offsets) + j); /* optimizations should not break the invariants */ CV_Assert(inShape.size() == outShape.size()); CV_Assert(inShape.size() == offsets.size()); CV_Assert(inShape[i] == outShape[i]); CV_Assert(offsets[i] == 0); } } } auto rank = inShape.size(); /* We can do a copy if the reduced rank is two and only the first axis is sliced. * The general requirement is that only one axis is sliced and all the axes that * preceed the sliced axis are singleton. However, the reductions above will remove * all the leading singleton axes and merge the trailing unsliced axes into one, or * zero if there are no trailing unsliced axes. The latter is handled separately. */ if (rank == 2 && offsets[0] != 0 && offsets[1] == 0) { auto stride = inShape[1]; auto sliced_input = View(input.get() + offsets[0] * stride, output.size()); kernels::copy(stream, output, sliced_input); return; } if (rank == 1) { auto sliced_input = View(input.get() + offsets[0], output.size()); kernels::copy(stream, output, sliced_input); return; } std::vector inStride(rank), outStride(rank); inStride.back() = 1; outStride.back() = 1; /* garbage, ..., garbage, 1 */ std::copy(std::begin(inShape) + 1, std::end(inShape), std::begin(inStride)); std::copy(std::begin(outShape) + 1, std::end(outShape), std::begin(outStride)); /* dim[0], dim[1], ..., dim[-1], 1 */ std::partial_sum(inStride.rbegin(), inStride.rend(), inStride.rbegin(), std::multiplies()); std::partial_sum(outStride.rbegin(), outStride.rend(), outStride.rbegin(), std::multiplies()); /* stride[0], stride[1], ..., stride[-2], 1 */ CV_Assert(1 <= rank && rank <= CSL_MAX_TENSOR_RANK); slice_dispatcher(rank, stream, output, outStride, input, inStride, offsets); } #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) template void slice(const Stream&, TensorSpan<__half>, TensorView<__half>, std::vector); #endif template void slice(const Stream&, TensorSpan, TensorView, std::vector); }}}} /* namespace cv::dnn::cuda4dnn::kernels */