motocycle_hs_process.cpp
19.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#include <algorithm>
#include "./motocycle_hs_process.h"
#include <cmath>
#include "../decoder/interface/DeviceMemory.hpp"
#include "../common/logger.hpp"
#include "../ai_platform/mvpt_process_assist.h"
namespace ai_engine_module
{
namespace motocycle_hs_process
{
static std::set<algorithm_type_t> algor_type_list_ = {
algorithm_type_t::NONMOTOR_VEHICLE_NOHELMET,
algorithm_type_t::NONMOTOR_VEHICLE_OVERMAN,
};
inline bool is_valid_label(const label_t &label) {
return ((label == label_t::helmet_major) ||
(label == label_t::nohelmet_major));
}
std::set<algorithm_type_t> task_id_to_algorithm_type_seq(const task_id_t &task_id,
task_param_manager *const task_param) {
std::set<algorithm_type_t> seq;
auto &&algor_map = task_param->get_task_other_param(task_id);
if (algor_map) {
// LOG_TRACE("task id is {} size algor type {}", task_id, algor_map->size());
for (auto iter = algor_map->begin(); iter != algor_map->end(); ++iter) {
if (algor_type_list_.count(iter->first) > 0)
seq.emplace(iter->first);
}
}
return seq; // N(RVO)
}
bool is_valid_box(const int top, const int left, const int right, const int bottom, const float score,
const algorithm_type_t &algor_type,
const task_param_manager::algo_param_type_t_ *params_ptr = nullptr) {
if (!params_ptr)
return false;
if (!snapshot_legal_inarea(params_ptr->basic_param->algor_valid_rect, left, top, right, bottom))
return false;
if (params_ptr->algor_param == nullptr)
return false;
const unsigned width = right - left;
const unsigned height = bottom - top;
if (width == 0 || height == 0)
return false;
//! TODO: use switch to replace.
using data_t = algor_config_param_manned_incident;
data_t *algor_params_ptr = (data_t *) (params_ptr->algor_param);
if ((width < algor_params_ptr->obj_min_width || height < algor_params_ptr->obj_min_height || score < algor_params_ptr->obj_confidence_threshold))
return false;
return true;
}
MotorHsProcess::MotorHsProcess()
: task_param_manager_(nullptr)
{
}
MotorHsProcess::~MotorHsProcess()
{
if (tools_) {
hs_motor_release(&tools_);
tools_ = nullptr;
}
if (m_algorthim_ctx) {
aclrtDestroyContext(m_algorthim_ctx);
}
}
bool MotorHsProcess::init(int gpu_id, string models_dir)
{
init_ = false;
// string model_path = models_dir + "/models/hs/hs_motor_310p.om" ;
string model_path = models_dir + "/models/hs/hs_motor_b8_310p.om" ;
LOG_INFO("hs_motor 版本:{} 模型路径:{}", hs_motor_getversion(), model_path);
hs_motor_param param;
char modelNames[100];
strcpy(modelNames, model_path.c_str());
// param.modelNames = modelNames;
param.modelNames_b = modelNames;
param.thresld = 0.25;
param.devId = gpu_id;
param.max_batch = 8;
m_devId = param.devId;
ACL_CALL(aclrtSetDevice(m_devId), ACL_SUCCESS, -1);
ACL_CALL(aclrtCreateContext(&m_algorthim_ctx, m_devId), ACL_SUCCESS, -1);
int status;
if (!(init_ = (0 == (status = hs_motor_init(&tools_, param)))))
LOG_ERROR("Init MotorHsProcessSdk failed error code is {}", status);
else
if (!task_param_manager_)
task_param_manager_ = task_param_manager::getInstance();
return init_;
}
bool MotorHsProcess::check_initied()
{
if (!init_)
LOG_ERROR("[%s:%d] call init function please.", __FILE__, __LINE__);
return init_;
}
void MotorHsProcess::force_release_result(const task_id_t& task_id) {
for (auto iter = id_to_result_.begin(); iter != id_to_result_.end();) {
const auto& key = iter->first;
if (key.task_id == task_id) {
auto& value = iter->second;
if (value.origin_img_desc != nullptr) {
VPCUtil::vpc_pic_desc_release(value.origin_img_desc);
}
if (value.roi_img_desc != nullptr) {
VPCUtil::vpc_pic_desc_release(value.roi_img_desc);
}
iter = id_to_result_.erase(iter);
}
else {
++iter;
}
}
for (auto iter = id_to_mn_.begin(); iter != id_to_mn_.end();) {
const auto& key = iter->first;
if (key.task_id == task_id) { iter = id_to_mn_.erase(iter);}
else { ++iter; }
}
}
std::shared_ptr<results_data_t> MotorHsProcess::get_result_by_objectid(const id_t& id, bool do_erase)
{
auto it = id_to_result_.find(id);
if (it == id_to_result_.end())
return std::shared_ptr<results_data_t>(nullptr);
std::shared_ptr<results_data_t> res = std::make_shared<results_data_t>(it->second);
if (do_erase) {
id_to_result_.erase(id);
if (id_to_mn_.count(id)) id_to_mn_.erase(id);
}
return res;
}
bool MotorHsProcess::update_mstreams(const std::vector<task_id_t>& taskIds, vector<DeviceMemory*> vec_det_input_images, const std::vector<onelevel_det_result> &det_results)
{
if (!check_initied())
return false;
if (det_results.empty())
{
LOG_DEBUG("detection result is empty.");
return false;
}
struct stream_idx_and_algor_seq_t {
unsigned stream_idx;
std::set<algorithm_type_t> algors;
};
int n_images = det_results.size(); // or n_stream
unsigned flattened_idx = 0;
std::map<int, int> flattened_idx_to_batch_idx;
//! 记录每个box对应的算法以及流id.
std::map<unsigned, stream_idx_and_algor_seq_t> flattened_idx_to_algor_seq;
/* 1. Crop & keep some interest class. */
auto taskId_iter = taskIds.begin();
std::vector<sy_img> flattened_imgs(0);
std::vector<vpc_img_info> flattened_vpc_imgs(0);
std::vector<input_data_wrap_t> flattened_interest_data(0); //
VPCUtil* pVpcUtil = VPCUtil::getInstance();
for (int n = 0; n < n_images; ++n)
{
int n_interest_obj = 0;
auto& src_img = vec_det_input_images[n];
int src_img_w = src_img->getWidth();
int src_img_h = src_img->getHeight();
auto& boxes_of_one_image = det_results[n].obj;
for (int i = 0; i < det_results[n].obj_count; ++i)
{
auto& box = boxes_of_one_image[i];
if (static_cast<det_class_label_t>(box.index) == det_class_label_t::MOTOCYCLE)
{
auto& taskId = *taskId_iter;
input_data_wrap_t data;
int top = std::max(int(box.top - (IMAGE_CROP_EXPAND_RATIO * box.top)), 0);
int left = std::max(int(box.left - (IMAGE_CROP_EXPAND_RATIO * box.left)), 0);
int right = std::min(int(box.right + (IMAGE_CROP_EXPAND_RATIO * box.right)), src_img_w);
int bottom = std::min(int(box.bottom + (IMAGE_CROP_EXPAND_RATIO * box.bottom)), src_img_h);
//! loop per algor from set.
stream_idx_and_algor_seq_t stream_idx_and_algor_seq{n, {}};
std::set<algorithm_type_t> algorithm_type_seq = task_id_to_algorithm_type_seq(taskId,
task_param_manager_); // N(RVO).
for (auto algor_iter = algorithm_type_seq.begin();algor_iter != algorithm_type_seq.end(); ++algor_iter) {
const algorithm_type_t algor_type = *algor_iter;
auto &&algor_param_wrap = task_param_manager_->get_task_other_param(taskId, algor_type);
if (!algor_param_wrap) {
LOG_ERROR("{} is nullptr when get algor param from task_param", taskId.c_str());
continue;
}
if (!is_valid_box(top, left, right, bottom, box.confidence, algor_type, algor_param_wrap))
continue;
stream_idx_and_algor_seq.algors.emplace(algor_type);
}
if (stream_idx_and_algor_seq.algors.empty())
continue;
int width = right - left;
int height = bottom - top;
data.box.top = top;
data.box.left = left;
data.box.right = right;
data.box.bottom = bottom;
data.box.score = box.confidence;
data.taskId = taskId;
data.objId = box.id;
// data.id = obj_key_t{ box.id, taskId, algorithm_type_t::TRUCK_MANNED };
// 抠图
video_object_info obj;
strcpy(obj.task_id, taskId.c_str());
obj.object_id = box.id;
obj.left = left; obj.top = top;
obj.right = right; obj.bottom = bottom;
vpc_img_info img_info = pVpcUtil->crop(src_img, obj);
sy_img img;
img.w_ = width;
img.h_ = height;
img.c_ = src_img->getChannel();
if (img_info.pic_desc != nullptr) {
void *outputDataDev = acldvppGetPicDescData(img_info.pic_desc);
img.data_ = reinterpret_cast<unsigned char*>(outputDataDev);
}
else {
LOG_ERROR("Crop image NPU failed wh is [{}, {}] ltrb is [{} {} {} {}]",
src_img_w, src_img_h, data.box.left, data.box.top, data.box.right, data.box.bottom);
continue;
}
flattened_imgs.emplace_back(std::move(img));
flattened_vpc_imgs.emplace_back(std::move(img_info));
flattened_interest_data.emplace_back(std::move(data));
flattened_idx_to_algor_seq[flattened_idx] = std::move(stream_idx_and_algor_seq);
flattened_idx_to_batch_idx[flattened_idx++] = n;
}
}
++taskId_iter;
}
int ret = aclrtSetCurrentContext(m_algorthim_ctx);
if (ACL_SUCCESS != ret) {
return false;
}
/* 2. collection result. */
int n_input_image = flattened_imgs.size();
hs_motor_result model_results[n_input_image];
{
int steps = (n_input_image + MAX_BATCH - 1) / MAX_BATCH;
for (int step = 0; step < steps; ++step)
{
int offset = step * MAX_BATCH;
int batch_size = (step == steps - 1) ? n_input_image - offset : MAX_BATCH;
// hs_motor_process_batch(tools_, flattened_imgs.data() + offset, batch_size, model_results + offset);
hs_motor_process_batchV2(tools_, flattened_imgs.data() + offset, batch_size, model_results + offset);
}
}
/* 3. postprocess. */
{
for (int n = 0; n < n_input_image; ++n)
{
auto& det_result = flattened_interest_data[n];
auto& objId = det_result.objId;
auto& task_id = det_result.taskId;
auto &stream_idx_and_algor_seq = flattened_idx_to_algor_seq[n];
auto &algors = stream_idx_and_algor_seq.algors;
// auto &steram_idx = stream_idx_and_algor_seq.stream_idx;
const auto& src_img = vec_det_input_images[flattened_idx_to_batch_idx[n]];
auto &model_result = model_results[n];
int person_cnt = 0, helmet_cnt = 0; //统计主要车驾乘人员数量及戴盔数量
for (unsigned i = 0; i < model_result.objcount; ++i) {
auto &box = model_result.objinfo[i];
const label_t label = static_cast<label_t>(box.index);
// LOG_TRACE("task id is {} obj_id {} label {} score {}", task_id, obj_id, label, box.obj_score);
if (!is_valid_label(label))
continue;
person_cnt ++;
if (box.index == 0)
helmet_cnt ++;
}
// if (person_cnt == 0) {
// VPCUtil::vpc_img_release(flattened_vpc_imgs[n]); //flattened_imgs[n].data_
// flattened_imgs[n].data_ = nullptr;
// continue;
// }
for (auto algor_type_iter = algors.begin();algor_type_iter != algors.end(); ++algor_type_iter) {
const algorithm_type_t algor_type = *algor_type_iter;
auto &&algor_param_wrap = task_param_manager_->get_task_other_param(task_id, algor_type);
if (!algor_param_wrap) {
LOG_ERROR("{} is nullptr when get algor param from task_param", task_id);
continue;
}
auto algor_param = ((algor_param_type)algor_param_wrap->algor_param);
id_t obj_key = obj_key_t{ objId, task_id, algor_type};
if (id_to_result_.find(obj_key) != id_to_result_.end())
continue;
// LOG_TRACE("task id is {} algor type is {} obj_id {}", task_id, int(algor_type), objId);
auto& e = id_to_mn_[obj_key];
++e.m_frame;
// 超载:数量小于设定阈值不报警
if (algor_type == algorithm_type_t::NONMOTOR_VEHICLE_OVERMAN && person_cnt < algor_param->hs_count_threshold)
continue;
// 未戴盔:戴盔数量不小于驾乘数量则不报警
if (algor_type == algorithm_type_t::NONMOTOR_VEHICLE_NOHELMET && person_cnt <= helmet_cnt)
continue;
{
if (++e.n_frame == algor_param->n)
{
results_data_t result;
{
result.box = det_result.box;
result.taskId = det_result.taskId;
result.objId = det_result.objId;
result.algor_type = algor_type;
#if 0 /*暂不保存报警时刻的抓拍图,有需要再启用*/
// 原图
vpc_img_info src_img_info = VPCUtil::vpc_devMem2vpcImg(src_img);
result.origin_img_desc = src_img_info.pic_desc;
// 抠图--拷贝后赋值
void *outputDataDev = acldvppGetPicDescData(flattened_vpc_imgs[n].pic_desc);
int nBufferSize = acldvppGetPicDescSize(flattened_vpc_imgs[n].pic_desc);
void *devBuffer = nullptr;
auto ret = acldvppMalloc(&devBuffer, nBufferSize);
if (ret != ACL_SUCCESS) {
LOG_ERROR("acldvppMalloc failed, size = %u, errorCode = %d.", nBufferSize, static_cast<int32_t>(ret));
return false;
}
aclrtMemcpy(devBuffer, nBufferSize, outputDataDev, nBufferSize, ACL_MEMCPY_DEVICE_TO_DEVICE);
acldvppPicDesc *vpcInputDesc_= acldvppCreatePicDesc();
acldvppSetPicDescData(vpcInputDesc_, devBuffer);
acldvppSetPicDescFormat(vpcInputDesc_, PIXEL_FORMAT_YUV_SEMIPLANAR_420);
acldvppSetPicDescWidth(vpcInputDesc_, acldvppGetPicDescWidth(flattened_vpc_imgs[n].pic_desc));
acldvppSetPicDescHeight(vpcInputDesc_, acldvppGetPicDescHeight(flattened_vpc_imgs[n].pic_desc));
acldvppSetPicDescWidthStride(vpcInputDesc_, acldvppGetPicDescWidthStride(flattened_vpc_imgs[n].pic_desc));
acldvppSetPicDescHeightStride(vpcInputDesc_, acldvppGetPicDescHeightStride(flattened_vpc_imgs[n].pic_desc));
acldvppSetPicDescSize(vpcInputDesc_, nBufferSize);
result.roi_img_desc = vpcInputDesc_; //需复制
#endif
}
id_to_result_.emplace(obj_key, std::move(result));
}
}
if (e.m_frame == algor_param->m)
e.reset();
}
VPCUtil::vpc_img_release(flattened_vpc_imgs[n]); //flattened_imgs[n].data_
}
}
return true;
}
} // namespace motocycle_hs_process
} // namespace ai_engine_module