road_seg_statistics.cpp 22.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
#include "road_seg_statistics.h"
#include "omp.h"

RoadSegProcess::RoadSegProcess(){
    m_max_batchsize = 16;
}

RoadSegProcess::~RoadSegProcess(){
    release();
}


cv::Mat RoadSegProcess::mask_to_rgb(cv::Mat img, cv::Mat mask) {
    cv::Mat masks = img.clone();
    int reg_cls = 9;
    for (int i = 0; i < masks.rows; i++) {
        for (int j = 0; j < masks.cols; j++) {
            for (int k = 1; k < reg_cls; k++) {
                if (mask.at<int>(i,j) == k) {
                    masks.at<cv::Vec3b>(i,j)[0] = seg_colors[k][0];
                    masks.at<cv::Vec3b>(i,j)[1] = seg_colors[k][1];
                    masks.at<cv::Vec3b>(i,j)[2] = seg_colors[k][2];
                }
            }
        }
    }
    return masks;
}

float RoadSegProcess::contourArea(std::vector<cv::Point> contour, cv::Point2f& center) {
    cv::RotatedRect rect = cv::minAreaRect(contour);  // 最小外接矩形 rect[0]中心点 rect[1]宽 高  rect[2]旋转角度
    center = rect.center;
    return cv::contourArea(contour);
}

void RoadSegProcess::lanes_process(const rs_lane* lanes, int lane_count, std::vector<std::pair<std::vector<cv::Point>, int>>& combined, float scale_w, float scale_h) {   
    std::vector<std::vector<cv::Point> > lanes_xys;
    std::vector<int> lanes_cls;
	for (int i = 0; i < lane_count; i++) {
        std::vector<cv::Point> xys;
		for (int j = 0; j < lanes[i].num_points; j++) {
            int x = static_cast<int>(lanes[i].points[j].x_ * scale_w);
            int y = static_cast<int>(lanes[i].points[j].y_ * scale_h);
            if (x > 0 && y > 0) {
                xys.emplace_back(x, y);
            }
        }
        if (!xys.empty()) {
            lanes_xys.push_back(xys);
            lanes_cls.push_back(lanes[i].cls);
        }
    }

    for (size_t i = 0; i < lanes_xys.size(); ++i) {
        combined.push_back(std::make_pair(lanes_xys[i], lanes_cls[i]));
    }
    if (!combined.empty()) {
        //按车道线起点坐标排序,相应的类别顺序也会变化以保证标签对齐
		std::sort(combined.begin(), combined.end(), [](const std::pair<std::vector<cv::Point>, int>& a, const std::pair<std::vector<cv::Point>, int>& b) {
			return a.first[0].x < b.first[0].x;
		});
    }
}

cv::Mat RoadSegProcess::imshow_lanes(cv::Mat img, const rs_lane* lanes, int lane_count) {
	float scale_w = img.cols / 640.0;
	float scale_h = img.rows / 360.0;
    std::vector<std::pair<std::vector<cv::Point>, int>> combined;
    lanes_process(lanes, lane_count, combined, scale_w, scale_h);

    for (const auto& lane_info : combined) {
        const auto& xys = lane_info.first;
        int cls = lane_info.second;
		cv::Scalar color(lane_colors[cls][0],lane_colors[cls][1],lane_colors[cls][2]);
        for (size_t i = 1; i < xys.size(); ++i) {
            cv::line(img, xys[i - 1], xys[i], color, 4);
        }
    }
    
    return img;
}

int RoadSegProcess::Mask2LanePoints(const cv::Mat& pred, std::vector<std::vector<cv::Point>>&lanes, std::vector<int>& cats) {
    std::vector<int> labels = {9, 10, 11, 12, 13};
    for(auto cat: labels) {
        cv::Mat b_masks, measure_labels, stats, centroids;
        cv::compare(pred, cat, b_masks, cv::CMP_EQ); //将pred元素逐个和cat比较,相同255,不同0
        // cv::threshold(pred, b_masks, 126, 255, cv::THRESH_OTSU);    //生成二值图
        // 连通域计算 b_masks:闭操作后的二值图像 measure_labels:和原图一样大的标记图 centroids:nccomps×2的矩阵,表示每个连通域的质心(x, y)
        // stats:nccomps×5的矩阵 表示每个连通区域的外接矩形和面积(x, y, w, h, area),索引0是背景信息
        int nccomps = cv::connectedComponentsWithStats (b_masks, measure_labels, stats, centroids, 4); //8
        for(int cv_measure_id = 1; cv_measure_id < nccomps; cv_measure_id++ ) {	//跳过背景信息0
            cv::Mat cv_measure_mask;
            cv::compare(measure_labels, cv_measure_id, cv_measure_mask, cv::CMP_EQ);
            std::vector< std::vector< cv::Point> > contours;
            cv::findContours(cv_measure_mask,contours,cv::noArray(),cv::RETR_TREE,cv::CHAIN_APPROX_SIMPLE);
            std::vector<cv::Point> contours_poly;
            for (int j = 0; j < contours.size();j++) {
                float area = cv::contourArea(contours[j]);  if (area < 30) continue; //60
                cv::approxPolyDP(cv::Mat(contours[j]), contours_poly, 6, true); //减小epsilon提高拟合精度(需要调试,epsilon过小会使多边形不够简化,单条线变多条)
                if (contours_poly.size() == 1) continue;
                lanes.push_back(contours_poly);
                cats.push_back(cat);
            }
        }    
    }
    return 0;
}


cv::Mat RoadSegProcess::seg_post_process(bool large_resolution, unsigned char *seg_array, vector<std::pair<vector<cv::Point>, int>> combined, vector<vector<cv::Point>> &poly_masks, vector<int> &region_classes, vector<vector<cv::Point>> &lanes, vector<int> &cats) {
    std::vector<int> pred_cls; 
    int h = 360, w = 640, step_size = h*w, seg_min_region_area = 512;
    cv::Mat lanes_masks = cv::Mat_<int>(h,w); //正常分割结果
    cv::Mat mask_rmlane = cv::Mat_<int>(h,w); //车道线区域置为背景
    cv::Mat solve_masks = cv::Mat_<int>(h,w); //计算主行驶区域用(虚线及减速标线归入行车道)

	for (int i = 0; i < h; ++i) {
		for (int j = 0; j < w; ++j) {
			int max_cls = seg_array[(i * w + j)];
			lanes_masks.ptr<int>(i)[j] = max_cls;
            pred_cls.push_back(max_cls);
            mask_rmlane.ptr<int>(i)[j] = max_cls;
            solve_masks.ptr<int>(i)[j] = max_cls;
		}
	}

    for (const auto& lane_info : combined) {
        const auto& xys = lane_info.first;
        int cls = lane_info.second;
		if (cls == 1) cls = 9;  /*黄实线*/ if (cls == 2) cls = 10;  /*白实线*/
        if (cls == 3) cls = 11; /*虚线*/   if (cls == 4) cls = 12;  /*黄虚线*/
        if (cls == 5) cls = 13; /*车道中线*/
        for (size_t i = 1; i < xys.size(); ++i) {
            cv::line(lanes_masks, xys[i - 1], xys[i], cls, 4); //绘制车道线用于求连通域
            if (cls == 11 || cls == 12)   cls = 1; //求主行驶区域时将虚线归入行车道 
			cv::line(solve_masks, xys[i - 1], xys[i], cls, 4);
            
        }
    }

    /* 求背景区域--mask车道区域,场景变化用
    cv::compare(lanes_masks, 0, background_mask, cv::CMP_EQ); //将lanes_masks元素逐个和0比较,相同255,不同0*/
#if 1 /*mask远处区域*/
    cv::Mat mask_black = mask_rmlane.clone();
    if (large_resolution)   mask_black(cv::Rect(0, 0, w, int(h * 0.14))) = 0;  
    else    mask_black(cv::Rect(0, 0, w, int(h * 0.22))) = 0;           
    mask_black(cv::Rect(0, int(h * 0.95), w, int(h * 0.05))) = 0;
    mask_black(cv::Rect(0, 0, int(w * 0.02), h)) = 0;
    mask_black(cv::Rect(int(w * 0.95), 0, int(w * 0.05), h)) = 0;
    mask_rmlane = mask_black;
#endif
    //2.去重获取预测到的类别
    std::vector<int> labels(pred_cls);
    std::sort(labels.begin(),labels.end());
    labels.erase(std::unique(labels.begin(),labels.end()),labels.end());
  
    //4.求车道线区域
    int flag = Mask2LanePoints(lanes_masks, lanes, cats); ///////////////////////// 车道线如何与mask结合
 
    //5.求道路区域
    int count = 0;
    for(auto cat: labels) {
        // std::cout << cat << std::endl;
        cv::Mat b_masks, measure_labels, stats, centroids;
        cv::Mat n_masks = cv::Mat_<int>(h,w);
        n_masks = cv::Scalar(255);
        cv::compare(mask_rmlane, cat, b_masks, cv::CMP_EQ); //将mask_rmlane元素逐个和cat比较,相同255,不同0
        //连通域计算
        int nccomps = cv::connectedComponentsWithStats (b_masks, measure_labels, stats, centroids, 8);
        for(int i = 1; i < nccomps; i++ ) {	//跳过背景信息0
            //移除过小的区域,并将对应位置置为0
            if (stats.at<int>(i, cv::CC_STAT_AREA) < seg_min_region_area) {
                cv::Mat comparison_result;
                cv::compare(measure_labels, cv::Scalar(i), comparison_result, cv::CMP_EQ); //相等为255不等为0
                n_masks.setTo(0, comparison_result); // 将comparison_result中非零区域置为0

                cv::bitwise_and(mask_rmlane,n_masks,mask_rmlane);
                continue;
            }

            double centr_x = centroids.at<double>(i, 0);
            double centr_y = centroids.at<double>(i, 1);

            cv::Mat region_mask;
            cv::bitwise_and(measure_labels,n_masks,measure_labels);/////
            cv::compare(measure_labels, i, region_mask, cv::CMP_EQ);

            std::vector< std::vector< cv::Point> > contours;
            cv::findContours(region_mask,contours,cv::noArray(),cv::RETR_TREE,cv::CHAIN_APPROX_SIMPLE);
            std::vector<cv::Point> contours_poly;
            for (int j = 0; j < contours.size();j++) {
                cv::approxPolyDP(cv::Mat(contours[j]), contours_poly, 10, true);
                if (contours_poly.size() <= 2) continue;
                poly_masks.push_back(contours_poly);
                region_classes.push_back(cat);
                ++ count;    
            }
        }    
    }

#if 0
    //6.draw lanes
    for (int i = 0; i < lanes.size(); ++i) {
        int thickness = 4;
        for (int j = 0; j < lanes[i].size()-1; ++j) {
            cv::line(mask_rmlane, lanes[i][j], lanes[i][j+1], {seg_colors[cats[i]][0],seg_colors[cats[i]][1],seg_colors[cats[i]][2]}, thickness);
        }
    }
#endif
    return mask_rmlane;
}


cv::Mat RoadSegProcess::direct_post_process(bool large_resolution, unsigned char *direct_array, vector<vector<cv::Point>> &poly_masks, vector<int> &region_classes) {
    std::vector<int> pred_cls; 
    int h = 360, w = 640, step_size = h*w, seg_min_region_area = 512;
    cv::Mat mask_rmlane = cv::Mat_<int>(h,w); //车道线区域置为背景
	for (int i = 0; i < h; ++i) {
		for (int j = 0; j < w; ++j) {
			int max_cls = direct_array[(i * w + j)];
            pred_cls.push_back(max_cls);
            mask_rmlane.ptr<int>(i)[j] = max_cls;
		}
	}

#if 1 /*mask远处区域*/
    cv::Mat mask_black = mask_rmlane.clone();
    if (large_resolution)   mask_black(cv::Rect(0, 0, w, int(h * 0.14))) = 0;  
    else    mask_black(cv::Rect(0, 0, w, int(h * 0.22))) = 0;           
    mask_black(cv::Rect(0, int(h * 0.95), w, int(h * 0.05))) = 0;
    mask_black(cv::Rect(0, 0, int(w * 0.02), h)) = 0;
    mask_black(cv::Rect(int(w * 0.95), 0, int(w * 0.05), h)) = 0;
    mask_rmlane = mask_black;
#endif
    //去重获取预测到的类别
    std::vector<int> labels(pred_cls);
    std::sort(labels.begin(),labels.end());
    labels.erase(std::unique(labels.begin(),labels.end()),labels.end());
 
    //求道路区域
    for(auto cat: labels) {
        cv::Mat b_masks, measure_labels, stats, centroids;
        cv::Mat n_masks = cv::Mat_<int>(h,w);   n_masks = cv::Scalar(255);
        cv::compare(mask_rmlane, cat, b_masks, cv::CMP_EQ); //将mask_rmlane元素逐个和cat比较,相同255,不同0
        //连通域计算
        int nccomps = cv::connectedComponentsWithStats (b_masks, measure_labels, stats, centroids, 8);
        for(int i = 1; i < nccomps; i++ ) {	//跳过背景信息0
            if (stats.at<int>(i, cv::CC_STAT_AREA) < seg_min_region_area) { //移除过小的区域,并将对应位置置为0
                cv::Mat comparison_result;
                cv::compare(measure_labels, cv::Scalar(i), comparison_result, cv::CMP_EQ); //相等为255不等为0
                n_masks.setTo(0, comparison_result); // 将comparison_result中非零区域置为0
                cv::bitwise_and(mask_rmlane,n_masks,mask_rmlane);
                continue;
            }

            cv::Mat region_mask;
            cv::bitwise_and(measure_labels,n_masks,measure_labels);/////
            cv::compare(measure_labels, i, region_mask, cv::CMP_EQ);

            std::vector<std::vector<cv::Point>> contours;
            cv::findContours(region_mask,contours,cv::noArray(),cv::RETR_TREE,cv::CHAIN_APPROX_SIMPLE);
            std::vector<cv::Point> contours_poly;
            for (int j = 0; j < contours.size();j++) {
                cv::approxPolyDP(cv::Mat(contours[j]), contours_poly, 10, true);
                if (contours_poly.size() <= 2) continue;
                poly_masks.push_back(contours_poly);
                region_classes.push_back(cat);  
            }
        }    
    }
    return mask_rmlane;
}


// 合并来去区域
cv::Mat RoadSegProcess::merge_direct_process(bool large_resolution, unsigned char *direct_array, vector<vector<cv::Point>> &poly_masks, vector<int> &region_classes) {
    std::vector<int> pred_cls; 
    int h = 360, w = 640, step_size = h*w, seg_min_region_area = 512;
    cv::Mat mask_rmlane = cv::Mat_<int>(h,w); //车道线区域置为背景
	for (int i = 0; i < h; ++i) {
		for (int j = 0; j < w; ++j) {
			int max_cls = direct_array[(i * w + j)];
            if (max_cls == 1 || max_cls == 2) max_cls = 5; // 来去区域合并的类别为5
            if (max_cls == 3 || max_cls == 4) max_cls = 6; // 近远区域合并的类别为6
            pred_cls.push_back(max_cls);
            mask_rmlane.ptr<int>(i)[j] = max_cls;
		}
	}

#if 0 /*mask远处区域*/
    cv::Mat mask_black = mask_rmlane.clone();
    if (large_resolution)   mask_black(cv::Rect(0, 0, w, int(h * 0.14))) = 0;  
    else    mask_black(cv::Rect(0, 0, w, int(h * 0.22))) = 0;           
    mask_black(cv::Rect(0, int(h * 0.95), w, int(h * 0.05))) = 0;
    mask_black(cv::Rect(0, 0, int(w * 0.02), h)) = 0;
    mask_black(cv::Rect(int(w * 0.95), 0, int(w * 0.05), h)) = 0;
    mask_rmlane = mask_black;
#endif
    //去重获取预测到的类别
    std::vector<int> labels(pred_cls);
    std::sort(labels.begin(),labels.end());
    labels.erase(std::unique(labels.begin(),labels.end()),labels.end());
 
    //求道路区域
    for(auto cat: labels) {
        cv::Mat b_masks, measure_labels, stats, centroids;
        cv::Mat n_masks = cv::Mat_<int>(h,w);   n_masks = cv::Scalar(255);
        cv::compare(mask_rmlane, cat, b_masks, cv::CMP_EQ); //将mask_rmlane元素逐个和cat比较,相同255,不同0
        //连通域计算
        int nccomps = cv::connectedComponentsWithStats (b_masks, measure_labels, stats, centroids, 8);
        for(int i = 1; i < nccomps; i++ ) {	//跳过背景信息0
            if (stats.at<int>(i, cv::CC_STAT_AREA) < seg_min_region_area) { //移除过小的区域,并将对应位置置为0
                cv::Mat comparison_result;
                cv::compare(measure_labels, cv::Scalar(i), comparison_result, cv::CMP_EQ); //相等为255不等为0
                n_masks.setTo(0, comparison_result); // 将comparison_result中非零区域置为0
                cv::bitwise_and(mask_rmlane,n_masks,mask_rmlane);
                continue;
            }

            cv::Mat region_mask;
            cv::bitwise_and(measure_labels,n_masks,measure_labels);/////
            cv::compare(measure_labels, i, region_mask, cv::CMP_EQ);

            std::vector<std::vector<cv::Point>> contours;
            cv::findContours(region_mask,contours,cv::noArray(),cv::RETR_TREE,cv::CHAIN_APPROX_SIMPLE);
            std::vector<cv::Point> contours_poly;
            for (int j = 0; j < contours.size();j++) {
                cv::approxPolyDP(cv::Mat(contours[j]), contours_poly, 10, true);
                if (contours_poly.size() <= 2) continue;
                poly_masks.push_back(contours_poly);
                region_classes.push_back(cat);  
            }
        }    
    }
    return mask_rmlane;
}


int RoadSegProcess::get_region(vector<vector<cv::Point>> masks, vector<int> cats, float w_ratio, float h_ratio, vector<vector<int>>& regions, vector<int>& labels) 
{
    for (int i = 0; i < masks.size(); ++i) {
        std::vector<cv::Point> points = masks[i];
        vector<int> cur_region;
        for (int j = 0; j < points.size(); ++j) {
            int px = points[j].x*w_ratio;   int py = points[j].y*h_ratio;
            cur_region.push_back(px);  cur_region.push_back(py);
        }
        regions.push_back(cur_region); // 存储区域
        labels.push_back(cats[i]);     // 存储类别
    }  
    return 0;
}


/* 算法初始化 */
int RoadSegProcess::init(int gpu_id, string models_dir) {
    // string model_path = models_dir + "/models/village/tzroad_seg_310p.om" ;
    // string model_path = models_dir + "/models/village/tzroad_seg1027_310p.om" ;
    string model_path = models_dir + "/models/village/tzroad_seg240108_310p.om" ;

    LOG_INFO("road_seg 版本:{}  模型路径:{}", rs_get_version(), model_path);

    rs_param param;
    char modelNames[100];
    strcpy(modelNames, model_path.c_str());
    param.modelNames = modelNames;
    param.thresld = 0.25;
    param.devId = gpu_id;

    m_devId = param.devId;
    ACL_CALL(aclrtSetDevice(m_devId), ACL_SUCCESS, -1);
    ACL_CALL(aclrtCreateContext(&m_algorthim_ctx, m_devId), ACL_SUCCESS, -1);

    int ret = rs_init(&m_seg_handle, param); 
    if(ret != 0) {
        LOG_ERROR("Init RoadSegSdk failed error code is {}", ret);
        return -1;
    }

    return 0;
}

/* 算法计算 */
int RoadSegProcess::process_gpu(sy_img * batch_img, vector<DeviceMemory*> vec_segMem, vector<string>& tasklist,
					            vector<vector<vector<int>>>& traffic_region, vector<vector<int>>& labels)
{
    int batchsize = tasklist.size();
    traffic_region.resize(batchsize), labels.resize(batchsize);

    rs_result result[batchsize];
	int fea_size = SEG_IMG_RES_W * SEG_IMG_RES_H;
	for (int b = 0; b < batchsize; b++) {
		result[b].seg_array = new unsigned char[fea_size];
        result[b].direct_seg = new unsigned char[fea_size];
        result[b].lane_count = 0;
	}

    /* 路数太多时 按照最大batchsize数 拆批次运行 */
    int ret = aclrtSetCurrentContext(m_algorthim_ctx);
    if (ACL_SUCCESS != ret) {
        return false;
    }
    
	int cur_batch_size = m_max_batchsize;
	int cycleTimes = batchsize / cur_batch_size + (batchsize % cur_batch_size == 0 ? 0 : 1);
	for (int c = 0; c < cycleTimes; c++) {
		int real_batchsize = c == cycleTimes - 1 ? (batchsize - cur_batch_size*c) : cur_batch_size;
		int startbatch = c*cur_batch_size;

		rs_result *real_res = result + startbatch;
		ret = rs_batch(m_seg_handle, batch_img + startbatch, real_batchsize, real_res);
	}

    for (int b = 0; b < batchsize; b++) {			
		std::vector<std::pair<std::vector<cv::Point>, int>> combined;
		lanes_process(result[b].reg_array, result[b].lane_count, combined);
		vector<vector<cv::Point>> poly_masks, lanes, direct_masks, merge_masks;
        vector<int> region_classes, cats, direct_classes, merge_classes;
		bool large_resolution = false;
		if (batch_img[b].w_ > 1920) large_resolution = true;

        cv::Mat seg_output = seg_post_process(large_resolution, result[b].seg_array, combined, poly_masks, region_classes, lanes, cats); //m_masks:mask前的结果  poly_masks后的结果               
        cv::Mat direct_output = direct_post_process(large_resolution, result[b].direct_seg, direct_masks, direct_classes);
        cv::Mat merge_output = merge_direct_process(large_resolution, result[b].direct_seg, merge_masks, merge_classes);

        float width_ratio = batch_img[b].w_*1.0 / SEG_IMG_RES_W;
        float height_ratio = batch_img[b].h_*1.0 / SEG_IMG_RES_H;

        get_region(lanes, cats, width_ratio, height_ratio, traffic_region[b], labels[b]);
        get_region(poly_masks, region_classes, width_ratio, height_ratio, traffic_region[b], labels[b]);
        for (int i = 0; i < direct_masks.size(); ++i) {
            std::vector<cv::Point> points = direct_masks[i];
            int cls = direct_classes[i];
            vector<int> cur_region;
            for (int j = 0; j < points.size(); ++j) {
                int px = points[j].x*width_ratio;   int py = points[j].y*height_ratio;
                cur_region.push_back(px);  cur_region.push_back(py);
            }
            if (cls == 1) cls = 14;  /*来*/   if (cls == 2) cls = 15;  /*去*/
            if (cls == 3) cls = 16;  /*近*/   if (cls == 4) cls = 17;  /*远*/
            traffic_region[b].push_back(cur_region); // 存储区域
            labels[b].push_back(cls); // 存储类别
        }

        for (int i = 0; i < merge_masks.size(); ++i) {
            std::vector<cv::Point> points = merge_masks[i];
            int cls = merge_classes[i];
            vector<int> cur_region;
            for (int j = 0; j < points.size(); ++j) {
                int px = points[j].x*width_ratio;   int py = points[j].y*height_ratio;
                cur_region.push_back(px);  cur_region.push_back(py);
            }
            if (cls == 5) cls = 18; /*纵向区域*/ if (cls == 6) continue; /*cls = 19; 横向区域暂不判*/
            traffic_region[b].push_back(cur_region); // 存储区域
            labels[b].push_back(cls); // 存储类别
        }
  
#if 0
	{
        jpegUtil.jpeg_init(m_devId);
        std::string file_path = "/data/shzhao/vpt_ascend/bin/res/seg/";
		auto time_now = std::chrono::system_clock::now();
		std::string cur_timestamp_us =  std::to_string(std::chrono::duration_cast<std::chrono::microseconds>(time_now.time_since_epoch()).count());
		std::string img_filename = file_path + cur_timestamp_us + "_" + tasklist[b] + ".jpg";
		vpc_img_info src_img_info = VPCUtil::vpc_devMem2vpcImg(vec_segMem[b]);
        bool bSaved = jpegUtil.jpeg_encode(src_img_info.pic_desc, img_filename);
        std::cout << bSaved << " " << img_filename << std::endl;
        cv::Mat cur_img = cv::imread(img_filename);
        cv::resize(cur_img, cur_img, cv::Size(640,360), 0, 0, cv::INTER_LINEAR);
        cv::Mat vis_image = mask_to_rgb(cur_img, seg_output);
        cv::Mat direct_image = mask_to_rgb(cur_img, direct_output);
        cv::imwrite(img_filename, vis_image);
        img_filename = file_path + cur_timestamp_us + "_" + tasklist[b] + "_direct.jpg";
        cv::imwrite(img_filename, direct_image);
		VPCUtil::vpc_img_release(src_img_info);
        jpegUtil.jpeg_release();
	}
#endif
   
        vector<vector<cv::Point>>().swap(poly_masks);   vector<vector<cv::Point>>().swap(direct_masks);
        vector<vector<cv::Point>>().swap(merge_masks);  vector<vector<cv::Point>>().swap(lanes);
        vector<int>().swap(region_classes);             vector<int>().swap(direct_classes);
        vector<int>().swap(merge_classes);              vector<int>().swap(cats);
    }

    for (int b = 0; b < batchsize; b++) {
		delete[] result[b].seg_array;   result[b].seg_array = NULL;
        delete[] result[b].direct_seg;  result[b].direct_seg = NULL;
	}

    return 0;
}


/* 算法句柄 资源释放 */
void RoadSegProcess::release(){
    if (m_seg_handle){
        rs_release(&m_seg_handle);
        m_seg_handle = NULL;
    }
    if(m_algorthim_ctx){
        aclrtDestroyContext(m_algorthim_ctx);
    }
}