macroblock.h
9.14 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*****************************************************************************
* macroblock.h: macroblock encoding
*****************************************************************************
* Copyright (C) 2003-2024 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Laurent Aimar <fenrir@via.ecp.fr>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#ifndef X264_ENCODER_MACROBLOCK_H
#define X264_ENCODER_MACROBLOCK_H
#include "common/macroblock.h"
#define x264_rdo_init x264_template(rdo_init)
void x264_rdo_init( void );
#define x264_macroblock_probe_skip x264_template(macroblock_probe_skip)
int x264_macroblock_probe_skip( x264_t *h, int b_bidir );
#define x264_macroblock_probe_pskip( h )\
x264_macroblock_probe_skip( h, 0 )
#define x264_macroblock_probe_bskip( h )\
x264_macroblock_probe_skip( h, 1 )
#define x264_predict_lossless_4x4 x264_template(predict_lossless_4x4)
void x264_predict_lossless_4x4( x264_t *h, pixel *p_dst, int p, int idx, int i_mode );
#define x264_predict_lossless_8x8 x264_template(predict_lossless_8x8)
void x264_predict_lossless_8x8( x264_t *h, pixel *p_dst, int p, int idx, int i_mode, pixel edge[36] );
#define x264_predict_lossless_16x16 x264_template(predict_lossless_16x16)
void x264_predict_lossless_16x16( x264_t *h, int p, int i_mode );
#define x264_predict_lossless_chroma x264_template(predict_lossless_chroma)
void x264_predict_lossless_chroma( x264_t *h, int i_mode );
#define x264_macroblock_encode x264_template(macroblock_encode)
void x264_macroblock_encode ( x264_t *h );
#define x264_macroblock_write_cabac x264_template(macroblock_write_cabac)
void x264_macroblock_write_cabac ( x264_t *h, x264_cabac_t *cb );
#define x264_macroblock_write_cavlc x264_template(macroblock_write_cavlc)
void x264_macroblock_write_cavlc ( x264_t *h );
#define x264_macroblock_encode_p8x8 x264_template(macroblock_encode_p8x8)
void x264_macroblock_encode_p8x8( x264_t *h, int i8 );
#define x264_macroblock_encode_p4x4 x264_template(macroblock_encode_p4x4)
void x264_macroblock_encode_p4x4( x264_t *h, int i4 );
#define x264_mb_encode_chroma x264_template(mb_encode_chroma)
void x264_mb_encode_chroma( x264_t *h, int b_inter, int i_qp );
#define x264_cabac_mb_skip x264_template(cabac_mb_skip)
void x264_cabac_mb_skip( x264_t *h, int b_skip );
#define x264_cabac_block_residual_c x264_template(cabac_block_residual_c)
void x264_cabac_block_residual_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
#define x264_cabac_block_residual_8x8_rd_c x264_template(cabac_block_residual_8x8_rd_c)
void x264_cabac_block_residual_8x8_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
#define x264_cabac_block_residual_rd_c x264_template(cabac_block_residual_rd_c)
void x264_cabac_block_residual_rd_c( x264_t *h, x264_cabac_t *cb, int ctx_block_cat, dctcoef *l );
#define x264_quant_luma_dc_trellis x264_template(quant_luma_dc_trellis)
int x264_quant_luma_dc_trellis( x264_t *h, dctcoef *dct, int i_quant_cat, int i_qp,
int ctx_block_cat, int b_intra, int idx );
#define x264_quant_chroma_dc_trellis x264_template(quant_chroma_dc_trellis)
int x264_quant_chroma_dc_trellis( x264_t *h, dctcoef *dct, int i_qp, int b_intra, int idx );
#define x264_quant_4x4_trellis x264_template(quant_4x4_trellis)
int x264_quant_4x4_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx );
#define x264_quant_8x8_trellis x264_template(quant_8x8_trellis)
int x264_quant_8x8_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx );
#define x264_noise_reduction_update x264_template(noise_reduction_update)
void x264_noise_reduction_update( x264_t *h );
static ALWAYS_INLINE int x264_quant_4x4( x264_t *h, dctcoef dct[16], int i_qp, int ctx_block_cat, int b_intra, int p, int idx )
{
int i_quant_cat = b_intra ? (p?CQM_4IC:CQM_4IY) : (p?CQM_4PC:CQM_4PY);
if( h->mb.b_noise_reduction )
h->quantf.denoise_dct( dct, h->nr_residual_sum[0+!!p*2], h->nr_offset[0+!!p*2], 16 );
if( h->mb.b_trellis )
return x264_quant_4x4_trellis( h, dct, i_quant_cat, i_qp, ctx_block_cat, b_intra, !!p, idx+p*16 );
else
return h->quantf.quant_4x4( dct, h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias[i_quant_cat][i_qp] );
}
static ALWAYS_INLINE int x264_quant_8x8( x264_t *h, dctcoef dct[64], int i_qp, int ctx_block_cat, int b_intra, int p, int idx )
{
int i_quant_cat = b_intra ? (p?CQM_8IC:CQM_8IY) : (p?CQM_8PC:CQM_8PY);
if( h->mb.b_noise_reduction )
h->quantf.denoise_dct( dct, h->nr_residual_sum[1+!!p*2], h->nr_offset[1+!!p*2], 64 );
if( h->mb.b_trellis )
return x264_quant_8x8_trellis( h, dct, i_quant_cat, i_qp, ctx_block_cat, b_intra, !!p, idx+p*4 );
else
return h->quantf.quant_8x8( dct, h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias[i_quant_cat][i_qp] );
}
#define STORE_8x8_NNZ( p, idx, nz )\
do\
{\
M16( &h->mb.cache.non_zero_count[x264_scan8[p*16+idx*4]+0] ) = (nz) * 0x0101;\
M16( &h->mb.cache.non_zero_count[x264_scan8[p*16+idx*4]+8] ) = (nz) * 0x0101;\
} while( 0 )
#define CLEAR_16x16_NNZ( p ) \
do\
{\
M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 0*8] ) = 0;\
M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 1*8] ) = 0;\
M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 2*8] ) = 0;\
M32( &h->mb.cache.non_zero_count[x264_scan8[16*p] + 3*8] ) = 0;\
} while( 0 )
/* A special for loop that iterates branchlessly over each set
* bit in a 4-bit input. */
#define FOREACH_BIT(idx,start,mask) for( int idx = start, msk = mask, skip; msk && (skip = x264_ctz_4bit(msk), idx += skip, msk >>= skip+1, 1); idx++ )
static ALWAYS_INLINE void x264_mb_encode_i4x4( x264_t *h, int p, int idx, int i_qp, int i_mode, int b_predict )
{
int nz;
pixel *p_src = &h->mb.pic.p_fenc[p][block_idx_xy_fenc[idx]];
pixel *p_dst = &h->mb.pic.p_fdec[p][block_idx_xy_fdec[idx]];
ALIGNED_ARRAY_64( dctcoef, dct4x4,[16] );
if( b_predict )
{
if( h->mb.b_lossless )
x264_predict_lossless_4x4( h, p_dst, p, idx, i_mode );
else
h->predict_4x4[i_mode]( p_dst );
}
if( h->mb.b_lossless )
{
nz = h->zigzagf.sub_4x4( h->dct.luma4x4[p*16+idx], p_src, p_dst );
h->mb.cache.non_zero_count[x264_scan8[p*16+idx]] = nz;
h->mb.i_cbp_luma |= nz<<(idx>>2);
return;
}
h->dctf.sub4x4_dct( dct4x4, p_src, p_dst );
nz = x264_quant_4x4( h, dct4x4, i_qp, ctx_cat_plane[DCT_LUMA_4x4][p], 1, p, idx );
h->mb.cache.non_zero_count[x264_scan8[p*16+idx]] = nz;
if( nz )
{
h->mb.i_cbp_luma |= 1<<(idx>>2);
h->zigzagf.scan_4x4( h->dct.luma4x4[p*16+idx], dct4x4 );
h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[p?CQM_4IC:CQM_4IY], i_qp );
h->dctf.add4x4_idct( p_dst, dct4x4 );
}
}
static ALWAYS_INLINE void x264_mb_encode_i8x8( x264_t *h, int p, int idx, int i_qp, int i_mode, pixel *edge, int b_predict )
{
int x = idx&1;
int y = idx>>1;
int nz;
pixel *p_src = &h->mb.pic.p_fenc[p][8*x + 8*y*FENC_STRIDE];
pixel *p_dst = &h->mb.pic.p_fdec[p][8*x + 8*y*FDEC_STRIDE];
ALIGNED_ARRAY_64( dctcoef, dct8x8,[64] );
ALIGNED_ARRAY_32( pixel, edge_buf,[36] );
if( b_predict )
{
if( !edge )
{
h->predict_8x8_filter( p_dst, edge_buf, h->mb.i_neighbour8[idx], x264_pred_i4x4_neighbors[i_mode] );
edge = edge_buf;
}
if( h->mb.b_lossless )
x264_predict_lossless_8x8( h, p_dst, p, idx, i_mode, edge );
else
h->predict_8x8[i_mode]( p_dst, edge );
}
if( h->mb.b_lossless )
{
nz = h->zigzagf.sub_8x8( h->dct.luma8x8[p*4+idx], p_src, p_dst );
STORE_8x8_NNZ( p, idx, nz );
h->mb.i_cbp_luma |= nz<<idx;
return;
}
h->dctf.sub8x8_dct8( dct8x8, p_src, p_dst );
nz = x264_quant_8x8( h, dct8x8, i_qp, ctx_cat_plane[DCT_LUMA_8x8][p], 1, p, idx );
if( nz )
{
h->mb.i_cbp_luma |= 1<<idx;
h->zigzagf.scan_8x8( h->dct.luma8x8[p*4+idx], dct8x8 );
h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[p?CQM_8IC:CQM_8IY], i_qp );
h->dctf.add8x8_idct8( p_dst, dct8x8 );
STORE_8x8_NNZ( p, idx, 1 );
}
else
STORE_8x8_NNZ( p, idx, 0 );
}
#endif