quant.c 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
/*****************************************************************************
 * quant.c: ppc quantization
 *****************************************************************************
 * Copyright (C) 2007-2024 x264 project
 *
 * Authors: Guillaume Poirier <gpoirier@mplayerhq.hu>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at licensing@x264.com.
 *****************************************************************************/

#include "common/common.h"
#include "ppccommon.h"
#include "quant.h"

#if !HIGH_BIT_DEPTH
// quant of a whole 4x4 block, unrolled 2x and "pre-scheduled"
#define QUANT_16_U( idx0, idx1 )                                    \
{                                                                   \
    temp1v = vec_ld((idx0), dct);                                   \
    temp2v = vec_ld((idx1), dct);                                   \
    mfvA = vec_ld((idx0), mf);                                      \
    mfvB = vec_ld((idx1), mf);                                      \
    biasvA = vec_ld((idx0), bias);                                  \
    biasvB = vec_ld((idx1), bias);                                  \
    mskA = vec_cmplt(temp1v, zero_s16v);                            \
    mskB = vec_cmplt(temp2v, zero_s16v);                            \
    coefvA = (vec_u16_t)vec_abs( temp1v );                          \
    coefvB = (vec_u16_t)vec_abs( temp2v );                          \
    coefvA = vec_adds(coefvA, biasvA);                              \
    coefvB = vec_adds(coefvB, biasvB);                              \
    multEvenvA = vec_mule(coefvA, mfvA);                            \
    multOddvA = vec_mulo(coefvA, mfvA);                             \
    multEvenvB = vec_mule(coefvB, mfvB);                            \
    multOddvB = vec_mulo(coefvB, mfvB);                             \
    multEvenvA = vec_sr(multEvenvA, i_qbitsv);                      \
    multOddvA = vec_sr(multOddvA, i_qbitsv);                        \
    multEvenvB = vec_sr(multEvenvB, i_qbitsv);                      \
    multOddvB = vec_sr(multOddvB, i_qbitsv);                        \
    temp1v = (vec_s16_t) vec_packs( multEvenvA, multOddvA );        \
    tmpv = xxpermdi( temp1v, temp1v, 2 );                           \
    temp1v = vec_mergeh( temp1v, tmpv );                            \
    temp2v = (vec_s16_t) vec_packs( multEvenvB, multOddvB );        \
    tmpv = xxpermdi( temp2v, temp2v, 2 );                           \
    temp2v = vec_mergeh( temp2v, tmpv );                            \
    temp1v = vec_xor(temp1v, mskA);                                 \
    temp2v = vec_xor(temp2v, mskB);                                 \
    temp1v = vec_adds(temp1v, vec_and(mskA, one));                  \
    vec_st(temp1v, (idx0), dct);                                    \
    temp2v = vec_adds(temp2v, vec_and(mskB, one));                  \
    nz = vec_or(nz, vec_or(temp1v, temp2v));                        \
    vec_st(temp2v, (idx1), dct);                                    \
}

int x264_quant_4x4_altivec( int16_t dct[16], uint16_t mf[16], uint16_t bias[16] )
{
    LOAD_ZERO;
    vector bool short mskA;
    vec_u32_t i_qbitsv = vec_splats( (uint32_t)16 );
    vec_u16_t coefvA;
    vec_u32_t multEvenvA, multOddvA;
    vec_u16_t mfvA;
    vec_u16_t biasvA;
    vec_s16_t one = vec_splat_s16(1);
    vec_s16_t nz = zero_s16v;

    vector bool short mskB;
    vec_u16_t coefvB;
    vec_u32_t multEvenvB, multOddvB;
    vec_u16_t mfvB;
    vec_u16_t biasvB;

    vec_s16_t temp1v, temp2v, tmpv;

    QUANT_16_U( 0, 16 );
    return vec_any_ne(nz, zero_s16v);
}

int x264_quant_4x4x4_altivec( dctcoef dcta[4][16], udctcoef mf[16], udctcoef bias[16] )
{
    LOAD_ZERO;
    vec_u32_t i_qbitsv = vec_splats( (uint32_t)16 );
    vec_s16_t one = vec_splat_s16( 1 );
    vec_s16_t nz0, nz1, nz2, nz3;

    vector bool short mskA0;
    vec_u16_t coefvA0;
    vec_u32_t multEvenvA0, multOddvA0;
    vec_u16_t mfvA0;
    vec_u16_t biasvA0;
    vector bool short mskB0;
    vec_u16_t coefvB0;
    vec_u32_t multEvenvB0, multOddvB0;
    vec_u16_t mfvB0;
    vec_u16_t biasvB0;

    vector bool short mskA1;
    vec_u16_t coefvA1;
    vec_u32_t multEvenvA1, multOddvA1;
    vec_u16_t mfvA1;
    vec_u16_t biasvA1;
    vector bool short mskB1;
    vec_u16_t coefvB1;
    vec_u32_t multEvenvB1, multOddvB1;
    vec_u16_t mfvB1;
    vec_u16_t biasvB1;

    vector bool short mskA2;
    vec_u16_t coefvA2;
    vec_u32_t multEvenvA2, multOddvA2;
    vec_u16_t mfvA2;
    vec_u16_t biasvA2;
    vector bool short mskB2;
    vec_u16_t coefvB2;
    vec_u32_t multEvenvB2, multOddvB2;
    vec_u16_t mfvB2;
    vec_u16_t biasvB2;

    vector bool short mskA3;
    vec_u16_t coefvA3;
    vec_u32_t multEvenvA3, multOddvA3;
    vec_u16_t mfvA3;
    vec_u16_t biasvA3;
    vector bool short mskB3;
    vec_u16_t coefvB3;
    vec_u32_t multEvenvB3, multOddvB3;
    vec_u16_t mfvB3;
    vec_u16_t biasvB3;

    vec_s16_t temp1v, temp2v;
    vec_s16_t tmpv0;
    vec_s16_t tmpv1;

    dctcoef *dct0 = dcta[0];
    dctcoef *dct1 = dcta[1];
    dctcoef *dct2 = dcta[2];
    dctcoef *dct3 = dcta[3];

    temp1v = vec_ld( 0,  dct0 );
    temp2v = vec_ld( 16, dct0 );
    mfvA0 = vec_ld( 0,  mf );
    mfvB0 = vec_ld( 16, mf );
    biasvA0 = vec_ld( 0,  bias );
    biasvB0 = vec_ld( 16, bias );
    mskA0 = vec_cmplt( temp1v, zero_s16v );
    mskB0 = vec_cmplt( temp2v, zero_s16v );
    coefvA0 = (vec_u16_t)vec_abs( temp1v );
    coefvB0 = (vec_u16_t)vec_abs( temp2v );
    temp1v = vec_ld( 0,  dct1 );
    temp2v = vec_ld( 16, dct1 );
    mfvA1 = vec_ld( 0,  mf );
    mfvB1 = vec_ld( 16, mf );
    biasvA1 = vec_ld( 0,  bias );
    biasvB1 = vec_ld( 16, bias );
    mskA1 = vec_cmplt( temp1v, zero_s16v );
    mskB1 = vec_cmplt( temp2v, zero_s16v );
    coefvA1 = (vec_u16_t)vec_abs( temp1v );
    coefvB1 = (vec_u16_t)vec_abs( temp2v );
    temp1v = vec_ld( 0,  dct2 );
    temp2v = vec_ld( 16, dct2 );
    mfvA2 = vec_ld( 0,  mf );
    mfvB2 = vec_ld( 16, mf );
    biasvA2 = vec_ld( 0,  bias );
    biasvB2 = vec_ld( 16, bias );
    mskA2 = vec_cmplt( temp1v, zero_s16v );
    mskB2 = vec_cmplt( temp2v, zero_s16v );
    coefvA2 = (vec_u16_t)vec_abs( temp1v );
    coefvB2 = (vec_u16_t)vec_abs( temp2v );
    temp1v = vec_ld( 0,  dct3 );
    temp2v = vec_ld( 16, dct3 );
    mfvA3 = vec_ld( 0,  mf );
    mfvB3 = vec_ld( 16, mf );
    biasvA3 = vec_ld( 0,  bias );
    biasvB3 = vec_ld( 16, bias );
    mskA3 = vec_cmplt( temp1v, zero_s16v );
    mskB3 = vec_cmplt( temp2v, zero_s16v );
    coefvA3 = (vec_u16_t)vec_abs( temp1v );
    coefvB3 = (vec_u16_t)vec_abs( temp2v );

    coefvA0 = vec_adds( coefvA0, biasvA0 );
    coefvB0 = vec_adds( coefvB0, biasvB0 );
    coefvA1 = vec_adds( coefvA1, biasvA1 );
    coefvB1 = vec_adds( coefvB1, biasvB1 );
    coefvA2 = vec_adds( coefvA2, biasvA2 );
    coefvB2 = vec_adds( coefvB2, biasvB2 );
    coefvA3 = vec_adds( coefvA3, biasvA3 );
    coefvB3 = vec_adds( coefvB3, biasvB3 );

    multEvenvA0 = vec_mule( coefvA0, mfvA0 );
    multOddvA0  = vec_mulo( coefvA0, mfvA0 );
    multEvenvB0 = vec_mule( coefvB0, mfvB0 );
    multOddvB0  = vec_mulo( coefvB0, mfvB0 );
    multEvenvA0 = vec_sr( multEvenvA0, i_qbitsv );
    multOddvA0  = vec_sr( multOddvA0,  i_qbitsv );
    multEvenvB0 = vec_sr( multEvenvB0, i_qbitsv );
    multOddvB0  = vec_sr( multOddvB0,  i_qbitsv );
    temp1v = (vec_s16_t)vec_packs( multEvenvA0, multOddvA0 );
    temp2v = (vec_s16_t)vec_packs( multEvenvB0, multOddvB0 );
    tmpv0 = xxpermdi( temp1v, temp1v, 2 );
    tmpv1 = xxpermdi( temp2v, temp2v, 2 );
    temp1v = vec_mergeh( temp1v, tmpv0 );
    temp2v = vec_mergeh( temp2v, tmpv1 );
    temp1v = vec_xor( temp1v, mskA0 );
    temp2v = vec_xor( temp2v, mskB0 );
    temp1v = vec_adds( temp1v, vec_and( mskA0, one ) );
    temp2v = vec_adds( temp2v, vec_and( mskB0, one ) );
    vec_st( temp1v, 0,  dct0 );
    vec_st( temp2v, 16, dct0 );
    nz0 = vec_or( temp1v, temp2v );

    multEvenvA1 = vec_mule( coefvA1, mfvA1 );
    multOddvA1  = vec_mulo( coefvA1, mfvA1 );
    multEvenvB1 = vec_mule( coefvB1, mfvB1 );
    multOddvB1  = vec_mulo( coefvB1, mfvB1 );
    multEvenvA1 = vec_sr( multEvenvA1, i_qbitsv );
    multOddvA1  = vec_sr( multOddvA1,  i_qbitsv );
    multEvenvB1 = vec_sr( multEvenvB1, i_qbitsv );
    multOddvB1  = vec_sr( multOddvB1,  i_qbitsv );
    temp1v = (vec_s16_t)vec_packs( multEvenvA1, multOddvA1 );
    temp2v = (vec_s16_t)vec_packs( multEvenvB1, multOddvB1 );
    tmpv0 = xxpermdi( temp1v, temp1v, 2 );
    tmpv1 = xxpermdi( temp2v, temp2v, 2 );
    temp1v = vec_mergeh( temp1v, tmpv0 );
    temp2v = vec_mergeh( temp2v, tmpv1 );
    temp1v = vec_xor( temp1v, mskA1 );
    temp2v = vec_xor( temp2v, mskB1 );
    temp1v = vec_adds( temp1v, vec_and( mskA1, one ) );
    temp2v = vec_adds( temp2v, vec_and( mskB1, one ) );
    vec_st( temp1v, 0,  dct1 );
    vec_st( temp2v, 16, dct1 );
    nz1 = vec_or( temp1v, temp2v );

    multEvenvA2 = vec_mule( coefvA2, mfvA2 );
    multOddvA2  = vec_mulo( coefvA2, mfvA2 );
    multEvenvB2 = vec_mule( coefvB2, mfvB2 );
    multOddvB2  = vec_mulo( coefvB2, mfvB2 );
    multEvenvA2 = vec_sr( multEvenvA2, i_qbitsv );
    multOddvA2  = vec_sr( multOddvA2,  i_qbitsv );
    multEvenvB2 = vec_sr( multEvenvB2, i_qbitsv );
    multOddvB2  = vec_sr( multOddvB2,  i_qbitsv );
    temp1v = (vec_s16_t)vec_packs( multEvenvA2, multOddvA2 );
    temp2v = (vec_s16_t)vec_packs( multEvenvB2, multOddvB2 );
    tmpv0 = xxpermdi( temp1v, temp1v, 2 );
    tmpv1 = xxpermdi( temp2v, temp2v, 2 );
    temp1v = vec_mergeh( temp1v, tmpv0 );
    temp2v = vec_mergeh( temp2v, tmpv1 );
    temp1v = vec_xor( temp1v, mskA2 );
    temp2v = vec_xor( temp2v, mskB2 );
    temp1v = vec_adds( temp1v, vec_and( mskA2, one ) );
    temp2v = vec_adds( temp2v, vec_and( mskB2, one ) );
    vec_st( temp1v, 0,  dct2 );
    vec_st( temp2v, 16, dct2 );
    nz2 = vec_or( temp1v, temp2v );

    multEvenvA3 = vec_mule( coefvA3, mfvA3 );
    multOddvA3  = vec_mulo( coefvA3, mfvA3 );
    multEvenvB3 = vec_mule( coefvB3, mfvB3 );
    multOddvB3  = vec_mulo( coefvB3, mfvB3 );
    multEvenvA3 = vec_sr( multEvenvA3, i_qbitsv );
    multOddvA3  = vec_sr( multOddvA3,  i_qbitsv );
    multEvenvB3 = vec_sr( multEvenvB3, i_qbitsv );
    multOddvB3  = vec_sr( multOddvB3,  i_qbitsv );
    temp1v = (vec_s16_t)vec_packs( multEvenvA3, multOddvA3 );
    temp2v = (vec_s16_t)vec_packs( multEvenvB3, multOddvB3 );
    tmpv0 = xxpermdi( temp1v, temp1v, 2 );
    tmpv1 = xxpermdi( temp2v, temp2v, 2 );
    temp1v = vec_mergeh( temp1v, tmpv0 );
    temp2v = vec_mergeh( temp2v, tmpv1 );
    temp1v = vec_xor( temp1v, mskA3 );
    temp2v = vec_xor( temp2v, mskB3 );
    temp1v = vec_adds( temp1v, vec_and( mskA3, one ) );
    temp2v = vec_adds( temp2v, vec_and( mskB3, one ) );
    vec_st( temp1v, 0,  dct3 );
    vec_st( temp2v, 16, dct3 );
    nz3 = vec_or( temp1v, temp2v );

    return (vec_any_ne( nz0, zero_s16v ) << 0) | (vec_any_ne( nz1, zero_s16v ) << 1) |
           (vec_any_ne( nz2, zero_s16v ) << 2) | (vec_any_ne( nz3, zero_s16v ) << 3);
}

// DC quant of a whole 4x4 block, unrolled 2x and "pre-scheduled"
#define QUANT_16_U_DC( idx0, idx1 )                                 \
{                                                                   \
    temp1v = vec_ld((idx0), dct);                                   \
    temp2v = vec_ld((idx1), dct);                                   \
    mskA = vec_cmplt(temp1v, zero_s16v);                            \
    mskB = vec_cmplt(temp2v, zero_s16v);                            \
    coefvA = (vec_u16_t)vec_max(vec_sub(zero_s16v, temp1v), temp1v);\
    coefvB = (vec_u16_t)vec_max(vec_sub(zero_s16v, temp2v), temp2v);\
    coefvA = vec_add(coefvA, biasv);                                \
    coefvB = vec_add(coefvB, biasv);                                \
    multEvenvA = vec_mule(coefvA, mfv);                             \
    multOddvA = vec_mulo(coefvA, mfv);                              \
    multEvenvB = vec_mule(coefvB, mfv);                             \
    multOddvB = vec_mulo(coefvB, mfv);                              \
    multEvenvA = vec_sr(multEvenvA, i_qbitsv);                      \
    multOddvA = vec_sr(multOddvA, i_qbitsv);                        \
    multEvenvB = vec_sr(multEvenvB, i_qbitsv);                      \
    multOddvB = vec_sr(multOddvB, i_qbitsv);                        \
    temp1v = (vec_s16_t) vec_packs(vec_mergeh(multEvenvA, multOddvA), vec_mergel(multEvenvA, multOddvA)); \
    temp2v = (vec_s16_t) vec_packs(vec_mergeh(multEvenvB, multOddvB), vec_mergel(multEvenvB, multOddvB)); \
    temp1v = vec_xor(temp1v, mskA);                                 \
    temp2v = vec_xor(temp2v, mskB);                                 \
    temp1v = vec_add(temp1v, vec_and(mskA, one));                   \
    vec_st(temp1v, (idx0), dct);                                    \
    temp2v = vec_add(temp2v, vec_and(mskB, one));                   \
    nz = vec_or(nz, vec_or(temp1v, temp2v));                        \
    vec_st(temp2v, (idx1), dct);                                    \
}

int x264_quant_4x4_dc_altivec( int16_t dct[16], int mf, int bias )
{
    LOAD_ZERO;
    vector bool short mskA;
    vec_u32_t i_qbitsv;
    vec_u16_t coefvA;
    vec_u32_t multEvenvA, multOddvA;
    vec_s16_t one = vec_splat_s16(1);
    vec_s16_t nz = zero_s16v;

    vector bool short mskB;
    vec_u16_t coefvB;
    vec_u32_t multEvenvB, multOddvB;

    vec_s16_t temp1v, temp2v;

    vec_u16_t mfv;
    vec_u16_t biasv;

    mfv = vec_splats( (uint16_t)mf );
    i_qbitsv = vec_splats( (uint32_t) 16 );
    biasv = vec_splats( (uint16_t)bias );

    QUANT_16_U_DC( 0, 16 );
    return vec_any_ne(nz, zero_s16v);
}

// DC quant of a whole 2x2 block
#define QUANT_4_U_DC( idx0 )                                        \
{                                                                   \
    const vec_u16_t sel = (vec_u16_t) CV(-1,-1,-1,-1,0,0,0,0);      \
    temp1v = vec_ld((idx0), dct);                                   \
    mskA = vec_cmplt(temp1v, zero_s16v);                            \
    coefvA = (vec_u16_t)vec_max(vec_sub(zero_s16v, temp1v), temp1v);\
    coefvA = vec_add(coefvA, biasv);                                \
    multEvenvA = vec_mule(coefvA, mfv);                             \
    multOddvA = vec_mulo(coefvA, mfv);                              \
    multEvenvA = vec_sr(multEvenvA, i_qbitsv);                      \
    multOddvA = vec_sr(multOddvA, i_qbitsv);                        \
    temp2v = (vec_s16_t) vec_packs(vec_mergeh(multEvenvA, multOddvA), vec_mergel(multEvenvA, multOddvA)); \
    temp2v = vec_xor(temp2v, mskA);                                 \
    temp2v = vec_add(temp2v, vec_and(mskA, one));                   \
    temp1v = vec_sel(temp1v, temp2v, sel);                          \
    nz = vec_or(nz, temp1v);                                        \
    vec_st(temp1v, (idx0), dct);                                    \
}

int x264_quant_2x2_dc_altivec( int16_t dct[4], int mf, int bias )
{
    LOAD_ZERO;
    vector bool short mskA;
    vec_u32_t i_qbitsv;
    vec_u16_t coefvA;
    vec_u32_t multEvenvA, multOddvA;
    vec_s16_t one = vec_splat_s16(1);
    vec_s16_t nz = zero_s16v;
    static const vec_s16_t mask2 = CV(-1, -1, -1, -1,  0, 0, 0, 0);

    vec_s16_t temp1v, temp2v;

    vec_u16_t mfv;
    vec_u16_t biasv;

    mfv = vec_splats( (uint16_t)mf );
    i_qbitsv = vec_splats( (uint32_t) 16 );
    biasv = vec_splats( (uint16_t)bias );

    QUANT_4_U_DC(0);
    return vec_any_ne(vec_and(nz, mask2), zero_s16v);
}

int x264_quant_8x8_altivec( int16_t dct[64], uint16_t mf[64], uint16_t bias[64] )
{
    LOAD_ZERO;
    vector bool short mskA;
    vec_u32_t i_qbitsv;
    vec_u16_t coefvA;
    vec_u32_t multEvenvA, multOddvA;
    vec_u16_t mfvA;
    vec_u16_t biasvA;
    vec_s16_t one = vec_splat_s16(1);
    vec_s16_t nz = zero_s16v;

    vector bool short mskB;
    vec_u16_t coefvB;
    vec_u32_t multEvenvB, multOddvB;
    vec_u16_t mfvB;
    vec_u16_t biasvB;

    vec_s16_t temp1v, temp2v, tmpv;

    i_qbitsv = vec_splats( (uint32_t)16 );

    for( int i = 0; i < 4; i++ )
        QUANT_16_U( i*2*16, i*2*16+16 );
    return vec_any_ne(nz, zero_s16v);
}

#define DEQUANT_SHL()                                                \
{                                                                    \
    dctv = vec_ld(8*y, dct);                                         \
    mf1v = vec_ld(16*y, dequant_mf[i_mf]);                           \
    mf2v = vec_ld(16+16*y, dequant_mf[i_mf]);                        \
    mfv  = vec_packs(mf1v, mf2v);                                    \
                                                                     \
    multEvenvA = vec_mule(dctv, mfv);                                \
    multOddvA = vec_mulo(dctv, mfv);                                 \
    dctv = (vec_s16_t) vec_packs( multEvenvA, multOddvA );           \
    tmpv = xxpermdi( dctv, dctv, 2 );                                \
    dctv = vec_mergeh( dctv, tmpv );                                 \
    dctv = vec_sl(dctv, i_qbitsv);                                   \
    vec_st(dctv, 8*y, dct);                                          \
}

#ifdef WORDS_BIGENDIAN
#define VEC_MULE vec_mule
#define VEC_MULO vec_mulo
#else
#define VEC_MULE vec_mulo
#define VEC_MULO vec_mule
#endif

#define DEQUANT_SHR()                                          \
{                                                              \
    dctv = vec_ld(8*y, dct);                                   \
    dct1v = vec_mergeh(dctv, dctv);                            \
    dct2v = vec_mergel(dctv, dctv);                            \
    mf1v = vec_ld(16*y, dequant_mf[i_mf]);                     \
    mf2v = vec_ld(16+16*y, dequant_mf[i_mf]);                  \
                                                               \
    multEvenvA = VEC_MULE(dct1v, (vec_s16_t)mf1v);             \
    multOddvA = VEC_MULO(dct1v, (vec_s16_t)mf1v);              \
    temp1v = vec_add(vec_sl(multEvenvA, sixteenv), multOddvA); \
    temp1v = vec_add(temp1v, fv);                              \
    temp1v = vec_sra(temp1v, i_qbitsv);                        \
                                                               \
    multEvenvA = VEC_MULE(dct2v, (vec_s16_t)mf2v);             \
    multOddvA = VEC_MULO(dct2v, (vec_s16_t)mf2v);              \
    temp2v = vec_add(vec_sl(multEvenvA, sixteenv), multOddvA); \
    temp2v = vec_add(temp2v, fv);                              \
    temp2v = vec_sra(temp2v, i_qbitsv);                        \
                                                               \
    dctv = (vec_s16_t)vec_packs(temp1v, temp2v);               \
    vec_st(dctv, y*8, dct);                                    \
}

void x264_dequant_4x4_altivec( int16_t dct[16], int dequant_mf[6][16], int i_qp )
{
    int i_mf = i_qp%6;
    int i_qbits = i_qp/6 - 4;

    vec_s16_t dctv, tmpv;
    vec_s16_t dct1v, dct2v;
    vec_s32_t mf1v, mf2v;
    vec_s16_t mfv;
    vec_s32_t multEvenvA, multOddvA;
    vec_s32_t temp1v, temp2v;

    if( i_qbits >= 0 )
    {
        vec_u16_t i_qbitsv;
        i_qbitsv = vec_splats( (uint16_t) i_qbits );

        for( int y = 0; y < 4; y+=2 )
            DEQUANT_SHL();
    }
    else
    {
        const int f = 1 << (-i_qbits-1);

        vec_s32_t fv;
        fv = vec_splats( f );

        vec_u32_t i_qbitsv;
        i_qbitsv = vec_splats( (uint32_t)-i_qbits );

        vec_u32_t sixteenv;
        sixteenv = vec_splats( (uint32_t)16 );

        for( int y = 0; y < 4; y+=2 )
            DEQUANT_SHR();
    }
}

void x264_dequant_8x8_altivec( int16_t dct[64], int dequant_mf[6][64], int i_qp )
{
    int i_mf = i_qp%6;
    int i_qbits = i_qp/6 - 6;

    vec_s16_t dctv, tmpv;
    vec_s16_t dct1v, dct2v;
    vec_s32_t mf1v, mf2v;
    vec_s16_t mfv;
    vec_s32_t multEvenvA, multOddvA;
    vec_s32_t temp1v, temp2v;

    if( i_qbits >= 0 )
    {
        vec_u16_t i_qbitsv;
        i_qbitsv = vec_splats((uint16_t)i_qbits );

        for( int y = 0; y < 16; y+=2 )
            DEQUANT_SHL();
    }
    else
    {
        const int f = 1 << (-i_qbits-1);

        vec_s32_t fv;
        fv = vec_splats( f );

        vec_u32_t i_qbitsv;
        i_qbitsv = vec_splats( (uint32_t)-i_qbits );

        vec_u32_t sixteenv;
        sixteenv = vec_splats( (uint32_t)16 );

        for( int y = 0; y < 16; y+=2 )
            DEQUANT_SHR();
    }
}
#endif // !HIGH_BIT_DEPTH