me.c
53.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
/*****************************************************************************
* me.c: motion estimation
*****************************************************************************
* Copyright (C) 2003-2024 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Laurent Aimar <fenrir@via.ecp.fr>
* Fiona Glaser <fiona@x264.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#include "common/common.h"
#include "macroblock.h"
#include "me.h"
/* presets selected from good points on the speed-vs-quality curve of several test videos
* subpel_iters[i_subpel_refine] = { refine_hpel, refine_qpel, me_hpel, me_qpel }
* where me_* are the number of EPZS iterations run on all candidate block types,
* and refine_* are run only on the winner.
* the subme=8,9 values are much higher because any amount of satd search makes
* up its time by reducing the number of qpel-rd iterations. */
static const uint8_t subpel_iterations[][4] =
{{0,0,0,0},
{1,1,0,0},
{0,1,1,0},
{0,2,1,0},
{0,2,1,1},
{0,2,1,2},
{0,0,2,2},
{0,0,2,2},
{0,0,4,10},
{0,0,4,10},
{0,0,4,10},
{0,0,4,10}};
/* (x-1)%6 */
static const uint8_t mod6m1[8] = {5,0,1,2,3,4,5,0};
/* radius 2 hexagon. repeated entries are to avoid having to compute mod6 every time. */
static const int8_t hex2[8][2] = {{-1,-2}, {-2,0}, {-1,2}, {1,2}, {2,0}, {1,-2}, {-1,-2}, {-2,0}};
static const int8_t square1[9][2] = {{0,0}, {0,-1}, {0,1}, {-1,0}, {1,0}, {-1,-1}, {-1,1}, {1,-1}, {1,1}};
static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel );
#define BITS_MVD( mx, my )\
(p_cost_mvx[(mx)*4] + p_cost_mvy[(my)*4])
#define COST_MV( mx, my )\
do\
{\
int cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE,\
&p_fref_w[(my)*stride+(mx)], stride )\
+ BITS_MVD(mx,my);\
COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my );\
} while( 0 )
#define COST_MV_HPEL( mx, my, cost )\
do\
{\
intptr_t stride2 = 16;\
pixel *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] );\
cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 )\
+ p_cost_mvx[ mx ] + p_cost_mvy[ my ];\
} while( 0 )
#define COST_MV_X3_DIR( m0x, m0y, m1x, m1y, m2x, m2y, costs )\
{\
pixel *pix_base = p_fref_w + bmx + bmy*stride;\
h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
pix_base + (m0x) + (m0y)*stride,\
pix_base + (m1x) + (m1y)*stride,\
pix_base + (m2x) + (m2y)*stride,\
stride, costs );\
(costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
(costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
(costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
}
#define COST_MV_X4_DIR( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y, costs )\
{\
pixel *pix_base = p_fref_w + bmx + bmy*stride;\
h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
pix_base + (m0x) + (m0y)*stride,\
pix_base + (m1x) + (m1y)*stride,\
pix_base + (m2x) + (m2y)*stride,\
pix_base + (m3x) + (m3y)*stride,\
stride, costs );\
(costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
(costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
(costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
(costs)[3] += BITS_MVD( bmx+(m3x), bmy+(m3y) );\
}
#define COST_MV_X4( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y )\
{\
pixel *pix_base = p_fref_w + omx + omy*stride;\
h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
pix_base + (m0x) + (m0y)*stride,\
pix_base + (m1x) + (m1y)*stride,\
pix_base + (m2x) + (m2y)*stride,\
pix_base + (m3x) + (m3y)*stride,\
stride, costs );\
costs[0] += BITS_MVD( omx+(m0x), omy+(m0y) );\
costs[1] += BITS_MVD( omx+(m1x), omy+(m1y) );\
costs[2] += BITS_MVD( omx+(m2x), omy+(m2y) );\
costs[3] += BITS_MVD( omx+(m3x), omy+(m3y) );\
COPY3_IF_LT( bcost, costs[0], bmx, omx+(m0x), bmy, omy+(m0y) );\
COPY3_IF_LT( bcost, costs[1], bmx, omx+(m1x), bmy, omy+(m1y) );\
COPY3_IF_LT( bcost, costs[2], bmx, omx+(m2x), bmy, omy+(m2y) );\
COPY3_IF_LT( bcost, costs[3], bmx, omx+(m3x), bmy, omy+(m3y) );\
}
#define COST_MV_X3_ABS( m0x, m0y, m1x, m1y, m2x, m2y )\
{\
h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
p_fref_w + (m0x) + (m0y)*stride,\
p_fref_w + (m1x) + (m1y)*stride,\
p_fref_w + (m2x) + (m2y)*stride,\
stride, costs );\
costs[0] += p_cost_mvx[(m0x)*4]; /* no cost_mvy */\
costs[1] += p_cost_mvx[(m1x)*4];\
costs[2] += p_cost_mvx[(m2x)*4];\
COPY3_IF_LT( bcost, costs[0], bmx, m0x, bmy, m0y );\
COPY3_IF_LT( bcost, costs[1], bmx, m1x, bmy, m1y );\
COPY3_IF_LT( bcost, costs[2], bmx, m2x, bmy, m2y );\
}
/* 1 */
/* 101 */
/* 1 */
#define DIA1_ITER( mx, my )\
{\
omx = mx; omy = my;\
COST_MV_X4( 0,-1, 0,1, -1,0, 1,0 );\
}
#define CROSS( start, x_max, y_max )\
{\
int i = start;\
if( (x_max) <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\
for( ; i < (x_max)-2; i+=4 )\
COST_MV_X4( i,0, -i,0, i+2,0, -i-2,0 );\
for( ; i < (x_max); i+=2 )\
{\
if( omx+i <= mv_x_max )\
COST_MV( omx+i, omy );\
if( omx-i >= mv_x_min )\
COST_MV( omx-i, omy );\
}\
i = start;\
if( (y_max) <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\
for( ; i < (y_max)-2; i+=4 )\
COST_MV_X4( 0,i, 0,-i, 0,i+2, 0,-i-2 );\
for( ; i < (y_max); i+=2 )\
{\
if( omy+i <= mv_y_max )\
COST_MV( omx, omy+i );\
if( omy-i >= mv_y_min )\
COST_MV( omx, omy-i );\
}\
}
#define FPEL(mv) (((mv)+2)>>2) /* Convert subpel MV to fullpel with rounding... */
#define SPEL(mv) ((mv)*4) /* ... and the reverse. */
#define SPELx2(mv) (SPEL(mv)&0xFFFCFFFC) /* for two packed MVs */
void x264_me_search_ref( x264_t *h, x264_me_t *m, int16_t (*mvc)[2], int i_mvc, int *p_halfpel_thresh )
{
const int bw = x264_pixel_size[m->i_pixel].w;
const int bh = x264_pixel_size[m->i_pixel].h;
const int i_pixel = m->i_pixel;
const int stride = m->i_stride[0];
int i_me_range = h->param.analyse.i_me_range;
int bmx, bmy, bcost = COST_MAX;
int bpred_cost = COST_MAX;
int omx, omy, pmx, pmy;
pixel *p_fenc = m->p_fenc[0];
pixel *p_fref_w = m->p_fref_w;
ALIGNED_ARRAY_32( pixel, pix,[16*16] );
ALIGNED_ARRAY_8( int16_t, mvc_temp,[16],[2] );
ALIGNED_ARRAY_16( int, costs,[16] );
int mv_x_min = h->mb.mv_limit_fpel[0][0];
int mv_y_min = h->mb.mv_limit_fpel[0][1];
int mv_x_max = h->mb.mv_limit_fpel[1][0];
int mv_y_max = h->mb.mv_limit_fpel[1][1];
/* Special version of pack to allow shortcuts in CHECK_MVRANGE */
#define pack16to32_mask2(mx,my) (((uint32_t)(mx)<<16)|((uint32_t)(my)&0x7FFF))
uint32_t mv_min = pack16to32_mask2( -mv_x_min, -mv_y_min );
uint32_t mv_max = pack16to32_mask2( mv_x_max, mv_y_max )|0x8000;
uint32_t pmv, bpred_mv = 0;
#define CHECK_MVRANGE(mx,my) (!(((pack16to32_mask2(mx,my) + mv_min) | (mv_max - pack16to32_mask2(mx,my))) & 0x80004000))
const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];
/* Try extra predictors if provided. If subme >= 3, check subpel predictors,
* otherwise round them to fullpel. */
if( h->mb.i_subpel_refine >= 3 )
{
/* Calculate and check the MVP first */
int bpred_mx = x264_clip3( m->mvp[0], SPEL(mv_x_min), SPEL(mv_x_max) );
int bpred_my = x264_clip3( m->mvp[1], SPEL(mv_y_min), SPEL(mv_y_max) );
pmv = pack16to32_mask( bpred_mx, bpred_my );
pmx = FPEL( bpred_mx );
pmy = FPEL( bpred_my );
COST_MV_HPEL( bpred_mx, bpred_my, bpred_cost );
int pmv_cost = bpred_cost;
if( i_mvc > 0 )
{
/* Clip MV candidates and eliminate those equal to zero and pmv. */
int valid_mvcs = x264_predictor_clip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
if( valid_mvcs > 0 )
{
int i = 1, cost;
/* We stuff pmv here to branchlessly pick between pmv and the various
* MV candidates. [0] gets skipped in order to maintain alignment for
* x264_predictor_clip. */
M32( mvc_temp[1] ) = pmv;
bpred_cost <<= 4;
do
{
int mx = mvc_temp[i+1][0];
int my = mvc_temp[i+1][1];
COST_MV_HPEL( mx, my, cost );
COPY1_IF_LT( bpred_cost, (cost << 4) + i );
} while( ++i <= valid_mvcs );
bpred_mx = mvc_temp[(bpred_cost&15)+1][0];
bpred_my = mvc_temp[(bpred_cost&15)+1][1];
bpred_cost >>= 4;
}
}
/* Round the best predictor back to fullpel and get the cost, since this is where
* we'll be starting the fullpel motion search. */
bmx = FPEL( bpred_mx );
bmy = FPEL( bpred_my );
bpred_mv = pack16to32_mask(bpred_mx, bpred_my);
if( bpred_mv&0x00030003 ) /* Only test if the tested predictor is actually subpel... */
COST_MV( bmx, bmy );
else /* Otherwise just copy the cost (we already know it) */
bcost = bpred_cost;
/* Test the zero vector if it hasn't been tested yet. */
if( pmv )
{
if( bmx|bmy ) COST_MV( 0, 0 );
}
/* If a subpel mv candidate was better than the zero vector, the previous
* fullpel check won't have gotten it even if the pmv was zero. So handle
* that possibility here. */
else
{
COPY3_IF_LT( bcost, pmv_cost, bmx, 0, bmy, 0 );
}
}
else
{
/* Calculate and check the fullpel MVP first */
bmx = pmx = x264_clip3( FPEL(m->mvp[0]), mv_x_min, mv_x_max );
bmy = pmy = x264_clip3( FPEL(m->mvp[1]), mv_y_min, mv_y_max );
pmv = pack16to32_mask( bmx, bmy );
/* Because we are rounding the predicted motion vector to fullpel, there will be
* an extra MV cost in 15 out of 16 cases. However, when the predicted MV is
* chosen as the best predictor, it is often the case that the subpel search will
* result in a vector at or next to the predicted motion vector. Therefore, we omit
* the cost of the MV from the rounded MVP to avoid unfairly biasing against use of
* the predicted motion vector.
*
* Disclaimer: this is a post-hoc rationalization for why this hack works. */
bcost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[bmy*stride+bmx], stride );
if( i_mvc > 0 )
{
/* Like in subme>=3, except we also round the candidates to fullpel. */
int valid_mvcs = x264_predictor_roundclip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
if( valid_mvcs > 0 )
{
int i = 1, cost;
M32( mvc_temp[1] ) = pmv;
bcost <<= 4;
do
{
int mx = mvc_temp[i+1][0];
int my = mvc_temp[i+1][1];
cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[my*stride+mx], stride ) + BITS_MVD( mx, my );
COPY1_IF_LT( bcost, (cost << 4) + i );
} while( ++i <= valid_mvcs );
bmx = mvc_temp[(bcost&15)+1][0];
bmy = mvc_temp[(bcost&15)+1][1];
bcost >>= 4;
}
}
/* Same as above, except the condition is simpler. */
if( pmv )
COST_MV( 0, 0 );
}
switch( h->mb.i_me_method )
{
case X264_ME_DIA:
{
/* diamond search, radius 1 */
bcost <<= 4;
int i = i_me_range;
do
{
COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs );
COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
if( !(bcost&15) )
break;
bmx -= (int32_t)((uint32_t)bcost<<28)>>30;
bmy -= (int32_t)((uint32_t)bcost<<30)>>30;
bcost &= ~15;
} while( --i && CHECK_MVRANGE(bmx, bmy) );
bcost >>= 4;
break;
}
case X264_ME_HEX:
{
me_hex2:
/* hexagon search, radius 2 */
#if 0
for( int i = 0; i < i_me_range/2; i++ )
{
omx = bmx; omy = bmy;
COST_MV( omx-2, omy );
COST_MV( omx-1, omy+2 );
COST_MV( omx+1, omy+2 );
COST_MV( omx+2, omy );
COST_MV( omx+1, omy-2 );
COST_MV( omx-1, omy-2 );
if( bmx == omx && bmy == omy )
break;
if( !CHECK_MVRANGE(bmx, bmy) )
break;
}
#else
/* equivalent to the above, but eliminates duplicate candidates */
/* hexagon */
COST_MV_X3_DIR( -2,0, -1, 2, 1, 2, costs );
COST_MV_X3_DIR( 2,0, 1,-2, -1,-2, costs+4 ); /* +4 for 16-byte alignment */
bcost <<= 3;
COPY1_IF_LT( bcost, (costs[0]<<3)+2 );
COPY1_IF_LT( bcost, (costs[1]<<3)+3 );
COPY1_IF_LT( bcost, (costs[2]<<3)+4 );
COPY1_IF_LT( bcost, (costs[4]<<3)+5 );
COPY1_IF_LT( bcost, (costs[5]<<3)+6 );
COPY1_IF_LT( bcost, (costs[6]<<3)+7 );
if( bcost&7 )
{
int dir = (bcost&7)-2;
bmx += hex2[dir+1][0];
bmy += hex2[dir+1][1];
/* half hexagon, not overlapping the previous iteration */
for( int i = (i_me_range>>1) - 1; i > 0 && CHECK_MVRANGE(bmx, bmy); i-- )
{
COST_MV_X3_DIR( hex2[dir+0][0], hex2[dir+0][1],
hex2[dir+1][0], hex2[dir+1][1],
hex2[dir+2][0], hex2[dir+2][1],
costs );
bcost &= ~7;
COPY1_IF_LT( bcost, (costs[0]<<3)+1 );
COPY1_IF_LT( bcost, (costs[1]<<3)+2 );
COPY1_IF_LT( bcost, (costs[2]<<3)+3 );
if( !(bcost&7) )
break;
dir += (bcost&7)-2;
dir = mod6m1[dir+1];
bmx += hex2[dir+1][0];
bmy += hex2[dir+1][1];
}
}
bcost >>= 3;
#endif
/* square refine */
bcost <<= 4;
COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs );
COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
COPY1_IF_LT( bcost, (costs[1]<<4)+2 );
COPY1_IF_LT( bcost, (costs[2]<<4)+3 );
COPY1_IF_LT( bcost, (costs[3]<<4)+4 );
COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs );
COPY1_IF_LT( bcost, (costs[0]<<4)+5 );
COPY1_IF_LT( bcost, (costs[1]<<4)+6 );
COPY1_IF_LT( bcost, (costs[2]<<4)+7 );
COPY1_IF_LT( bcost, (costs[3]<<4)+8 );
bmx += square1[bcost&15][0];
bmy += square1[bcost&15][1];
bcost >>= 4;
break;
}
case X264_ME_UMH:
{
/* Uneven-cross Multi-Hexagon-grid Search
* as in JM, except with different early termination */
static const uint8_t pixel_size_shift[7] = { 0, 1, 1, 2, 3, 3, 4 };
int ucost1, ucost2;
int cross_start = 1;
/* refine predictors */
ucost1 = bcost;
DIA1_ITER( pmx, pmy );
if( pmx | pmy )
DIA1_ITER( 0, 0 );
if( i_pixel == PIXEL_4x4 )
goto me_hex2;
ucost2 = bcost;
if( (bmx | bmy) && ((bmx-pmx) | (bmy-pmy)) )
DIA1_ITER( bmx, bmy );
if( bcost == ucost2 )
cross_start = 3;
omx = bmx; omy = bmy;
/* early termination */
#define SAD_THRESH(v) ( bcost < ( v >> pixel_size_shift[i_pixel] ) )
if( bcost == ucost2 && SAD_THRESH(2000) )
{
COST_MV_X4( 0,-2, -1,-1, 1,-1, -2,0 );
COST_MV_X4( 2, 0, -1, 1, 1, 1, 0,2 );
if( bcost == ucost1 && SAD_THRESH(500) )
break;
if( bcost == ucost2 )
{
int range = (i_me_range>>1) | 1;
CROSS( 3, range, range );
COST_MV_X4( -1,-2, 1,-2, -2,-1, 2,-1 );
COST_MV_X4( -2, 1, 2, 1, -1, 2, 1, 2 );
if( bcost == ucost2 )
break;
cross_start = range + 2;
}
}
/* adaptive search range */
if( i_mvc )
{
/* range multipliers based on casual inspection of some statistics of
* average distance between current predictor and final mv found by ESA.
* these have not been tuned much by actual encoding. */
static const uint8_t range_mul[4][4] =
{
{ 3, 3, 4, 4 },
{ 3, 4, 4, 4 },
{ 4, 4, 4, 5 },
{ 4, 4, 5, 6 },
};
int mvd;
int sad_ctx, mvd_ctx;
int denom = 1;
if( i_mvc == 1 )
{
if( i_pixel == PIXEL_16x16 )
/* mvc is probably the same as mvp, so the difference isn't meaningful.
* but prediction usually isn't too bad, so just use medium range */
mvd = 25;
else
mvd = abs( m->mvp[0] - mvc[0][0] )
+ abs( m->mvp[1] - mvc[0][1] );
}
else
{
/* calculate the degree of agreement between predictors. */
/* in 16x16, mvc includes all the neighbors used to make mvp,
* so don't count mvp separately. */
denom = i_mvc - 1;
mvd = 0;
if( i_pixel != PIXEL_16x16 )
{
mvd = abs( m->mvp[0] - mvc[0][0] )
+ abs( m->mvp[1] - mvc[0][1] );
denom++;
}
mvd += x264_predictor_difference( mvc, i_mvc );
}
sad_ctx = SAD_THRESH(1000) ? 0
: SAD_THRESH(2000) ? 1
: SAD_THRESH(4000) ? 2 : 3;
mvd_ctx = mvd < 10*denom ? 0
: mvd < 20*denom ? 1
: mvd < 40*denom ? 2 : 3;
i_me_range = i_me_range * range_mul[mvd_ctx][sad_ctx] >> 2;
}
/* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy.
* we are still centered on the same place as the DIA2. is this desirable? */
CROSS( cross_start, i_me_range, i_me_range>>1 );
COST_MV_X4( -2,-2, -2,2, 2,-2, 2,2 );
/* hexagon grid */
omx = bmx; omy = bmy;
const uint16_t *p_cost_omvx = p_cost_mvx + omx*4;
const uint16_t *p_cost_omvy = p_cost_mvy + omy*4;
int i = 1;
do
{
static const int8_t hex4[16][2] = {
{ 0,-4}, { 0, 4}, {-2,-3}, { 2,-3},
{-4,-2}, { 4,-2}, {-4,-1}, { 4,-1},
{-4, 0}, { 4, 0}, {-4, 1}, { 4, 1},
{-4, 2}, { 4, 2}, {-2, 3}, { 2, 3},
};
if( 4*i > X264_MIN4( mv_x_max-omx, omx-mv_x_min,
mv_y_max-omy, omy-mv_y_min ) )
{
for( int j = 0; j < 16; j++ )
{
int mx = omx + hex4[j][0]*i;
int my = omy + hex4[j][1]*i;
if( CHECK_MVRANGE(mx, my) )
COST_MV( mx, my );
}
}
else
{
int dir = 0;
pixel *pix_base = p_fref_w + omx + (omy-4*i)*stride;
int dy = i*stride;
#define SADS(k,x0,y0,x1,y1,x2,y2,x3,y3)\
h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
pix_base x0*i+(y0-2*k+4)*dy,\
pix_base x1*i+(y1-2*k+4)*dy,\
pix_base x2*i+(y2-2*k+4)*dy,\
pix_base x3*i+(y3-2*k+4)*dy,\
stride, costs+4*k );\
pix_base += 2*dy;
#define ADD_MVCOST(k,x,y) costs[k] += p_cost_omvx[x*4*i] + p_cost_omvy[y*4*i]
#define MIN_MV(k,x,y) COPY2_IF_LT( bcost, costs[k], dir, x*16+(y&15) )
SADS( 0, +0,-4, +0,+4, -2,-3, +2,-3 );
SADS( 1, -4,-2, +4,-2, -4,-1, +4,-1 );
SADS( 2, -4,+0, +4,+0, -4,+1, +4,+1 );
SADS( 3, -4,+2, +4,+2, -2,+3, +2,+3 );
ADD_MVCOST( 0, 0,-4 );
ADD_MVCOST( 1, 0, 4 );
ADD_MVCOST( 2,-2,-3 );
ADD_MVCOST( 3, 2,-3 );
ADD_MVCOST( 4,-4,-2 );
ADD_MVCOST( 5, 4,-2 );
ADD_MVCOST( 6,-4,-1 );
ADD_MVCOST( 7, 4,-1 );
ADD_MVCOST( 8,-4, 0 );
ADD_MVCOST( 9, 4, 0 );
ADD_MVCOST( 10,-4, 1 );
ADD_MVCOST( 11, 4, 1 );
ADD_MVCOST( 12,-4, 2 );
ADD_MVCOST( 13, 4, 2 );
ADD_MVCOST( 14,-2, 3 );
ADD_MVCOST( 15, 2, 3 );
MIN_MV( 0, 0,-4 );
MIN_MV( 1, 0, 4 );
MIN_MV( 2,-2,-3 );
MIN_MV( 3, 2,-3 );
MIN_MV( 4,-4,-2 );
MIN_MV( 5, 4,-2 );
MIN_MV( 6,-4,-1 );
MIN_MV( 7, 4,-1 );
MIN_MV( 8,-4, 0 );
MIN_MV( 9, 4, 0 );
MIN_MV( 10,-4, 1 );
MIN_MV( 11, 4, 1 );
MIN_MV( 12,-4, 2 );
MIN_MV( 13, 4, 2 );
MIN_MV( 14,-2, 3 );
MIN_MV( 15, 2, 3 );
#undef SADS
#undef ADD_MVCOST
#undef MIN_MV
if( dir )
{
bmx = omx + i*(dir>>4);
bmy = omy + i*((int32_t)((uint32_t)dir<<28)>>28);
}
}
} while( ++i <= i_me_range>>2 );
if( bmy <= mv_y_max && bmy >= mv_y_min && bmx <= mv_x_max && bmx >= mv_x_min )
goto me_hex2;
break;
}
case X264_ME_ESA:
case X264_ME_TESA:
{
const int min_x = X264_MAX( bmx - i_me_range, mv_x_min );
const int min_y = X264_MAX( bmy - i_me_range, mv_y_min );
const int max_x = X264_MIN( bmx + i_me_range, mv_x_max );
const int max_y = X264_MIN( bmy + i_me_range, mv_y_max );
/* SEA is fastest in multiples of 4 */
const int width = (max_x - min_x + 3) & ~3;
#if 0
/* plain old exhaustive search */
for( int my = min_y; my <= max_y; my++ )
for( int mx = min_x; mx < min_x + width; mx++ )
COST_MV( mx, my );
#else
/* successive elimination by comparing DC before a full SAD,
* because sum(abs(diff)) >= abs(diff(sum)). */
uint16_t *sums_base = m->integral;
ALIGNED_ARRAY_16( int, enc_dc,[4] );
int sad_size = i_pixel <= PIXEL_8x8 ? PIXEL_8x8 : PIXEL_4x4;
int delta = x264_pixel_size[sad_size].w;
int16_t *xs = h->scratch_buffer;
int xn;
uint16_t *cost_fpel_mvx = h->cost_mv_fpel[h->mb.i_qp][-m->mvp[0]&3] + (-m->mvp[0]>>2);
h->pixf.sad_x4[sad_size]( (pixel*)x264_zero, p_fenc, p_fenc+delta,
p_fenc+delta*FENC_STRIDE, p_fenc+delta+delta*FENC_STRIDE,
FENC_STRIDE, enc_dc );
if( delta == 4 )
sums_base += stride * (h->fenc->i_lines[0] + PADV*2);
if( i_pixel == PIXEL_16x16 || i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
delta *= stride;
if( i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
enc_dc[1] = enc_dc[2];
if( h->mb.i_me_method == X264_ME_TESA )
{
// ADS threshold, then SAD threshold, then keep the best few SADs, then SATD
mvsad_t *mvsads = (mvsad_t *)(xs + ((width+31)&~31) + 4);
int nmvsad = 0, limit;
int sad_thresh = i_me_range <= 16 ? 10 : i_me_range <= 24 ? 11 : 12;
int bsad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+bmy*stride+bmx, stride )
+ BITS_MVD( bmx, bmy );
for( int my = min_y; my <= max_y; my++ )
{
int i;
int ycost = p_cost_mvy[my*4];
if( bsad <= ycost )
continue;
bsad -= ycost;
xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
cost_fpel_mvx+min_x, xs, width, bsad * 17 >> 4 );
for( i = 0; i < xn-2; i += 3 )
{
pixel *ref = p_fref_w+min_x+my*stride;
ALIGNED_ARRAY_16( int, sads,[4] ); /* padded to [4] for asm */
h->pixf.sad_x3[i_pixel]( p_fenc, ref+xs[i], ref+xs[i+1], ref+xs[i+2], stride, sads );
for( int j = 0; j < 3; j++ )
{
int sad = sads[j] + cost_fpel_mvx[xs[i+j]];
if( sad < bsad*sad_thresh>>3 )
{
COPY1_IF_LT( bsad, sad );
mvsads[nmvsad].sad = sad + ycost;
mvsads[nmvsad].mv[0] = min_x+xs[i+j];
mvsads[nmvsad].mv[1] = my;
nmvsad++;
}
}
}
for( ; i < xn; i++ )
{
int mx = min_x+xs[i];
int sad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+mx+my*stride, stride )
+ cost_fpel_mvx[xs[i]];
if( sad < bsad*sad_thresh>>3 )
{
COPY1_IF_LT( bsad, sad );
mvsads[nmvsad].sad = sad + ycost;
mvsads[nmvsad].mv[0] = mx;
mvsads[nmvsad].mv[1] = my;
nmvsad++;
}
}
bsad += ycost;
}
limit = i_me_range >> 1;
sad_thresh = bsad*sad_thresh>>3;
while( nmvsad > limit*2 && sad_thresh > bsad )
{
int i = 0;
// halve the range if the domain is too large... eh, close enough
sad_thresh = (sad_thresh + bsad) >> 1;
while( i < nmvsad && mvsads[i].sad <= sad_thresh )
i++;
for( int j = i; j < nmvsad; j++ )
{
uint32_t sad;
if( WORD_SIZE == 8 && sizeof(mvsad_t) == 8 )
{
uint64_t mvsad = M64( &mvsads[i] ) = M64( &mvsads[j] );
#if WORDS_BIGENDIAN
mvsad >>= 32;
#endif
sad = mvsad;
}
else
{
sad = mvsads[j].sad;
CP32( mvsads[i].mv, mvsads[j].mv );
mvsads[i].sad = sad;
}
i += (sad - (sad_thresh+1)) >> 31;
}
nmvsad = i;
}
while( nmvsad > limit )
{
int bi = 0;
for( int i = 1; i < nmvsad; i++ )
if( mvsads[i].sad > mvsads[bi].sad )
bi = i;
nmvsad--;
if( sizeof( mvsad_t ) == sizeof( uint64_t ) )
CP64( &mvsads[bi], &mvsads[nmvsad] );
else
mvsads[bi] = mvsads[nmvsad];
}
for( int i = 0; i < nmvsad; i++ )
COST_MV( mvsads[i].mv[0], mvsads[i].mv[1] );
}
else
{
// just ADS and SAD
for( int my = min_y; my <= max_y; my++ )
{
int i;
int ycost = p_cost_mvy[my*4];
if( bcost <= ycost )
continue;
bcost -= ycost;
xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
cost_fpel_mvx+min_x, xs, width, bcost );
for( i = 0; i < xn-2; i += 3 )
COST_MV_X3_ABS( min_x+xs[i],my, min_x+xs[i+1],my, min_x+xs[i+2],my );
bcost += ycost;
for( ; i < xn; i++ )
COST_MV( min_x+xs[i], my );
}
}
#endif
}
break;
}
/* -> qpel mv */
uint32_t bmv = pack16to32_mask(bmx,bmy);
uint32_t bmv_spel = SPELx2(bmv);
if( h->mb.i_subpel_refine < 3 )
{
m->cost_mv = p_cost_mvx[bmx*4] + p_cost_mvy[bmy*4];
m->cost = bcost;
/* compute the real cost */
if( bmv == pmv ) m->cost += m->cost_mv;
M32( m->mv ) = bmv_spel;
}
else
{
M32(m->mv) = bpred_cost < bcost ? bpred_mv : bmv_spel;
m->cost = X264_MIN( bpred_cost, bcost );
}
/* subpel refine */
if( h->mb.i_subpel_refine >= 2 )
{
int hpel = subpel_iterations[h->mb.i_subpel_refine][2];
int qpel = subpel_iterations[h->mb.i_subpel_refine][3];
refine_subpel( h, m, hpel, qpel, p_halfpel_thresh, 0 );
}
}
#undef COST_MV
void x264_me_refine_qpel( x264_t *h, x264_me_t *m )
{
int hpel = subpel_iterations[h->mb.i_subpel_refine][0];
int qpel = subpel_iterations[h->mb.i_subpel_refine][1];
if( m->i_pixel <= PIXEL_8x8 )
m->cost -= m->i_ref_cost;
refine_subpel( h, m, hpel, qpel, NULL, 1 );
}
void x264_me_refine_qpel_refdupe( x264_t *h, x264_me_t *m, int *p_halfpel_thresh )
{
refine_subpel( h, m, 0, X264_MIN( 2, subpel_iterations[h->mb.i_subpel_refine][3] ), p_halfpel_thresh, 0 );
}
#define COST_MV_SAD( mx, my ) \
{ \
intptr_t stride = 16; \
pixel *src = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
int cost = h->pixf.fpelcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
+ p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my ); \
}
#define COST_MV_SATD( mx, my, dir ) \
if( b_refine_qpel || (dir^1) != odir ) \
{ \
intptr_t stride = 16; \
pixel *src = h->mc.get_ref( pix, &stride, &m->p_fref[0], m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
int cost = h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
+ p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
if( b_chroma_me && cost < bcost ) \
{ \
if( CHROMA444 ) \
{ \
stride = 16; \
src = h->mc.get_ref( pix, &stride, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[1], FENC_STRIDE, src, stride ); \
if( cost < bcost ) \
{ \
stride = 16; \
src = h->mc.get_ref( pix, &stride, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[2], FENC_STRIDE, src, stride ); \
} \
} \
else \
{ \
h->mc.mc_chroma( pix, pix+8, 16, m->p_fref[4], m->i_stride[1], \
mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
if( m->weight[1].weightfn ) \
m->weight[1].weightfn[bw>>3]( pix, 16, pix, 16, &m->weight[1], bh>>chroma_v_shift ); \
cost += h->pixf.mbcmp[chromapix]( m->p_fenc[1], FENC_STRIDE, pix, 16 ); \
if( cost < bcost ) \
{ \
if( m->weight[2].weightfn ) \
m->weight[2].weightfn[bw>>3]( pix+8, 16, pix+8, 16, &m->weight[2], bh>>chroma_v_shift ); \
cost += h->pixf.mbcmp[chromapix]( m->p_fenc[2], FENC_STRIDE, pix+8, 16 ); \
} \
} \
} \
COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, bdir, dir ); \
}
static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel )
{
const int bw = x264_pixel_size[m->i_pixel].w;
const int bh = x264_pixel_size[m->i_pixel].h;
const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];
const int i_pixel = m->i_pixel;
const int b_chroma_me = h->mb.b_chroma_me && (i_pixel <= PIXEL_8x8 || CHROMA444);
int chromapix = h->luma2chroma_pixel[i_pixel];
int chroma_v_shift = CHROMA_V_SHIFT;
int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
ALIGNED_ARRAY_32( pixel, pix,[64*18] ); // really 17x17x2, but round up for alignment
ALIGNED_ARRAY_16( int, costs,[4] );
int bmx = m->mv[0];
int bmy = m->mv[1];
int bcost = m->cost;
int odir = -1, bdir;
/* halfpel diamond search */
if( hpel_iters )
{
/* try the subpel component of the predicted mv */
if( h->mb.i_subpel_refine < 3 )
{
int mx = x264_clip3( m->mvp[0], h->mb.mv_min_spel[0]+2, h->mb.mv_max_spel[0]-2 );
int my = x264_clip3( m->mvp[1], h->mb.mv_min_spel[1]+2, h->mb.mv_max_spel[1]-2 );
if( (mx-bmx)|(my-bmy) )
COST_MV_SAD( mx, my );
}
bcost <<= 6;
for( int i = hpel_iters; i > 0; i-- )
{
int omx = bmx, omy = bmy;
intptr_t stride = 64; // candidates are either all hpel or all qpel, so one stride is enough
pixel *src0, *src1, *src2, *src3;
src0 = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], omx, omy-2, bw, bh+1, &m->weight[0] );
src2 = h->mc.get_ref( pix+32, &stride, m->p_fref, m->i_stride[0], omx-2, omy, bw+4, bh, &m->weight[0] );
src1 = src0 + stride;
src3 = src2 + 1;
h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], src0, src1, src2, src3, stride, costs );
costs[0] += p_cost_mvx[omx ] + p_cost_mvy[omy-2];
costs[1] += p_cost_mvx[omx ] + p_cost_mvy[omy+2];
costs[2] += p_cost_mvx[omx-2] + p_cost_mvy[omy ];
costs[3] += p_cost_mvx[omx+2] + p_cost_mvy[omy ];
COPY1_IF_LT( bcost, (costs[0]<<6)+2 );
COPY1_IF_LT( bcost, (costs[1]<<6)+6 );
COPY1_IF_LT( bcost, (costs[2]<<6)+16 );
COPY1_IF_LT( bcost, (costs[3]<<6)+48 );
if( !(bcost&63) )
break;
bmx -= (int32_t)((uint32_t)bcost<<26)>>29;
bmy -= (int32_t)((uint32_t)bcost<<29)>>29;
bcost &= ~63;
}
bcost >>= 6;
}
if( !b_refine_qpel && (h->pixf.mbcmp_unaligned[0] != h->pixf.fpelcmp[0] || b_chroma_me) )
{
bcost = COST_MAX;
COST_MV_SATD( bmx, bmy, -1 );
}
/* early termination when examining multiple reference frames */
if( p_halfpel_thresh )
{
if( (bcost*7)>>3 > *p_halfpel_thresh )
{
m->cost = bcost;
m->mv[0] = bmx;
m->mv[1] = bmy;
// don't need cost_mv
return;
}
else if( bcost < *p_halfpel_thresh )
*p_halfpel_thresh = bcost;
}
/* quarterpel diamond search */
if( h->mb.i_subpel_refine != 1 )
{
bdir = -1;
for( int i = qpel_iters; i > 0; i-- )
{
if( bmy <= h->mb.mv_min_spel[1] || bmy >= h->mb.mv_max_spel[1] || bmx <= h->mb.mv_min_spel[0] || bmx >= h->mb.mv_max_spel[0] )
break;
odir = bdir;
int omx = bmx, omy = bmy;
COST_MV_SATD( omx, omy - 1, 0 );
COST_MV_SATD( omx, omy + 1, 1 );
COST_MV_SATD( omx - 1, omy, 2 );
COST_MV_SATD( omx + 1, omy, 3 );
if( (bmx == omx) & (bmy == omy) )
break;
}
}
/* Special simplified case for subme=1 */
else if( bmy > h->mb.mv_min_spel[1] && bmy < h->mb.mv_max_spel[1] && bmx > h->mb.mv_min_spel[0] && bmx < h->mb.mv_max_spel[0] )
{
int omx = bmx, omy = bmy;
/* We have to use mc_luma because all strides must be the same to use fpelcmp_x4 */
h->mc.mc_luma( pix , 64, m->p_fref, m->i_stride[0], omx, omy-1, bw, bh, &m->weight[0] );
h->mc.mc_luma( pix+16, 64, m->p_fref, m->i_stride[0], omx, omy+1, bw, bh, &m->weight[0] );
h->mc.mc_luma( pix+32, 64, m->p_fref, m->i_stride[0], omx-1, omy, bw, bh, &m->weight[0] );
h->mc.mc_luma( pix+48, 64, m->p_fref, m->i_stride[0], omx+1, omy, bw, bh, &m->weight[0] );
h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], pix, pix+16, pix+32, pix+48, 64, costs );
costs[0] += p_cost_mvx[omx ] + p_cost_mvy[omy-1];
costs[1] += p_cost_mvx[omx ] + p_cost_mvy[omy+1];
costs[2] += p_cost_mvx[omx-1] + p_cost_mvy[omy ];
costs[3] += p_cost_mvx[omx+1] + p_cost_mvy[omy ];
bcost <<= 4;
COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
bmx -= (int32_t)((uint32_t)bcost<<28)>>30;
bmy -= (int32_t)((uint32_t)bcost<<30)>>30;
bcost >>= 4;
}
m->cost = bcost;
m->mv[0] = bmx;
m->mv[1] = bmy;
m->cost_mv = p_cost_mvx[bmx] + p_cost_mvy[bmy];
}
#define BIME_CACHE( dx, dy, list )\
{\
x264_me_t *m = m##list;\
int i = 4 + 3*dx + dy;\
int mvx = bm##list##x+dx;\
int mvy = bm##list##y+dy;\
stride[0][list][i] = bw;\
src[0][list][i] = h->mc.get_ref( pixy_buf[list][i], &stride[0][list][i], &m->p_fref[0],\
m->i_stride[0], mvx, mvy, bw, bh, x264_weight_none );\
if( rd )\
{\
if( CHROMA444 )\
{\
stride[1][list][i] = bw;\
src[1][list][i] = h->mc.get_ref( pixu_buf[list][i], &stride[1][list][i], &m->p_fref[4],\
m->i_stride[1], mvx, mvy, bw, bh, x264_weight_none );\
stride[2][list][i] = bw;\
src[2][list][i] = h->mc.get_ref( pixv_buf[list][i], &stride[2][list][i], &m->p_fref[8],\
m->i_stride[2], mvx, mvy, bw, bh, x264_weight_none );\
}\
else if( CHROMA_FORMAT )\
h->mc.mc_chroma( pixu_buf[list][i], pixv_buf[list][i], 8, m->p_fref[4], m->i_stride[1],\
mvx, 2*(mvy+mv##list##y_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift );\
}\
}
#define SATD_THRESH(cost) (cost+(cost>>4))
/* Don't unroll the BIME_CACHE loop. I couldn't find any way to force this
* other than making its iteration count not a compile-time constant. */
#define x264_iter_kludge x264_template(iter_kludge)
int x264_iter_kludge = 0;
static ALWAYS_INLINE void me_refine_bidir( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2, int rd )
{
int x = i8&1;
int y = i8>>1;
int s8 = X264_SCAN8_0 + 2*x + 16*y;
int16_t *cache0_mv = h->mb.cache.mv[0][s8];
int16_t *cache1_mv = h->mb.cache.mv[1][s8];
const int i_pixel = m0->i_pixel;
const int bw = x264_pixel_size[i_pixel].w;
const int bh = x264_pixel_size[i_pixel].h;
ALIGNED_ARRAY_32( pixel, pixy_buf,[2],[9][16*16] );
ALIGNED_ARRAY_32( pixel, pixu_buf,[2],[9][16*16] );
ALIGNED_ARRAY_32( pixel, pixv_buf,[2],[9][16*16] );
pixel *src[3][2][9];
int chromapix = h->luma2chroma_pixel[i_pixel];
int chroma_v_shift = CHROMA_V_SHIFT;
int chroma_x = (8 >> CHROMA_H_SHIFT) * x;
int chroma_y = (8 >> chroma_v_shift) * y;
pixel *pix = &h->mb.pic.p_fdec[0][8*x + 8*y*FDEC_STRIDE];
pixel *pixu = CHROMA_FORMAT ? &h->mb.pic.p_fdec[1][chroma_x + chroma_y*FDEC_STRIDE] : NULL;
pixel *pixv = CHROMA_FORMAT ? &h->mb.pic.p_fdec[2][chroma_x + chroma_y*FDEC_STRIDE] : NULL;
int ref0 = h->mb.cache.ref[0][s8];
int ref1 = h->mb.cache.ref[1][s8];
const int mv0y_offset = chroma_v_shift & MB_INTERLACED & ref0 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
const int mv1y_offset = chroma_v_shift & MB_INTERLACED & ref1 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
intptr_t stride[3][2][9];
int bm0x = m0->mv[0];
int bm0y = m0->mv[1];
int bm1x = m1->mv[0];
int bm1y = m1->mv[1];
int bcost = COST_MAX;
int mc_list0 = 1, mc_list1 = 1;
uint64_t bcostrd = COST_MAX64;
uint16_t amvd;
/* each byte of visited represents 8 possible m1y positions, so a 4D array isn't needed */
ALIGNED_ARRAY_64( uint8_t, visited,[8],[8][8] );
/* all permutations of an offset in up to 2 of the dimensions */
ALIGNED_4( static const int8_t dia4d[33][4] ) =
{
{0,0,0,0},
{0,0,0,1}, {0,0,0,-1}, {0,0,1,0}, {0,0,-1,0},
{0,1,0,0}, {0,-1,0,0}, {1,0,0,0}, {-1,0,0,0},
{0,0,1,1}, {0,0,-1,-1},{0,1,1,0}, {0,-1,-1,0},
{1,1,0,0}, {-1,-1,0,0},{1,0,0,1}, {-1,0,0,-1},
{0,1,0,1}, {0,-1,0,-1},{1,0,1,0}, {-1,0,-1,0},
{0,0,-1,1},{0,0,1,-1}, {0,-1,1,0},{0,1,-1,0},
{-1,1,0,0},{1,-1,0,0}, {1,0,0,-1},{-1,0,0,1},
{0,-1,0,1},{0,1,0,-1}, {-1,0,1,0},{1,0,-1,0},
};
if( bm0y < h->mb.mv_min_spel[1] + 8 || bm1y < h->mb.mv_min_spel[1] + 8 ||
bm0y > h->mb.mv_max_spel[1] - 8 || bm1y > h->mb.mv_max_spel[1] - 8 ||
bm0x < h->mb.mv_min_spel[0] + 8 || bm1x < h->mb.mv_min_spel[0] + 8 ||
bm0x > h->mb.mv_max_spel[0] - 8 || bm1x > h->mb.mv_max_spel[0] - 8 )
return;
if( rd && m0->i_pixel != PIXEL_16x16 && i8 != 0 )
{
x264_mb_predict_mv( h, 0, i8<<2, bw>>2, m0->mvp );
x264_mb_predict_mv( h, 1, i8<<2, bw>>2, m1->mvp );
}
const uint16_t *p_cost_m0x = m0->p_cost_mv - m0->mvp[0];
const uint16_t *p_cost_m0y = m0->p_cost_mv - m0->mvp[1];
const uint16_t *p_cost_m1x = m1->p_cost_mv - m1->mvp[0];
const uint16_t *p_cost_m1y = m1->p_cost_mv - m1->mvp[1];
h->mc.memzero_aligned( visited, sizeof(uint8_t[8][8][8]) );
for( int pass = 0; pass < 8; pass++ )
{
int bestj = 0;
/* check all mv pairs that differ in at most 2 components from the current mvs. */
/* doesn't do chroma ME. this probably doesn't matter, as the gains
* from bidir ME are the same with and without chroma ME. */
if( mc_list0 )
for( int j = x264_iter_kludge; j < 9; j++ )
BIME_CACHE( square1[j][0], square1[j][1], 0 );
if( mc_list1 )
for( int j = x264_iter_kludge; j < 9; j++ )
BIME_CACHE( square1[j][0], square1[j][1], 1 );
for( int j = !!pass; j < 33; j++ )
{
int m0x = dia4d[j][0] + bm0x;
int m0y = dia4d[j][1] + bm0y;
int m1x = dia4d[j][2] + bm1x;
int m1y = dia4d[j][3] + bm1y;
if( !pass || !((visited[(m0x)&7][(m0y)&7][(m1x)&7] & (1<<((m1y)&7)))) )
{
int i0 = 4 + 3*dia4d[j][0] + dia4d[j][1];
int i1 = 4 + 3*dia4d[j][2] + dia4d[j][3];
visited[(m0x)&7][(m0y)&7][(m1x)&7] |= (1<<((m1y)&7));
h->mc.avg[i_pixel]( pix, FDEC_STRIDE, src[0][0][i0], stride[0][0][i0], src[0][1][i1], stride[0][1][i1], i_weight );
int cost = h->pixf.mbcmp[i_pixel]( m0->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE )
+ p_cost_m0x[m0x] + p_cost_m0y[m0y] + p_cost_m1x[m1x] + p_cost_m1y[m1y];
if( rd )
{
if( cost < SATD_THRESH(bcost) )
{
bcost = X264_MIN( cost, bcost );
M32( cache0_mv ) = pack16to32_mask(m0x,m0y);
M32( cache1_mv ) = pack16to32_mask(m1x,m1y);
if( CHROMA444 )
{
h->mc.avg[i_pixel]( pixu, FDEC_STRIDE, src[1][0][i0], stride[1][0][i0], src[1][1][i1], stride[1][1][i1], i_weight );
h->mc.avg[i_pixel]( pixv, FDEC_STRIDE, src[2][0][i0], stride[2][0][i0], src[2][1][i1], stride[2][1][i1], i_weight );
}
else if( CHROMA_FORMAT )
{
h->mc.avg[chromapix]( pixu, FDEC_STRIDE, pixu_buf[0][i0], 8, pixu_buf[1][i1], 8, i_weight );
h->mc.avg[chromapix]( pixv, FDEC_STRIDE, pixv_buf[0][i0], 8, pixv_buf[1][i1], 8, i_weight );
}
uint64_t costrd = x264_rd_cost_part( h, i_lambda2, i8*4, m0->i_pixel );
COPY2_IF_LT( bcostrd, costrd, bestj, j );
}
}
else
COPY2_IF_LT( bcost, cost, bestj, j );
}
}
if( !bestj )
break;
bm0x += dia4d[bestj][0];
bm0y += dia4d[bestj][1];
bm1x += dia4d[bestj][2];
bm1y += dia4d[bestj][3];
mc_list0 = M16( &dia4d[bestj][0] );
mc_list1 = M16( &dia4d[bestj][2] );
}
if( rd )
{
x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 0, pack16to32_mask(bm0x, bm0y) );
amvd = pack8to16( X264_MIN(abs(bm0x - m0->mvp[0]),33), X264_MIN(abs(bm0y - m0->mvp[1]),33) );
x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 0, amvd );
x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 1, pack16to32_mask(bm1x, bm1y) );
amvd = pack8to16( X264_MIN(abs(bm1x - m1->mvp[0]),33), X264_MIN(abs(bm1y - m1->mvp[1]),33) );
x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 1, amvd );
}
m0->mv[0] = bm0x;
m0->mv[1] = bm0y;
m1->mv[0] = bm1x;
m1->mv[1] = bm1y;
}
void x264_me_refine_bidir_satd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight )
{
me_refine_bidir( h, m0, m1, i_weight, 0, 0, 0 );
}
void x264_me_refine_bidir_rd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2 )
{
/* Motion compensation is done as part of bidir_rd; don't repeat
* it in encoding. */
h->mb.b_skip_mc = 1;
me_refine_bidir( h, m0, m1, i_weight, i8, i_lambda2, 1 );
h->mb.b_skip_mc = 0;
}
#undef COST_MV_SATD
#define COST_MV_SATD( mx, my, dst, avoid_mvp ) \
{ \
if( !avoid_mvp || !(mx == pmx && my == pmy) ) \
{ \
h->mc.mc_luma( pix, FDEC_STRIDE, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
dst = h->pixf.mbcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE ) \
+ p_cost_mvx[mx] + p_cost_mvy[my]; \
COPY1_IF_LT( bsatd, dst ); \
} \
else \
dst = COST_MAX; \
}
#define COST_MV_RD( mx, my, satd, do_dir, mdir ) \
{ \
if( satd <= SATD_THRESH(bsatd) ) \
{ \
uint64_t cost; \
M32( cache_mv ) = pack16to32_mask(mx,my); \
if( CHROMA444 ) \
{ \
h->mc.mc_luma( pixu, FDEC_STRIDE, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
h->mc.mc_luma( pixv, FDEC_STRIDE, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
} \
else if( CHROMA_FORMAT && m->i_pixel <= PIXEL_8x8 ) \
{ \
h->mc.mc_chroma( pixu, pixv, FDEC_STRIDE, m->p_fref[4], m->i_stride[1], \
mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
if( m->weight[1].weightfn ) \
m->weight[1].weightfn[bw>>3]( pixu, FDEC_STRIDE, pixu, FDEC_STRIDE, &m->weight[1], bh>>chroma_v_shift ); \
if( m->weight[2].weightfn ) \
m->weight[2].weightfn[bw>>3]( pixv, FDEC_STRIDE, pixv, FDEC_STRIDE, &m->weight[2], bh>>chroma_v_shift ); \
} \
cost = x264_rd_cost_part( h, i_lambda2, i4, m->i_pixel ); \
COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, dir, do_dir?mdir:dir ); \
} \
}
void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int i_list )
{
int16_t *cache_mv = h->mb.cache.mv[i_list][x264_scan8[i4]];
const uint16_t *p_cost_mvx, *p_cost_mvy;
const int bw = x264_pixel_size[m->i_pixel].w;
const int bh = x264_pixel_size[m->i_pixel].h;
const int i_pixel = m->i_pixel;
int chroma_v_shift = CHROMA_V_SHIFT;
int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
uint64_t bcost = COST_MAX64;
int bmx = m->mv[0];
int bmy = m->mv[1];
int omx, omy, pmx, pmy;
int satd, bsatd;
int dir = -2;
int i8 = i4>>2;
uint16_t amvd;
pixel *pix = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]];
pixel *pixu, *pixv;
if( CHROMA444 )
{
pixu = &h->mb.pic.p_fdec[1][block_idx_xy_fdec[i4]];
pixv = &h->mb.pic.p_fdec[2][block_idx_xy_fdec[i4]];
}
else if( CHROMA_FORMAT )
{
pixu = &h->mb.pic.p_fdec[1][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
pixv = &h->mb.pic.p_fdec[2][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
}
else
{
pixu = NULL;
pixv = NULL;
}
h->mb.b_skip_mc = 1;
if( m->i_pixel != PIXEL_16x16 && i4 != 0 )
x264_mb_predict_mv( h, i_list, i4, bw>>2, m->mvp );
pmx = m->mvp[0];
pmy = m->mvp[1];
p_cost_mvx = m->p_cost_mv - pmx;
p_cost_mvy = m->p_cost_mv - pmy;
COST_MV_SATD( bmx, bmy, bsatd, 0 );
if( m->i_pixel != PIXEL_16x16 )
COST_MV_RD( bmx, bmy, 0, 0, 0 )
else
bcost = m->cost;
/* check the predicted mv */
if( (bmx != pmx || bmy != pmy)
&& pmx >= h->mb.mv_min_spel[0] && pmx <= h->mb.mv_max_spel[0]
&& pmy >= h->mb.mv_min_spel[1] && pmy <= h->mb.mv_max_spel[1] )
{
COST_MV_SATD( pmx, pmy, satd, 0 );
COST_MV_RD ( pmx, pmy, satd, 0, 0 );
/* The hex motion search is guaranteed to not repeat the center candidate,
* so if pmv is chosen, set the "MV to avoid checking" to bmv instead. */
if( bmx == pmx && bmy == pmy )
{
pmx = m->mv[0];
pmy = m->mv[1];
}
}
if( bmy < h->mb.mv_min_spel[1] + 3 || bmy > h->mb.mv_max_spel[1] - 3 ||
bmx < h->mb.mv_min_spel[0] + 3 || bmx > h->mb.mv_max_spel[0] - 3 )
{
h->mb.b_skip_mc = 0;
return;
}
/* subpel hex search, same pattern as ME HEX. */
dir = -2;
omx = bmx;
omy = bmy;
for( int j = 0; j < 6; j++ )
{
COST_MV_SATD( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1 );
COST_MV_RD ( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1, j );
}
if( dir != -2 )
{
/* half hexagon, not overlapping the previous iteration */
for( int i = 1; i < 10; i++ )
{
const int odir = mod6m1[dir+1];
if( bmy < h->mb.mv_min_spel[1] + 3 ||
bmy > h->mb.mv_max_spel[1] - 3 )
break;
dir = -2;
omx = bmx;
omy = bmy;
for( int j = 0; j < 3; j++ )
{
COST_MV_SATD( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1 );
COST_MV_RD ( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1, odir-1+j );
}
if( dir == -2 )
break;
}
}
/* square refine, same pattern as ME HEX. */
omx = bmx;
omy = bmy;
for( int i = 0; i < 8; i++ )
{
COST_MV_SATD( omx + square1[i+1][0], omy + square1[i+1][1], satd, 1 );
COST_MV_RD ( omx + square1[i+1][0], omy + square1[i+1][1], satd, 0, 0 );
}
m->cost = bcost;
m->mv[0] = bmx;
m->mv[1] = bmy;
x264_macroblock_cache_mv ( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, pack16to32_mask(bmx, bmy) );
amvd = pack8to16( X264_MIN(abs(bmx - m->mvp[0]),66), X264_MIN(abs(bmy - m->mvp[1]),66) );
x264_macroblock_cache_mvd( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, amvd );
h->mb.b_skip_mc = 0;
}