rpzaenc.c 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/*
 * QuickTime RPZA Video Encoder
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file rpzaenc.c
 * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
 */

#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/opt.h"

#include "avcodec.h"
#include "internal.h"
#include "put_bits.h"

typedef struct RpzaContext {
    AVClass *avclass;

    int skip_frame_thresh;
    int start_one_color_thresh;
    int continue_one_color_thresh;
    int sixteen_color_thresh;

    AVFrame *prev_frame;    // buffer for previous source frame
    PutBitContext pb;       // buffer for encoded frame data.

    int frame_width;        // width in pixels of source frame
    int frame_height;       // height in pixesl of source frame

    int first_frame;        // flag set to one when the first frame is being processed
                            // so that comparisons with previous frame data in not attempted
} RpzaContext;

typedef enum channel_offset {
    RED = 2,
    GREEN = 1,
    BLUE = 0,
} channel_offset;

typedef struct rgb {
    uint8_t r;
    uint8_t g;
    uint8_t b;
} rgb;

#define SQR(x) ((x) * (x))

/* 15 bit components */
#define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F) * 8)
#define R(color) GET_CHAN(color, RED)
#define G(color) GET_CHAN(color, GREEN)
#define B(color) GET_CHAN(color, BLUE)

typedef struct BlockInfo {
    int row;
    int col;
    int block_width;
    int block_height;
    int image_width;
    int image_height;
    int block_index;
    uint16_t start;
    int rowstride;
    int blocks_per_row;
    int total_blocks;
} BlockInfo;

static void get_colors(uint8_t *min, uint8_t *max, uint8_t color4[4][3])
{
    uint8_t step;

    color4[0][0] = min[0];
    color4[0][1] = min[1];
    color4[0][2] = min[2];

    color4[3][0] = max[0];
    color4[3][1] = max[1];
    color4[3][2] = max[2];

    // red components
    step = (color4[3][0] - color4[0][0] + 1) / 3;
    color4[1][0] = color4[0][0] + step;
    color4[2][0] = color4[3][0] - step;

    // green components
    step = (color4[3][1] - color4[0][1] + 1) / 3;
    color4[1][1] = color4[0][1] + step;
    color4[2][1] = color4[3][1] - step;

    // blue components
    step = (color4[3][2] - color4[0][2] + 1) / 3;
    color4[1][2] = color4[0][2] + step;
    color4[2][2] = color4[3][2] - step;
}

/* Fill BlockInfo struct with information about a 4x4 block of the image */
static int get_block_info(BlockInfo *bi, int block)
{
    bi->row = block / bi->blocks_per_row;
    bi->col = block % bi->blocks_per_row;

    // test for right edge block
    if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) {
        bi->block_width = bi->image_width % 4;
    } else {
        bi->block_width = 4;
    }

    // test for bottom edge block
    if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) {
        bi->block_height = bi->image_height % 4;
    } else {
        bi->block_height = 4;
    }

    return block ? (bi->col * 4) + (bi->row * bi->rowstride * 4) : 0;
}

static uint16_t rgb24_to_rgb555(uint8_t *rgb24)
{
    uint16_t rgb555 = 0;
    uint32_t r, g, b;

    r = rgb24[0] >> 3;
    g = rgb24[1] >> 3;
    b = rgb24[2] >> 3;

    rgb555 |= (r << 10);
    rgb555 |= (g << 5);
    rgb555 |= (b << 0);

    return rgb555;
}

/*
 * Returns the total difference between two 24 bit color values
 */
static int diff_colors(uint8_t *colorA, uint8_t *colorB)
{
    int tot;

    tot  = SQR(colorA[0] - colorB[0]);
    tot += SQR(colorA[1] - colorB[1]);
    tot += SQR(colorA[2] - colorB[2]);

    return tot;
}

/*
 * Returns the maximum channel difference
 */
static int max_component_diff(uint16_t *colorA, uint16_t *colorB)
{
    int diff, max = 0;

    diff = FFABS(R(colorA[0]) - R(colorB[0]));
    if (diff > max) {
        max = diff;
    }
    diff = FFABS(G(colorA[0]) - G(colorB[0]));
    if (diff > max) {
        max = diff;
    }
    diff = FFABS(B(colorA[0]) - B(colorB[0]));
    if (diff > max) {
        max = diff;
    }
    return max * 8;
}

/*
 * Find the channel that has the largest difference between minimum and maximum
 * color values. Put the minimum value in min, maximum in max and the channel
 * in chan.
 */
static void get_max_component_diff(BlockInfo *bi, uint16_t *block_ptr,
                                   uint8_t *min, uint8_t *max, channel_offset *chan)
{
    int x, y;
    uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
    uint8_t r, g, b;

    // fix warning about uninitialized vars
    min_r = min_g = min_b = UINT8_MAX;
    max_r = max_g = max_b = 0;

    // loop thru and compare pixels
    for (y = 0; y < bi->block_height; y++) {
        for (x = 0; x < bi->block_width; x++) {
            // TODO:  optimize
            min_r = FFMIN(R(block_ptr[x]), min_r);
            min_g = FFMIN(G(block_ptr[x]), min_g);
            min_b = FFMIN(B(block_ptr[x]), min_b);

            max_r = FFMAX(R(block_ptr[x]), max_r);
            max_g = FFMAX(G(block_ptr[x]), max_g);
            max_b = FFMAX(B(block_ptr[x]), max_b);
        }
        block_ptr += bi->rowstride;
    }

    r = max_r - min_r;
    g = max_g - min_g;
    b = max_b - min_b;

    if (r > g && r > b) {
        *max = max_r;
        *min = min_r;
        *chan = RED;
    } else if (g > b && g >= r) {
        *max = max_g;
        *min = min_g;
        *chan = GREEN;
    } else {
        *max = max_b;
        *min = min_b;
        *chan = BLUE;
    }
}

/*
 * Compare two 4x4 blocks to determine if the total difference between the
 * blocks is greater than the thresh parameter. Returns -1 if difference
 * exceeds threshold or zero otherwise.
 */
static int compare_blocks(uint16_t *block1, uint16_t *block2, BlockInfo *bi, int thresh)
{
    int x, y, diff = 0;
    for (y = 0; y < bi->block_height; y++) {
        for (x = 0; x < bi->block_width; x++) {
            diff = max_component_diff(&block1[x], &block2[x]);
            if (diff >= thresh) {
                return -1;
            }
        }
        block1 += bi->rowstride;
        block2 += bi->rowstride;
    }
    return 0;
}

/*
 * Determine the fit of one channel to another within a 4x4 block. This
 * is used to determine the best palette choices for 4-color encoding.
 */
static int leastsquares(uint16_t *block_ptr, BlockInfo *bi,
                        channel_offset xchannel, channel_offset ychannel,
                        double *slope, double *y_intercept, double *correlation_coef)
{
    double sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
           sumx_sq = 0, sumy_sq = 0, tmp, tmp2;
    int i, j, count;
    uint8_t x, y;

    count = bi->block_height * bi->block_width;

    if (count < 2)
        return -1;

    for (i = 0; i < bi->block_height; i++) {
        for (j = 0; j < bi->block_width; j++) {
            x = GET_CHAN(block_ptr[j], xchannel);
            y = GET_CHAN(block_ptr[j], ychannel);
            sumx += x;
            sumy += y;
            sumx2 += x * x;
            sumy2 += y * y;
            sumxy += x * y;
        }
        block_ptr += bi->rowstride;
    }

    sumx_sq = sumx * sumx;
    tmp = (count * sumx2 - sumx_sq);

    // guard against div/0
    if (tmp == 0)
        return -2;

    sumy_sq = sumy * sumy;

    *slope = (sumx * sumy - sumxy) / tmp;
    *y_intercept = (sumy - (*slope) * sumx) / count;

    tmp2 = count * sumy2 - sumy_sq;
    if (tmp2 == 0) {
        *correlation_coef = 0.0;
    } else {
        *correlation_coef = (count * sumxy - sumx * sumy) /
            sqrt(tmp * tmp2);
    }

    return 0; // success
}

/*
 * Determine the amount of error in the leastsquares fit.
 */
static int calc_lsq_max_fit_error(uint16_t *block_ptr, BlockInfo *bi,
                                  int min, int max, int tmp_min, int tmp_max,
                                  channel_offset xchannel, channel_offset ychannel)
{
    int i, j, x, y;
    int err;
    int max_err = 0;

    for (i = 0; i < bi->block_height; i++) {
        for (j = 0; j < bi->block_width; j++) {
            int x_inc, lin_y, lin_x;
            x = GET_CHAN(block_ptr[j], xchannel);
            y = GET_CHAN(block_ptr[j], ychannel);

            /* calculate x_inc as the 4-color index (0..3) */
            x_inc = floor( (x - min) * 3.0 / (max - min) + 0.5);
            x_inc = FFMAX(FFMIN(3, x_inc), 0);

            /* calculate lin_y corresponding to x_inc */
            lin_y = (int)(tmp_min + (tmp_max - tmp_min) * x_inc / 3.0 + 0.5);

            err = FFABS(lin_y - y);
            if (err > max_err)
                max_err = err;

            /* calculate lin_x corresponding to x_inc */
            lin_x = (int)(min + (max - min) * x_inc / 3.0 + 0.5);

            err = FFABS(lin_x - x);
            if (err > max_err)
                max_err += err;
        }
        block_ptr += bi->rowstride;
    }

    return max_err;
}

/*
 * Find the closest match to a color within the 4-color palette
 */
static int match_color(uint16_t *color, uint8_t colors[4][3])
{
    int ret = 0;
    int smallest_variance = INT_MAX;
    uint8_t dithered_color[3];

    for (int channel = 0; channel < 3; channel++) {
        dithered_color[channel] = GET_CHAN(color[0], channel);
    }

    for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
        int variance = diff_colors(dithered_color, colors[palette_entry]);

        if (variance < smallest_variance) {
            smallest_variance = variance;
            ret = palette_entry;
        }
    }

    return ret;
}

/*
 * Encode a block using the 4-color opcode and palette. return number of
 * blocks encoded (until we implement multi-block 4 color runs this will
 * always be 1)
 */
static int encode_four_color_block(uint8_t *min_color, uint8_t *max_color,
                                   PutBitContext *pb, uint16_t *block_ptr, BlockInfo *bi)
{
    int x, y, idx;
    uint8_t color4[4][3];
    uint16_t rounded_max, rounded_min;

    // round min and max wider
    rounded_min = rgb24_to_rgb555(min_color);
    rounded_max = rgb24_to_rgb555(max_color);

    // put a and b colors
    // encode 4 colors = first 16 bit color with MSB zeroed and...
    put_bits(pb, 16, rounded_max & ~0x8000);
    // ...second 16 bit color with MSB on.
    put_bits(pb, 16, rounded_min | 0x8000);

    get_colors(min_color, max_color, color4);

    for (y = 0; y < 4; y++) {
        for (x = 0; x < 4; x++) {
            idx = match_color(&block_ptr[x], color4);
            put_bits(pb, 2, idx);
        }
        block_ptr += bi->rowstride;
    }
    return 1; // num blocks encoded
}

/*
 * Copy a 4x4 block from the current frame buffer to the previous frame buffer.
 */
static void update_block_in_prev_frame(const uint16_t *src_pixels,
                                       uint16_t *dest_pixels,
                                       const BlockInfo *bi, int block_counter)
{
    const int y_size = FFMIN(4, bi->image_height - bi->row * 4);

    for (int y = 0; y < y_size; y++) {
        memcpy(dest_pixels, src_pixels, 8);
        dest_pixels += bi->rowstride;
        src_pixels += bi->rowstride;
    }
}

/*
 * update statistics for the specified block. If first_block,
 * it initializes the statistics.  Otherwise it updates the statistics IF THIS
 * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
 * the range of colors (since the routine was called first_block != 0) are
 * all close enough intensities to be represented by a single color.

 * The routine returns 0 if this block is too different to be part of
 * the same run of 1-color blocks. The routine returns 1 if this
 * block can be part of the same 1-color block run.

 * If the routine returns 1, it also updates its arguments to include
 * the statistics of this block. Otherwise, the stats are unchanged
 * and don't include the current block.
 */
static int update_block_stats(RpzaContext *s, BlockInfo *bi, uint16_t *block,
                              uint8_t min_color[3], uint8_t max_color[3],
                              int *total_rgb, int *total_pixels,
                              uint8_t avg_color[3], int first_block)
{
    int x, y;
    int is_in_range;
    int total_pixels_blk;
    int threshold;

    uint8_t min_color_blk[3], max_color_blk[3];
    int total_rgb_blk[3];
    uint8_t avg_color_blk[3];

    if (first_block) {
        min_color[0] = UINT8_MAX;
        min_color[1] = UINT8_MAX;
        min_color[2] = UINT8_MAX;
        max_color[0] = 0;
        max_color[1] = 0;
        max_color[2] = 0;
        total_rgb[0] = 0;
        total_rgb[1] = 0;
        total_rgb[2] = 0;
        *total_pixels = 0;
        threshold = s->start_one_color_thresh;
    } else {
        threshold = s->continue_one_color_thresh;
    }

    /*
       The *_blk variables will include the current block.
       Initialize them based on the blocks so far.
     */
    min_color_blk[0] = min_color[0];
    min_color_blk[1] = min_color[1];
    min_color_blk[2] = min_color[2];
    max_color_blk[0] = max_color[0];
    max_color_blk[1] = max_color[1];
    max_color_blk[2] = max_color[2];
    total_rgb_blk[0] = total_rgb[0];
    total_rgb_blk[1] = total_rgb[1];
    total_rgb_blk[2] = total_rgb[2];
    total_pixels_blk = *total_pixels + bi->block_height * bi->block_width;

    /*
       Update stats for this block's pixels
     */
    for (y = 0; y < bi->block_height; y++) {
        for (x = 0; x < bi->block_width; x++) {
            total_rgb_blk[0] += R(block[x]);
            total_rgb_blk[1] += G(block[x]);
            total_rgb_blk[2] += B(block[x]);

            min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]);
            min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]);
            min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]);

            max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]);
            max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]);
            max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]);
        }
        block += bi->rowstride;
    }

    /*
       Calculate average color including current block.
     */
    avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
    avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
    avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;

    /*
       Are all the pixels within threshold of the average color?
     */
    is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
                   max_color_blk[1] - avg_color_blk[1] <= threshold &&
                   max_color_blk[2] - avg_color_blk[2] <= threshold &&
                   avg_color_blk[0] - min_color_blk[0] <= threshold &&
                   avg_color_blk[1] - min_color_blk[1] <= threshold &&
                   avg_color_blk[2] - min_color_blk[2] <= threshold);

    if (is_in_range) {
        /*
           Set the output variables to include this block.
         */
        min_color[0] = min_color_blk[0];
        min_color[1] = min_color_blk[1];
        min_color[2] = min_color_blk[2];
        max_color[0] = max_color_blk[0];
        max_color[1] = max_color_blk[1];
        max_color[2] = max_color_blk[2];
        total_rgb[0] = total_rgb_blk[0];
        total_rgb[1] = total_rgb_blk[1];
        total_rgb[2] = total_rgb_blk[2];
        *total_pixels = total_pixels_blk;
        avg_color[0] = avg_color_blk[0];
        avg_color[1] = avg_color_blk[1];
        avg_color[2] = avg_color_blk[2];
    }

    return is_in_range;
}

static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict)
{
    BlockInfo bi;
    int block_counter = 0;
    int n_blocks;
    int total_blocks;
    int prev_block_offset;
    int block_offset = 0;
    uint8_t min = 0, max = 0;
    channel_offset chan;
    int i;
    int tmp_min, tmp_max;
    int total_rgb[3];
    uint8_t avg_color[3];
    int pixel_count;
    uint8_t min_color[3], max_color[3];
    double slope, y_intercept, correlation_coef;
    uint16_t *src_pixels = (uint16_t *)pict->data[0];
    uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0];

    /* Number of 4x4 blocks in frame. */
    total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4);

    bi.image_width = s->frame_width;
    bi.image_height = s->frame_height;
    bi.rowstride = pict->linesize[0] / 2;

    bi.blocks_per_row = (s->frame_width + 3) / 4;

    while (block_counter < total_blocks) {
        // SKIP CHECK
        // make sure we have a valid previous frame and we're not writing
        // a key frame
        if (!s->first_frame) {
            n_blocks = 0;
            prev_block_offset = 0;

            while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {

                block_offset = get_block_info(&bi, block_counter + n_blocks);

                // multi-block opcodes cannot span multiple rows.
                // If we're starting a new row, break out and write the opcode
                /* TODO: Should eventually use bi.row here to determine when a
                   row break occurs, but that is currently breaking the
                   quicktime player. This is probably due to a bug in the
                   way I'm calculating the current row.
                 */
                if (prev_block_offset && block_offset - prev_block_offset > 12) {
                    break;
                }

                prev_block_offset = block_offset;

                if (compare_blocks(&prev_pixels[block_offset],
                                   &src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) {
                    // write out skipable blocks
                    if (n_blocks) {

                        // write skip opcode
                        put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
                        block_counter += n_blocks;

                        goto post_skip;
                    }
                    break;
                }

                /*
                 * NOTE: we don't update skipped blocks in the previous frame buffer
                 * since skipped needs always to be compared against the first skipped
                 * block to avoid artifacts during gradual fade in/outs.
                 */

                // update_block_in_prev_frame(&src_pixels[block_offset],
                //   &prev_pixels[block_offset], &bi, block_counter + n_blocks);

                n_blocks++;
            }

            // we're either at the end of the frame or we've reached the maximum
            // of 32 blocks in a run. Write out the run.
            if (n_blocks) {
                // write skip opcode
                put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
                block_counter += n_blocks;

                continue;
            }

        } else {
            block_offset = get_block_info(&bi, block_counter);
        }
post_skip :

        // ONE COLOR CHECK
        if (update_block_stats(s, &bi, &src_pixels[block_offset],
                               min_color, max_color,
                               total_rgb, &pixel_count, avg_color, 1)) {
            prev_block_offset = block_offset;

            n_blocks = 1;

            /* update this block in the previous frame buffer */
            update_block_in_prev_frame(&src_pixels[block_offset],
                                       &prev_pixels[block_offset], &bi, block_counter + n_blocks);

            // check for subsequent blocks with the same color
            while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
                block_offset = get_block_info(&bi, block_counter + n_blocks);

                // multi-block opcodes cannot span multiple rows.
                // If we've hit end of a row, break out and write the opcode
                if (block_offset - prev_block_offset > 12) {
                    break;
                }

                if (!update_block_stats(s, &bi, &src_pixels[block_offset],
                                        min_color, max_color,
                                        total_rgb, &pixel_count, avg_color, 0)) {
                    break;
                }

                prev_block_offset = block_offset;

                /* update this block in the previous frame buffer */
                update_block_in_prev_frame(&src_pixels[block_offset],
                                           &prev_pixels[block_offset], &bi, block_counter + n_blocks);

                n_blocks++;
            }

            // write one color opcode.
            put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1));
            // write color to encode.
            put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color));
            // skip past the blocks we've just encoded.
            block_counter += n_blocks;
        } else { // FOUR COLOR CHECK
            int err = 0;

            // get max component diff for block
            get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan);

            min_color[0] = 0;
            max_color[0] = 0;
            min_color[1] = 0;
            max_color[1] = 0;
            min_color[2] = 0;
            max_color[2] = 0;

            // run least squares against other two components
            for (i = 0; i < 3; i++) {
                if (i == chan) {
                    min_color[i] = min;
                    max_color[i] = max;
                    continue;
                }

                slope = y_intercept = correlation_coef = 0;

                if (leastsquares(&src_pixels[block_offset], &bi, chan, i,
                                 &slope, &y_intercept, &correlation_coef)) {
                    min_color[i] = GET_CHAN(src_pixels[block_offset], i);
                    max_color[i] = GET_CHAN(src_pixels[block_offset], i);
                } else {
                    tmp_min = (int)(0.5 + min * slope + y_intercept);
                    tmp_max = (int)(0.5 + max * slope + y_intercept);

                    av_assert0(tmp_min <= tmp_max);
                    // clamp min and max color values
                    tmp_min = av_clip_uint8(tmp_min);
                    tmp_max = av_clip_uint8(tmp_max);

                    err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi,
                                                       min, max, tmp_min, tmp_max, chan, i), err);

                    min_color[i] = tmp_min;
                    max_color[i] = tmp_max;
                }
            }

            if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK
                uint16_t *row_ptr;
                int y_size, rgb555;

                block_offset = get_block_info(&bi, block_counter);

                row_ptr = &src_pixels[block_offset];
                y_size = FFMIN(4, bi.image_height - bi.row * 4);

                for (int y = 0; y < y_size; y++) {
                    for (int x = 0; x < 4; x++) {
                        rgb555 = row_ptr[x] & ~0x8000;

                        put_bits(&s->pb, 16, rgb555);
                    }
                    row_ptr += bi.rowstride;
                }

                for (int y = y_size; y < 4; y++) {
                    for (int x = 0; x < 4; x++)
                        put_bits(&s->pb, 16, 0);
                }

                block_counter++;
            } else { // FOUR COLOR BLOCK
                block_counter += encode_four_color_block(min_color, max_color,
                                                         &s->pb, &src_pixels[block_offset], &bi);
            }

            /* update this block in the previous frame buffer */
            update_block_in_prev_frame(&src_pixels[block_offset],
                                       &prev_pixels[block_offset], &bi, block_counter);
        }
    }
}

static int rpza_encode_init(AVCodecContext *avctx)
{
    RpzaContext *s = avctx->priv_data;

    s->frame_width = avctx->width;
    s->frame_height = avctx->height;

    s->prev_frame = av_frame_alloc();
    if (!s->prev_frame)
        return AVERROR(ENOMEM);

    return 0;
}

static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                                const AVFrame *frame, int *got_packet)
{
    RpzaContext *s = avctx->priv_data;
    const AVFrame *pict = frame;
    uint8_t *buf;
    int ret;

    if ((ret = ff_alloc_packet2(avctx, pkt, 6LL * avctx->height * avctx->width, 0)) < 0)
        return ret;

    init_put_bits(&s->pb, pkt->data, pkt->size);

    // skip 4 byte header, write it later once the size of the chunk is known
    put_bits32(&s->pb, 0x00);

    if (!s->prev_frame->data[0]) {
        s->first_frame = 1;
        s->prev_frame->format = pict->format;
        s->prev_frame->width = pict->width;
        s->prev_frame->height = pict->height;
        ret = av_frame_get_buffer(s->prev_frame, 0);
        if (ret < 0)
            return ret;
    } else {
        s->first_frame = 0;
    }

    rpza_encode_stream(s, pict);

    flush_put_bits(&s->pb);

    av_shrink_packet(pkt, put_bits_count(&s->pb) >> 3);
    buf = pkt->data;

    // write header opcode
    buf[0] = 0xe1; // chunk opcode

    // write chunk length
    AV_WB24(buf + 1, pkt->size);

    *got_packet = 1;

    return 0;
}

static int rpza_encode_end(AVCodecContext *avctx)
{
    RpzaContext *s = (RpzaContext *)avctx->priv_data;

    av_frame_free(&s->prev_frame);

    return 0;
}

#define OFFSET(x) offsetof(RpzaContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
    { "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
    { "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
    { "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE},
    { "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
    { NULL },
};

static const AVClass rpza_class = {
    .class_name = "rpza",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};

AVCodec ff_rpza_encoder = {
    .name           = "rpza",
    .long_name      = NULL_IF_CONFIG_SMALL("QuickTime video (RPZA)"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_RPZA,
    .priv_data_size = sizeof(RpzaContext),
    .priv_class     = &rpza_class,
    .init           = rpza_encode_init,
    .encode2        = rpza_encode_frame,
    .close          = rpza_encode_end,
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
    .pix_fmts       = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555,
                                                     AV_PIX_FMT_NONE},
};