float128.hpp 36.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
///////////////////////////////////////////////////////////////
//  Copyright 2013 John Maddock. Distributed under the Boost
//  Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt

#ifndef BOOST_MP_FLOAT128_HPP
#define BOOST_MP_FLOAT128_HPP

// https://gcc.gnu.org/onlinedocs/gcc/Floating-Types.html
#if !defined(__amd64__) && !defined(__amd64) && !defined(__x86_64__) && !defined(__x86_64) && !defined(_M_X64) && !defined(_M_AMD64) && \
    !defined(i386) && !defined(__i386) && !defined(__i386__) && !defined(_M_IX86) && !defined(__X86__) && !defined(_X86_) && !defined(__I86__) && \
    !defined(__ia64__) && !defined(_IA64) && !defined(__IA64__) && !defined(__ia64) && !defined(_M_IA64) && !defined(__itanium__) && \
    !defined(__hppa__) && !defined(__HPPA__) && !defined(__hppa) && \
    !defined(__powerpc) && !defined(_M_PPC) && !defined(_ARCH_PPC) && !defined(_ARCH_PPC64) && !defined(__PPCBROADWAY__)
#error libquadmath only works on on i386, x86_64, IA-64, and hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable the vector scalar (VSX) instruction set.
#endif

#include <memory>
#include <climits>
#include <cfloat>
#include <tuple>
#include <cstring>
#include <boost/multiprecision/detail/standalone_config.hpp>
#include <boost/multiprecision/number.hpp>
#include <boost/multiprecision/detail/hash.hpp>
#include <boost/multiprecision/detail/no_exceptions_support.hpp>

#if defined(BOOST_INTEL) && !defined(BOOST_MP_USE_FLOAT128) && !defined(BOOST_MP_USE_QUAD)
#if defined(BOOST_INTEL_CXX_VERSION) && (BOOST_INTEL_CXX_VERSION >= 1310) && defined(__GNUC__)
#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 6))
#define BOOST_MP_USE_FLOAT128
#endif
#endif

#ifndef BOOST_MP_USE_FLOAT128
#define BOOST_MP_USE_QUAD
#endif
#endif

#if defined(__GNUC__) && !defined(BOOST_MP_USE_FLOAT128) && !defined(BOOST_MP_USE_QUAD)
#define BOOST_MP_USE_FLOAT128
#endif

#if !defined(BOOST_MP_USE_FLOAT128) && !defined(BOOST_MP_USE_QUAD)
#error "Sorry compiler is neither GCC, not Intel, don't know how to configure this header."
#endif
#if defined(BOOST_MP_USE_FLOAT128) && defined(BOOST_MP_USE_QUAD)
#error "Oh dear, both BOOST_MP_USE_FLOAT128 and BOOST_MP_USE_QUAD are defined, which one should I be using?"
#endif

#if defined(BOOST_MP_USE_FLOAT128)

extern "C" {
#include <quadmath.h>
}

using float128_type = __float128;

#elif defined(BOOST_MP_USE_QUAD)

#include <boost/multiprecision/detail/float_string_cvt.hpp>

using float128_type = _Quad;

extern "C" {
_Quad __ldexpq(_Quad, int);
_Quad __frexpq(_Quad, int*);
_Quad __fabsq(_Quad);
_Quad __floorq(_Quad);
_Quad __ceilq(_Quad);
_Quad __sqrtq(_Quad);
_Quad __truncq(_Quad);
_Quad __expq(_Quad);
_Quad __powq(_Quad, _Quad);
_Quad __logq(_Quad);
_Quad __log10q(_Quad);
_Quad __sinq(_Quad);
_Quad __cosq(_Quad);
_Quad __tanq(_Quad);
_Quad __asinq(_Quad);
_Quad __acosq(_Quad);
_Quad __atanq(_Quad);
_Quad __sinhq(_Quad);
_Quad __coshq(_Quad);
_Quad __tanhq(_Quad);
_Quad __fmodq(_Quad, _Quad);
_Quad __atan2q(_Quad, _Quad);

#define ldexpq __ldexpq
#define frexpq __frexpq
#define fabsq __fabsq
#define floorq __floorq
#define ceilq __ceilq
#define sqrtq __sqrtq
#define truncq __truncq
#define expq __expq
#define powq __powq
#define logq __logq
#define log10q __log10q
#define sinq __sinq
#define cosq __cosq
#define tanq __tanq
#define asinq __asinq
#define acosq __acosq
#define atanq __atanq
#define sinhq __sinhq
#define coshq __coshq
#define tanhq __tanhq
#define fmodq __fmodq
#define atan2q __atan2q
}

inline _Quad isnanq(_Quad v)
{
   return v != v;
}
inline _Quad isinfq(_Quad v)
{
   return __fabsq(v) > 1.18973149535723176508575932662800702e4932Q;
}

#endif

namespace boost {
namespace multiprecision {

#ifndef BOOST_MP_BITS_OF_FLOAT128_DEFINED

namespace detail {

template <>
struct bits_of<float128_type>
{
   static constexpr const unsigned value = 113;
};

}

#endif

namespace backends {

struct float128_backend;

}

using backends::float128_backend;

template <>
struct number_category<backends::float128_backend> : public std::integral_constant<int, number_kind_floating_point>
{};
#if defined(BOOST_MP_USE_QUAD)
template <>
struct number_category<float128_type> : public std::integral_constant<int, number_kind_floating_point>
{};
#endif

using float128 = number<float128_backend, et_off>;

namespace quad_constants {
constexpr float128_type quad_min = static_cast<float128_type>(1) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) / 1073741824;

constexpr float128_type quad_denorm_min = static_cast<float128_type>(1) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) * static_cast<float128_type>(DBL_MIN) / 5.5751862996326557854e+42;

constexpr double     dbl_mult = 8.9884656743115795386e+307;                                              // This has one bit set only.
constexpr float128_type quad_max = (static_cast<float128_type>(1) - 9.62964972193617926527988971292463659e-35) // This now has all bits sets to 1
                                * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * static_cast<float128_type>(dbl_mult) * 65536;
} // namespace quad_constants

#define BOOST_MP_QUAD_MIN boost::multiprecision::quad_constants::quad_min
#define BOOST_MP_QUAD_DENORM_MIN boost::multiprecision::quad_constants::quad_denorm_min
#define BOOST_MP_QUAD_MAX boost::multiprecision::quad_constants::quad_max


namespace backends {

struct float128_backend
{
   using signed_types = std::tuple<signed char, short, int, long, long long>;
   using unsigned_types = std::tuple<unsigned char, unsigned short, unsigned int, unsigned long, unsigned long long>;
   using float_types = std::tuple<float, double, long double>;
   using exponent_type = int                                  ;

 private:
   float128_type m_value;

 public:
   constexpr   float128_backend() noexcept : m_value(0) {}
   constexpr   float128_backend(const float128_backend& o) noexcept : m_value(o.m_value) {}
   BOOST_MP_CXX14_CONSTEXPR float128_backend& operator=(const float128_backend& o) noexcept
   {
      m_value = o.m_value;
      return *this;
   }
   template <class T>
   constexpr float128_backend(const T& i, const typename std::enable_if<std::is_convertible<T, float128_type>::value>::type* = nullptr) noexcept(noexcept(std::declval<float128_type&>() = std::declval<const T&>()))
       : m_value(i) {}
   template <class T>
   BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_arithmetic<T>::value || std::is_convertible<T, float128_type>::value, float128_backend&>::type operator=(const T& i) noexcept(noexcept(std::declval<float128_type&>() = std::declval<const T&>()))
   {
      m_value = i;
      return *this;
   }
   BOOST_MP_CXX14_CONSTEXPR float128_backend(long double const& f) : m_value(f)
   {
      if (f > LDBL_MAX)
         m_value = static_cast<float128_type>(HUGE_VAL);
      else if (-f > LDBL_MAX)
         m_value = -static_cast<float128_type>(HUGE_VAL);
   }
   BOOST_MP_CXX14_CONSTEXPR float128_backend& operator=(long double const& f)
   {
      if (f > LDBL_MAX)
         m_value = static_cast<float128_type>(HUGE_VAL);
      else if (-f > LDBL_MAX)
         m_value = -static_cast<float128_type>(HUGE_VAL);
      else
         m_value = f;
      return *this;
   }
   float128_backend& operator=(const char* s)
   {
#ifndef BOOST_MP_USE_QUAD
      char* p_end;
      m_value = strtoflt128(s, &p_end);
      if (p_end - s != (std::ptrdiff_t)std::strlen(s))
      {
         BOOST_MP_THROW_EXCEPTION(std::runtime_error("Unable to interpret input string as a floating point value"));
      }
#else
      boost::multiprecision::detail::convert_from_string(*this, s);
#endif
      return *this;
   }
   BOOST_MP_CXX14_CONSTEXPR void swap(float128_backend& o) noexcept
   {
      // We don't call std::swap here because it's no constexpr (yet):
      float128_type t(o.value());
      o.value() = m_value;
      m_value = t;
   }
   std::string str(std::streamsize digits, std::ios_base::fmtflags f) const
   {
#ifndef BOOST_MP_USE_QUAD
      char        buf[128];
      std::string format = "%";
      if (f & std::ios_base::showpos)
         format += "+";
      if (f & std::ios_base::showpoint)
         format += "#";
      format += ".*";
      if ((digits == 0) && !(f & std::ios_base::fixed))
         digits = 36;
      format += "Q";

      if (f & std::ios_base::scientific)
         format += "e";
      else if (f & std::ios_base::fixed)
         format += "f";
      else
         format += "g";

      int v;
      if ((f & std::ios_base::scientific) && (f & std::ios_base::fixed))
      {
         v = quadmath_snprintf(buf, sizeof buf, "%Qa", m_value);
      }
      else
      {
         v = quadmath_snprintf(buf, sizeof buf, format.c_str(), digits, m_value);
      }

      if ((v < 0) || (v >= 127))
      {
         int                       v_max = v;
         std::unique_ptr<char[]>   buf2;
         buf2.reset(new char[v + 3]);
         v = quadmath_snprintf(&buf2[0], v_max + 3, format.c_str(), digits, m_value);
         if (v >= v_max + 3)
         {
            BOOST_MP_THROW_EXCEPTION(std::runtime_error("Formatting of float128_type failed."));
         }
         return &buf2[0];
      }
      return buf;
#else
      return boost::multiprecision::detail::convert_to_string(*this, digits ? digits : 36, f);
#endif
   }
   BOOST_MP_CXX14_CONSTEXPR void negate() noexcept
   {
      m_value = -m_value;
   }
   BOOST_MP_CXX14_CONSTEXPR int compare(const float128_backend& o) const
   {
      return m_value == o.m_value ? 0 : m_value < o.m_value ? -1 : 1;
   }
   template <class T>
   BOOST_MP_CXX14_CONSTEXPR int compare(const T& i) const
   {
      return m_value == i ? 0 : m_value < i ? -1 : 1;
   }
   BOOST_MP_CXX14_CONSTEXPR float128_type& value()
   {
      return m_value;
   }
   BOOST_MP_CXX14_CONSTEXPR const float128_type& value() const
   {
      return m_value;
   }
};

inline BOOST_MP_CXX14_CONSTEXPR void eval_add(float128_backend& result, const float128_backend& a)
{
   result.value() += a.value();
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_add(float128_backend& result, const A& a)
{
   result.value() += a;
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_subtract(float128_backend& result, const float128_backend& a)
{
   result.value() -= a.value();
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_subtract(float128_backend& result, const A& a)
{
   result.value() -= a;
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_multiply(float128_backend& result, const float128_backend& a)
{
   result.value() *= a.value();
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_multiply(float128_backend& result, const A& a)
{
   result.value() *= a;
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_divide(float128_backend& result, const float128_backend& a)
{
   result.value() /= a.value();
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_divide(float128_backend& result, const A& a)
{
   result.value() /= a;
}

inline BOOST_MP_CXX14_CONSTEXPR void eval_add(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = a.value() + b.value();
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_add(float128_backend& result, const float128_backend& a, const A& b)
{
   result.value() = a.value() + b;
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_subtract(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = a.value() - b.value();
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_subtract(float128_backend& result, const float128_backend& a, const A& b)
{
   result.value() = a.value() - b;
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_subtract(float128_backend& result, const A& a, const float128_backend& b)
{
   result.value() = a - b.value();
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_multiply(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = a.value() * b.value();
}
template <class A>
inline BOOST_MP_CXX14_CONSTEXPR void eval_multiply(float128_backend& result, const float128_backend& a, const A& b)
{
   result.value() = a.value() * b;
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_divide(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = a.value() / b.value();
}

template <class R>
inline BOOST_MP_CXX14_CONSTEXPR void eval_convert_to(R* result, const float128_backend& val)
{
   *result = static_cast<R>(val.value());
}

inline void eval_frexp(float128_backend& result, const float128_backend& arg, int* exp)
{
   result.value() = frexpq(arg.value(), exp);
}

inline void eval_ldexp(float128_backend& result, const float128_backend& arg, int exp)
{
   result.value() = ldexpq(arg.value(), exp);
}

inline void eval_floor(float128_backend& result, const float128_backend& arg)
{
   result.value() = floorq(arg.value());
}
inline void eval_ceil(float128_backend& result, const float128_backend& arg)
{
   result.value() = ceilq(arg.value());
}
inline void eval_sqrt(float128_backend& result, const float128_backend& arg)
{
   result.value() = sqrtq(arg.value());
}

inline void eval_rsqrt(float128_backend& result, const float128_backend& arg)
{
#if (LDBL_MANT_DIG > 100)
   // GCC can't mix and match __float128 and quad precision long double
   // error: __float128 and long double cannot be used in the same expression
   result.value() = 1 / sqrtq(arg.value());
#else
   if (arg.value() < std::numeric_limits<long double>::denorm_min() || arg.value() > (std::numeric_limits<long double>::max)()) {
      result.value() = 1/sqrtq(arg.value());
      return;
   }

   using std::sqrt;
   float128_backend xk = 1/sqrt(static_cast<long double>(arg.value()));

   // Newton iteration for f(x) = arg.value() - 1/x^2.
   BOOST_IF_CONSTEXPR (sizeof(long double) == sizeof(double)) {
       // If the long double is the same as a double, then we need two Newton iterations:
       xk.value() = xk.value() + xk.value()*(1-arg.value()*xk.value()*xk.value())/2;
       result.value() = xk.value() + xk.value()*(1-arg.value()*xk.value()*xk.value())/2;
   }
   else
   {
      // 80 bit long double only needs a single iteration to produce ~2ULPs.
      result.value() = xk.value() + xk.value() * (1 - arg.value() * xk.value() * xk.value()) / 2;
   }
#endif
}
#ifndef BOOST_MP_NO_CONSTEXPR_DETECTION
inline BOOST_MP_CXX14_CONSTEXPR
#else
inline
#endif
int eval_fpclassify(const float128_backend& arg)
{
   float128_type v = arg.value();
#ifndef BOOST_MP_NO_CONSTEXPR_DETECTION
   if (BOOST_MP_IS_CONST_EVALUATED(v))
   {
      if (v != v)
         return FP_NAN;
      if (v == 0)
         return FP_ZERO;
      float128_type t(v);
      if (t < 0)
         t = -t;
      if (t > BOOST_MP_QUAD_MAX)
         return FP_INFINITE;
      if (t < BOOST_MP_QUAD_MIN)
         return FP_SUBNORMAL;
      return FP_NORMAL;
   }
   else
#endif
   {
      if (isnanq(v))
         return FP_NAN;
      else if (isinfq(v))
         return FP_INFINITE;
      else if (v == 0)
         return FP_ZERO;

      float128_backend t(arg);
      if (t.value() < 0)
         t.negate();
      if (t.value() < BOOST_MP_QUAD_MIN)
         return FP_SUBNORMAL;
      return FP_NORMAL;
   }
}
#if defined(BOOST_GCC) && (__GNUC__ == 9)
// See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91705
inline BOOST_MP_CXX14_CONSTEXPR void eval_increment(float128_backend& arg)
{
   arg.value() = 1 + arg.value();
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_decrement(float128_backend& arg)
{
   arg.value() = arg.value() - 1;
}
#else
inline BOOST_MP_CXX14_CONSTEXPR void eval_increment(float128_backend& arg)
{
   ++arg.value();
}
inline BOOST_MP_CXX14_CONSTEXPR void eval_decrement(float128_backend& arg)
{
   --arg.value();
}
#endif

/*********************************************************************
*
* abs/fabs:
*
*********************************************************************/

#ifndef BOOST_MP_NO_CONSTEXPR_DETECTION
inline BOOST_MP_CXX14_CONSTEXPR void eval_abs(float128_backend& result, const float128_backend& arg)
#else
inline void eval_abs(float128_backend& result, const float128_backend& arg)
#endif
{
#ifndef BOOST_MP_NO_CONSTEXPR_DETECTION
   float128_type v(arg.value());
   if (BOOST_MP_IS_CONST_EVALUATED(v))
   {
      result.value() = v < 0 ? -v : v;
   }
   else
#endif
   {
      result.value() = fabsq(arg.value());
   }
}
#ifndef BOOST_MP_NO_CONSTEXPR_DETECTION
inline BOOST_MP_CXX14_CONSTEXPR void eval_fabs(float128_backend& result, const float128_backend& arg)
#else
inline void eval_fabs(float128_backend& result, const float128_backend& arg)
#endif
{
#ifndef BOOST_MP_NO_CONSTEXPR_DETECTION
   float128_type v(arg.value());
   if (BOOST_MP_IS_CONST_EVALUATED(v))
   {
      result.value() = v < 0 ? -v : v;
   }
   else
#endif
   {
      result.value() = fabsq(arg.value());
   }
}

/*********************************************************************
*
* Floating point functions:
*
*********************************************************************/

inline void eval_trunc(float128_backend& result, const float128_backend& arg)
{
   result.value() = truncq(arg.value());
}
/*
//
// This doesn't actually work... rely on our own default version instead.
//
inline void eval_round(float128_backend& result, const float128_backend& arg)
{
   if(isnanq(arg.value()) || isinf(arg.value()))
   {
      result = boost::math::policies::raise_rounding_error(
            "boost::multiprecision::trunc<%1%>(%1%)", nullptr,
            number<float128_backend, et_off>(arg),
            number<float128_backend, et_off>(arg),
            boost::math::policies::policy<>()).backend();
      return;
   }
   result.value() = roundq(arg.value());
}
*/

inline void eval_exp(float128_backend& result, const float128_backend& arg)
{
   result.value() = expq(arg.value());
}
inline void eval_log(float128_backend& result, const float128_backend& arg)
{
   result.value() = logq(arg.value());
}
inline void eval_log10(float128_backend& result, const float128_backend& arg)
{
   result.value() = log10q(arg.value());
}
inline void eval_sin(float128_backend& result, const float128_backend& arg)
{
   result.value() = sinq(arg.value());
}
inline void eval_cos(float128_backend& result, const float128_backend& arg)
{
   result.value() = cosq(arg.value());
}
inline void eval_tan(float128_backend& result, const float128_backend& arg)
{
   result.value() = tanq(arg.value());
}
inline void eval_asin(float128_backend& result, const float128_backend& arg)
{
   result.value() = asinq(arg.value());
}
inline void eval_acos(float128_backend& result, const float128_backend& arg)
{
   result.value() = acosq(arg.value());
}
inline void eval_atan(float128_backend& result, const float128_backend& arg)
{
   result.value() = atanq(arg.value());
}
inline void eval_sinh(float128_backend& result, const float128_backend& arg)
{
   result.value() = sinhq(arg.value());
}
inline void eval_cosh(float128_backend& result, const float128_backend& arg)
{
   result.value() = coshq(arg.value());
}
inline void eval_tanh(float128_backend& result, const float128_backend& arg)
{
   result.value() = tanhq(arg.value());
}
inline void eval_fmod(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = fmodq(a.value(), b.value());
}
inline void eval_pow(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = powq(a.value(), b.value());
}
inline void eval_atan2(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = atan2q(a.value(), b.value());
}
#ifndef BOOST_MP_USE_QUAD
inline void eval_multiply_add(float128_backend& result, const float128_backend& a, const float128_backend& b, const float128_backend& c)
{
   result.value() = fmaq(a.value(), b.value(), c.value());
}
inline int eval_signbit BOOST_PREVENT_MACRO_SUBSTITUTION(const float128_backend& arg)
{
   return ::signbitq(arg.value());
}
#endif

inline std::size_t hash_value(const float128_backend& val)
{
   return boost::multiprecision::detail::hash_value(static_cast<double>(val.value()));
}

} // namespace backends

template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> asinh BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return asinhq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> acosh BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return acoshq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> atanh BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return atanhq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> cbrt BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return cbrtq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> erf BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return erfq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> erfc BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return erfcq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> expm1 BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return expm1q(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> lgamma BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return lgammaq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> tgamma BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   if(eval_signbit(arg.backend()) != 0)
   {
      const bool result_is_neg = ((static_cast<unsigned long long>(floorq(-arg.backend().value())) % 2U) == 0U);

      const boost::multiprecision::number<float128_backend, ExpressionTemplates> result_of_tgammaq = fabsq(tgammaq(arg.backend().value()));

      return ((result_is_neg == false) ? result_of_tgammaq : -result_of_tgammaq);
   }
   else
   {
      return tgammaq(arg.backend().value());
   }
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> log1p BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   return log1pq(arg.backend().value());
}
template <boost::multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<float128_backend, ExpressionTemplates> rsqrt BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<float128_backend, ExpressionTemplates>& arg)
{
   boost::multiprecision::number<float128_backend, ExpressionTemplates> res;
   eval_rsqrt(res.backend(), arg.backend());
   return res;
}

#ifndef BOOST_MP_USE_QUAD
template <multiprecision::expression_template_option ExpressionTemplates>
inline boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> copysign BOOST_PREVENT_MACRO_SUBSTITUTION(const boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates>& a, const boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates>& b)
{
   return ::copysignq(a.backend().value(), b.backend().value());
}

namespace backends {

inline void eval_remainder(float128_backend& result, const float128_backend& a, const float128_backend& b)
{
   result.value() = remainderq(a.value(), b.value());
}
inline void eval_remainder(float128_backend& result, const float128_backend& a, const float128_backend& b, int* pi)
{
   result.value() = remquoq(a.value(), b.value(), pi);
}
} // namespace backends

#endif

} // namespace multiprecision

namespace math {

using boost::multiprecision::copysign;
using boost::multiprecision::signbit;

} // namespace math

} // namespace boost

#ifndef BOOST_MP_STANDALONE
namespace boost {
namespace archive {

class binary_oarchive;
class binary_iarchive;

} // namespace archive

namespace serialization {
namespace float128_detail {

template <class Archive>
void do_serialize(Archive& ar, boost::multiprecision::backends::float128_backend& val, const std::integral_constant<bool, false>&, const std::integral_constant<bool, false>&)
{
   // saving
   // non-binary
   std::string s(val.str(0, std::ios_base::scientific));
   ar&         boost::make_nvp("value", s);
}
template <class Archive>
void do_serialize(Archive& ar, boost::multiprecision::backends::float128_backend& val, const std::integral_constant<bool, true>&, const std::integral_constant<bool, false>&)
{
   // loading
   // non-binary
   std::string s;
   ar&         boost::make_nvp("value", s);
   val = s.c_str();
}

template <class Archive>
void do_serialize(Archive& ar, boost::multiprecision::backends::float128_backend& val, const std::integral_constant<bool, false>&, const std::integral_constant<bool, true>&)
{
   // saving
   // binary
   ar.save_binary(&val, sizeof(val));
}
template <class Archive>
void do_serialize(Archive& ar, boost::multiprecision::backends::float128_backend& val, const std::integral_constant<bool, true>&, const std::integral_constant<bool, true>&)
{
   // loading
   // binary
   ar.load_binary(&val, sizeof(val));
}

} // namespace float128_detail

template <class Archive>
void serialize(Archive& ar, boost::multiprecision::backends::float128_backend& val, unsigned int /*version*/)
{
   using load_tag = typename Archive::is_loading                                                                                                                                         ;
   using loading = std::integral_constant<bool, load_tag::value>                                                                                                                        ;
   using binary_tag = typename std::integral_constant<bool, std::is_same<Archive, boost::archive::binary_oarchive>::value || std::is_same<Archive, boost::archive::binary_iarchive>::value>;

   float128_detail::do_serialize(ar, val, loading(), binary_tag());
}

} // namespace serialization

} // namespace boost
#endif // BOOST_MP_STANDALONE

namespace std {

template <boost::multiprecision::expression_template_option ExpressionTemplates>
class numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >
{
   using number_type = boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates>;

 public:
   static constexpr bool is_specialized = true;
   static BOOST_MP_CXX14_CONSTEXPR number_type(min)() noexcept { return BOOST_MP_QUAD_MIN; }
   static BOOST_MP_CXX14_CONSTEXPR number_type(max)() noexcept { return BOOST_MP_QUAD_MAX; }
   static BOOST_MP_CXX14_CONSTEXPR number_type          lowest() noexcept { return -(max)(); }
   static constexpr int  digits       = 113;
   static constexpr int  digits10     = 33;
   static constexpr int  max_digits10 = 36;
   static constexpr bool is_signed    = true;
   static constexpr bool is_integer   = false;
   static constexpr bool is_exact     = false;
   static constexpr int  radix        = 2;
   static BOOST_MP_CXX14_CONSTEXPR number_type          epsilon() { return 1.92592994438723585305597794258492732e-34; /* this double value has only one bit set and so is exact */ }
   static BOOST_MP_CXX14_CONSTEXPR number_type          round_error() { return 0.5; }
   static constexpr int  min_exponent                  = -16381;
   static constexpr int  min_exponent10                = min_exponent * 301L / 1000L;
   static constexpr int  max_exponent                  = 16384;
   static constexpr int  max_exponent10                = max_exponent * 301L / 1000L;
   static constexpr bool has_infinity                  = true;
   static constexpr bool has_quiet_NaN                 = true;
   static constexpr bool has_signaling_NaN             = false;
   static constexpr float_denorm_style has_denorm      = denorm_present;
   static constexpr bool               has_denorm_loss = true;
   static BOOST_MP_CXX14_CONSTEXPR number_type                        infinity() { return HUGE_VAL; /* conversion from double infinity OK */ }
   static BOOST_MP_CXX14_CONSTEXPR number_type                        quiet_NaN() { return number_type(NAN); }
   static BOOST_MP_CXX14_CONSTEXPR number_type                        signaling_NaN() { return 0; }
   static BOOST_MP_CXX14_CONSTEXPR number_type                        denorm_min() { return BOOST_MP_QUAD_DENORM_MIN; }
   static constexpr bool               is_iec559       = true;
   static constexpr bool               is_bounded      = true;
   static constexpr bool               is_modulo       = false;
   static constexpr bool               traps           = false;
   static constexpr bool               tinyness_before = false;
   static constexpr float_round_style round_style      = round_to_nearest;
};

template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::is_specialized;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::digits;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::digits10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::max_digits10;

template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::is_signed;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::is_integer;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::is_exact;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::radix;

template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::min_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::max_exponent;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::min_exponent10;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr int numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::max_exponent10;

template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::has_infinity;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::has_quiet_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::has_signaling_NaN;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::has_denorm_loss;

template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::is_iec559;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::is_bounded;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::is_modulo;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::traps;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::tinyness_before;

template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::round_style;
template <boost::multiprecision::expression_template_option ExpressionTemplates>
constexpr float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::backends::float128_backend, ExpressionTemplates> >::has_denorm;

} // namespace std

#endif