convert_from_tensorflow.py 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
# Copyright (c) 2019 Guo Yejun
#
# This file is part of FFmpeg.
#
# FFmpeg is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# FFmpeg is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with FFmpeg; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
# ==============================================================================

import tensorflow as tf
import numpy as np
import sys, struct
import convert_header as header

__all__ = ['convert_from_tensorflow']

class Operand(object):
    IOTYPE_INPUT = 1
    IOTYPE_OUTPUT = 2
    IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
    DTYPE_FLOAT = 1
    DTYPE_UINT8 = 4
    index = 0
    def __init__(self, name, dtype, dims):
        self.name = name
        self.dtype = dtype
        self.dims = dims
        self.iotype = 0
        self.used_count = 0
        self.index = Operand.index
        Operand.index = Operand.index + 1
        self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
        self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}

    def add_iotype(self, iotype):
        self.iotype = self.iotype | iotype
        if iotype == Operand.IOTYPE_INPUT:
            self.used_count = self.used_count + 1

    def __str__(self):
        return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index,
                            self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
                            self.dims, self.used_count)

    def __lt__(self, other):
        return self.index < other.index

class TFConverter:
    def __init__(self, graph_def, nodes, outfile, dump4tb):
        self.graph_def = graph_def
        self.nodes = nodes
        self.outfile = outfile
        self.dump4tb = dump4tb
        self.layer_number = 0
        self.output_names = []
        self.name_node_dict = {}
        self.edges = {}
        self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
        self.conv_paddings = {'VALID':0, 'SAME':1}
        self.pool_paddings = {'VALID':0, 'SAME':1}
        self.converted_nodes = set()
        self.conv2d_scope_names = set()
        self.conv2d_scopename_inputname_dict = {}
        self.dense_scope_names = set()
        self.dense_scopename_inputname_dict = {}
        self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4,
                        'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8}
        self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5}
        self.mathun2code  = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
                'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
                'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15}
        self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
        self.name_operand_dict = {}


    def add_operand(self, name, type):
        node = self.name_node_dict[name]
        if name not in self.name_operand_dict:
            dtype = node.attr['dtype'].type
            if dtype == 0:
                dtype = node.attr['T'].type
            dims = [-1,-1,-1,-1]
            if 'shape' in node.attr:
                dims[0] = node.attr['shape'].shape.dim[0].size
                dims[1] = node.attr['shape'].shape.dim[1].size
                dims[2] = node.attr['shape'].shape.dim[2].size
                dims[3] = node.attr['shape'].shape.dim[3].size
            operand = Operand(name, dtype, dims)
            self.name_operand_dict[name] = operand;
        self.name_operand_dict[name].add_iotype(type)
        return self.name_operand_dict[name].index


    def dump_for_tensorboard(self):
        graph = tf.get_default_graph()
        tf.import_graph_def(self.graph_def, name="")
        tf.summary.FileWriter('/tmp/graph', graph)
        print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')


    def get_conv2d_params(self, conv2d_scope_name):
        knode = self.name_node_dict[conv2d_scope_name + '/kernel']
        bnode = self.name_node_dict[conv2d_scope_name + '/bias']

        if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
            dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
        else:
            dnode = None

        # the BiasAdd name is possible be changed into the output name,
        # if activation is None, and BiasAdd.next is the last op which is Identity
        if conv2d_scope_name + '/BiasAdd' in self.edges:
            anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
            if anode.op not in self.conv_activations:
                anode = None
        else:
            anode = None
        return knode, bnode, dnode, anode


    def get_dense_params(self, dense_scope_name):
        knode = self.name_node_dict[dense_scope_name + '/kernel']
        bnode = self.name_node_dict.get(dense_scope_name + '/bias')
        # the BiasAdd name is possible be changed into the output name,
        # if activation is None, and BiasAdd.next is the last op which is Identity
        anode = None
        if bnode:
            if dense_scope_name + '/BiasAdd' in self.edges:
                anode = self.edges[dense_scope_name + '/BiasAdd'][0]
                if anode.op not in self.conv_activations:
                    anode = None
        else:
            anode = None
        return knode, bnode, anode


    def dump_complex_conv2d_to_file(self, node, f):
        assert(node.op == 'Conv2D')
        self.layer_number = self.layer_number + 1
        self.converted_nodes.add(node.name)

        scope_name = TFConverter.get_scope_name(node.name)
        #knode for kernel, bnode for bias, dnode for dilation, anode for activation
        knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)

        if dnode is not None:
            dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
        else:
            dilation = 1

        if anode is not None:
            activation = anode.op
        else:
            activation = 'None'

        padding = node.attr['padding'].s.decode("utf-8")
        # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
        if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
            if self.name_node_dict[scope_name + '/stack'].op == "Const":
                padding = 'SAME'
        padding = self.conv_paddings[padding]

        ktensor = knode.attr['value'].tensor
        filter_height = ktensor.tensor_shape.dim[0].size
        filter_width = ktensor.tensor_shape.dim[1].size
        in_channels = ktensor.tensor_shape.dim[2].size
        out_channels = ktensor.tensor_shape.dim[3].size
        kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
        kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
        kernel = np.transpose(kernel, [3, 0, 1, 2])

        has_bias = 1
        np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
        kernel.tofile(f)

        btensor = bnode.attr['value'].tensor
        if btensor.tensor_shape.dim[0].size == 1:
            bias = struct.pack("f", btensor.float_val[0])
        else:
            bias = btensor.tensor_content
        f.write(bias)

        input_name = self.conv2d_scopename_inputname_dict[scope_name]
        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)

        if anode is not None:
            output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
        else:
            output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)

    def dump_dense_to_file(self, node, f):
        assert(node.op == 'MatMul')
        self.layer_number = self.layer_number + 1
        self.converted_nodes.add(node.name)

        scope_name = TFConverter.get_scope_name(node.name)
        #knode for kernel, bnode for bias, anode for activation
        knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0])

        if bnode is not None:
            has_bias = 1
            btensor = bnode.attr['value'].tensor
            if btensor.tensor_shape.dim[0].size == 1:
                bias = struct.pack("f", btensor.float_val[0])
            else:
                bias = btensor.tensor_content
        else:
            has_bias = 0

        if anode is not None:
            activation = anode.op
        else:
            activation = 'None'

        ktensor = knode.attr['value'].tensor
        in_channels = ktensor.tensor_shape.dim[0].size
        out_channels = ktensor.tensor_shape.dim[1].size
        if in_channels * out_channels == 1:
            kernel = np.float32(ktensor.float_val[0])
        else:
            kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
        kernel = kernel.reshape(in_channels, out_channels)
        kernel = np.transpose(kernel, [1, 0])

        np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f)
        kernel.tofile(f)
        if has_bias:
            f.write(bias)

        input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]]
        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)

        if anode is not None:
            output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
        else:
            if bnode is not None:
                output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
            else:
                output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT)
        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)


    def dump_simple_conv2d_to_file(self, node, f):
        assert(node.op == 'Conv2D')
        self.layer_number = self.layer_number + 1
        self.converted_nodes.add(node.name)

        node0 = self.name_node_dict[node.input[0]]
        node1 = self.name_node_dict[node.input[1]]
        if node0.op == 'Const':
            knode = node0
            input_name = node.input[1]
        else:
            knode = node1
            input_name = node.input[0]

        ktensor = knode.attr['value'].tensor
        filter_height = ktensor.tensor_shape.dim[0].size
        filter_width = ktensor.tensor_shape.dim[1].size
        in_channels = ktensor.tensor_shape.dim[2].size
        out_channels = ktensor.tensor_shape.dim[3].size
        if filter_height * filter_width * in_channels * out_channels == 1:
            kernel = np.float32(ktensor.float_val[0])
        else:
            kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
        kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
        kernel = np.transpose(kernel, [3, 0, 1, 2])

        has_bias = 0
        dilation = 1
        padding = node.attr['padding'].s.decode("utf-8")
        np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
                  in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
        kernel.tofile(f)

        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)


    def dump_depth2space_to_file(self, node, f):
        assert(node.op == 'DepthToSpace')
        self.layer_number = self.layer_number + 1
        block_size = node.attr['block_size'].i
        np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
        self.converted_nodes.add(node.name)
        input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)


    def dump_mirrorpad_to_file(self, node, f):
        assert(node.op == 'MirrorPad')
        self.layer_number = self.layer_number + 1
        mode = node.attr['mode'].s
        mode = self.mirrorpad_mode[mode.decode("utf-8")]
        np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
        pnode = self.name_node_dict[node.input[1]]
        self.converted_nodes.add(pnode.name)
        paddings = pnode.attr['value'].tensor.tensor_content
        f.write(paddings)
        self.converted_nodes.add(node.name)
        input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)


    def dump_maximum_to_file(self, node, f):
        assert(node.op == 'Maximum')
        self.layer_number = self.layer_number + 1
        ynode = self.name_node_dict[node.input[1]]
        y = ynode.attr['value'].tensor.float_val[0]
        np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
        np.array([y], dtype=np.float32).tofile(f)
        self.converted_nodes.add(node.name)
        input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)


    def dump_mathbinary_to_file(self, node, f):
        self.layer_number = self.layer_number + 1
        self.converted_nodes.add(node.name)
        i0_node = self.name_node_dict[node.input[0]]
        i1_node = self.name_node_dict[node.input[1]]
        np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
        if i0_node.op == 'Const':
            scalar = i0_node.attr['value'].tensor.float_val[0]
            np.array([1], dtype=np.uint32).tofile(f)            # broadcast: 1
            np.array([scalar], dtype=np.float32).tofile(f)
            np.array([0], dtype=np.uint32).tofile(f)            # broadcast: 0
            input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
            np.array([input_operand_index], dtype=np.uint32).tofile(f)
        elif i1_node.op == 'Const':
            scalar = i1_node.attr['value'].tensor.float_val[0]
            np.array([0], dtype=np.uint32).tofile(f)
            input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
            np.array([input_operand_index], dtype=np.uint32).tofile(f)
            np.array([1], dtype=np.uint32).tofile(f)
            np.array([scalar], dtype=np.float32).tofile(f)
        else:
            np.array([0], dtype=np.uint32).tofile(f)
            input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
            np.array([input_operand_index], dtype=np.uint32).tofile(f)
            np.array([0], dtype=np.uint32).tofile(f)
            input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
            np.array([input_operand_index], dtype=np.uint32).tofile(f)
        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
        np.array([output_operand_index], dtype=np.uint32).tofile(f)


    def dump_mathunary_to_file(self, node, f):
        self.layer_number = self.layer_number + 1
        self.converted_nodes.add(node.name)
        i0_node = self.name_node_dict[node.input[0]]
        np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f)
        input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
        np.array([input_operand_index], dtype=np.uint32).tofile(f)
        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
        np.array([output_operand_index],dtype=np.uint32).tofile(f)


    def dump_avg_pool_to_file(self, node, f):
        assert(node.op == 'AvgPool')
        self.layer_number = self.layer_number + 1
        self.converted_nodes.add(node.name)
        node0 = self.name_node_dict[node.input[0]]
        strides = node.attr['strides']

        # Tensorflow do not support pooling strides in batch dimension and
        # current native NN do not support pooling strides in channel dimension, added assert() here.
        assert(strides.list.i[1]==strides.list.i[2])
        assert(strides.list.i[0]==1)
        assert(strides.list.i[3]==1)
        strides = strides.list.i[1]
        filter_node = node.attr['ksize']
        input_name = node.input[0]

        # Tensorflow do not support pooling ksize in batch dimension and channel dimension.
        assert(filter_node.list.i[0]==1)
        assert(filter_node.list.i[3]==1)
        filter_height = filter_node.list.i[1]
        filter_width = filter_node.list.i[2]

        padding = node.attr['padding'].s.decode("utf-8")
        np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height],
                 dtype=np.uint32).tofile(f)

        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
        np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f)


    def dump_layers_to_file(self, f):
        for node in self.nodes:
            if node.name in self.converted_nodes:
                continue

            # conv2d with dilation generates very complex nodes, so handle it in special
            if self.in_conv2d_scope(node.name):
                if node.op == 'Conv2D':
                    self.dump_complex_conv2d_to_file(node, f)
                continue
            if self.in_dense_scope(node.name):
                if node.op == 'MatMul':
                    self.dump_dense_to_file(node, f)
                continue


            if node.op == 'Conv2D':
                self.dump_simple_conv2d_to_file(node, f)
                continue
            if node.name in self.output_names:
                input_name = self.id_different_scope_dict[node.name]
                if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name):
                    continue
            if node.op == 'AvgPool':
                self.dump_avg_pool_to_file(node, f)
            elif node.op == 'DepthToSpace':
                self.dump_depth2space_to_file(node, f)
            elif node.op == 'MirrorPad':
                self.dump_mirrorpad_to_file(node, f)
            elif node.op == 'Maximum':
                self.dump_maximum_to_file(node, f)
            elif node.op in self.mathbin2code:
                self.dump_mathbinary_to_file(node, f)
            elif node.op in self.mathun2code:
                self.dump_mathunary_to_file(node, f)


    def dump_operands_to_file(self, f):
            operands = sorted(self.name_operand_dict.values())
            for operand in operands:
                #print('{}'.format(operand))
                np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
                f.write(operand.name.encode('utf-8'))
                np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
                np.array(operand.dims, dtype=np.uint32).tofile(f)


    def dump_to_file(self):
        with open(self.outfile, 'wb') as f:
            f.write(header.str.encode('utf-8'))
            np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
            self.dump_layers_to_file(f)
            self.dump_operands_to_file(f)
            np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)


    def generate_name_node_dict(self):
        for node in self.nodes:
            self.name_node_dict[node.name] = node


    def generate_output_names(self):
        used_names = []
        for node in self.nodes:
            for input in node.input:
                used_names.append(input)

        for node in self.nodes:
            if node.name not in used_names:
                self.output_names.append(node.name)


    def remove_identity(self):
        self.id_different_scope_dict = {}
        id_nodes = []
        id_dict = {}
        for node in self.nodes:
            if node.op == 'Identity':
                name = node.name
                input = node.input[0]
                id_nodes.append(node)
                # do not change the output name
                if name in self.output_names:
                    self.name_node_dict[input].name = name
                    self.name_node_dict[name] = self.name_node_dict[input]
                    del self.name_node_dict[input]
                    self.id_different_scope_dict[name] = input
                else:
                    id_dict[name] = input

        for idnode in id_nodes:
            self.nodes.remove(idnode)

        for node in self.nodes:
            for i in range(len(node.input)):
                input = node.input[i]
                if input in id_dict:
                    node.input[i] = id_dict[input]


    def generate_edges(self):
        for node in self.nodes:
            for input in node.input:
                if input in self.edges:
                    self.edges[input].append(node)
                else:
                    self.edges[input] = [node]


    @staticmethod
    def get_scope_name(name):
        index = name.rfind('/')
        if index == -1:
            return ""
        return name[0:index]


    def in_conv2d_scope(self, name):
        inner_scope = TFConverter.get_scope_name(name)
        if inner_scope == "":
            return False;
        for scope in self.conv2d_scope_names:
            index = inner_scope.find(scope)
            if index == 0:
                return True
        return False


    def in_dense_scope(self, name):
        inner_scope = TFConverter.get_scope_name(name)
        if inner_scope == "":
            return False;
        for scope in self.dense_scope_names:
            index = inner_scope.find(scope)
            if index == 0:
                return True
        return False

    def generate_sub_block_op_scope_info(self):
        # mostly, conv2d/dense is a sub block in graph, get the scope name
        for node in self.nodes:
            if node.op == 'Conv2D':
                scope = TFConverter.get_scope_name(node.name)
                # for the case tf.nn.conv2d is called directly
                if scope == '':
                    continue
                # for the case tf.nn.conv2d is called within a scope
                if scope + '/kernel' not in self.name_node_dict:
                    continue
                self.conv2d_scope_names.add(scope)
            elif node.op == 'MatMul':
                scope = TFConverter.get_scope_name(node.name)
                # for the case tf.nn.dense is called directly
                if scope == '':
                    continue
                # for the case tf.nn.dense is called within a scope
                if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict:
                    continue
                self.dense_scope_names.add(scope.split('/Tensordot')[0])

        # get the input name to the conv2d/dense sub block
        for node in self.nodes:
            scope = TFConverter.get_scope_name(node.name)
            if scope in self.conv2d_scope_names:
                if node.op == 'Conv2D' or node.op == 'Shape':
                    for inp in node.input:
                        if TFConverter.get_scope_name(inp) != scope:
                            self.conv2d_scopename_inputname_dict[scope] = inp
            elif scope in self.dense_scope_names:
                if node.op == 'MatMul' or node.op == 'Shape':
                    for inp in node.input:
                        if TFConverter.get_scope_name(inp) != scope:
                            self.dense_scopename_inputname_dict[scope] = inp
            elif scope.split('/Tensordot')[0] in self.dense_scope_names:
                if node.op == 'Transpose':
                    for inp in node.input:
                        if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0:
                            self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp


    def run(self):
        self.generate_name_node_dict()
        self.generate_output_names()
        self.remove_identity()
        self.generate_edges()
        self.generate_sub_block_op_scope_info()

        if self.dump4tb:
            self.dump_for_tensorboard()

        self.dump_to_file()


def convert_from_tensorflow(infile, outfile, dump4tb):
    with open(infile, 'rb') as f:
        # read the file in .proto format
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        nodes = graph_def.node

    converter = TFConverter(graph_def, nodes, outfile, dump4tb)
    converter.run()