me.c 53.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/*****************************************************************************
 * me.c: motion estimation
 *****************************************************************************
 * Copyright (C) 2003-2024 x264 project
 *
 * Authors: Loren Merritt <lorenm@u.washington.edu>
 *          Laurent Aimar <fenrir@via.ecp.fr>
 *          Fiona Glaser <fiona@x264.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at licensing@x264.com.
 *****************************************************************************/

#include "common/common.h"
#include "macroblock.h"
#include "me.h"

/* presets selected from good points on the speed-vs-quality curve of several test videos
 * subpel_iters[i_subpel_refine] = { refine_hpel, refine_qpel, me_hpel, me_qpel }
 * where me_* are the number of EPZS iterations run on all candidate block types,
 * and refine_* are run only on the winner.
 * the subme=8,9 values are much higher because any amount of satd search makes
 * up its time by reducing the number of qpel-rd iterations. */
static const uint8_t subpel_iterations[][4] =
   {{0,0,0,0},
    {1,1,0,0},
    {0,1,1,0},
    {0,2,1,0},
    {0,2,1,1},
    {0,2,1,2},
    {0,0,2,2},
    {0,0,2,2},
    {0,0,4,10},
    {0,0,4,10},
    {0,0,4,10},
    {0,0,4,10}};

/* (x-1)%6 */
static const uint8_t mod6m1[8] = {5,0,1,2,3,4,5,0};
/* radius 2 hexagon. repeated entries are to avoid having to compute mod6 every time. */
static const int8_t hex2[8][2] = {{-1,-2}, {-2,0}, {-1,2}, {1,2}, {2,0}, {1,-2}, {-1,-2}, {-2,0}};
static const int8_t square1[9][2] = {{0,0}, {0,-1}, {0,1}, {-1,0}, {1,0}, {-1,-1}, {-1,1}, {1,-1}, {1,1}};

static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel );

#define BITS_MVD( mx, my )\
    (p_cost_mvx[(mx)*4] + p_cost_mvy[(my)*4])

#define COST_MV( mx, my )\
do\
{\
    int cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE,\
                   &p_fref_w[(my)*stride+(mx)], stride )\
             + BITS_MVD(mx,my);\
    COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my );\
} while( 0 )

#define COST_MV_HPEL( mx, my, cost )\
do\
{\
    intptr_t stride2 = 16;\
    pixel *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] );\
    cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 )\
         + p_cost_mvx[ mx ] + p_cost_mvy[ my ];\
} while( 0 )

#define COST_MV_X3_DIR( m0x, m0y, m1x, m1y, m2x, m2y, costs )\
{\
    pixel *pix_base = p_fref_w + bmx + bmy*stride;\
    h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
        pix_base + (m0x) + (m0y)*stride,\
        pix_base + (m1x) + (m1y)*stride,\
        pix_base + (m2x) + (m2y)*stride,\
        stride, costs );\
    (costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
    (costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
    (costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
}

#define COST_MV_X4_DIR( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y, costs )\
{\
    pixel *pix_base = p_fref_w + bmx + bmy*stride;\
    h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
        pix_base + (m0x) + (m0y)*stride,\
        pix_base + (m1x) + (m1y)*stride,\
        pix_base + (m2x) + (m2y)*stride,\
        pix_base + (m3x) + (m3y)*stride,\
        stride, costs );\
    (costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
    (costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
    (costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
    (costs)[3] += BITS_MVD( bmx+(m3x), bmy+(m3y) );\
}

#define COST_MV_X4( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y )\
{\
    pixel *pix_base = p_fref_w + omx + omy*stride;\
    h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
        pix_base + (m0x) + (m0y)*stride,\
        pix_base + (m1x) + (m1y)*stride,\
        pix_base + (m2x) + (m2y)*stride,\
        pix_base + (m3x) + (m3y)*stride,\
        stride, costs );\
    costs[0] += BITS_MVD( omx+(m0x), omy+(m0y) );\
    costs[1] += BITS_MVD( omx+(m1x), omy+(m1y) );\
    costs[2] += BITS_MVD( omx+(m2x), omy+(m2y) );\
    costs[3] += BITS_MVD( omx+(m3x), omy+(m3y) );\
    COPY3_IF_LT( bcost, costs[0], bmx, omx+(m0x), bmy, omy+(m0y) );\
    COPY3_IF_LT( bcost, costs[1], bmx, omx+(m1x), bmy, omy+(m1y) );\
    COPY3_IF_LT( bcost, costs[2], bmx, omx+(m2x), bmy, omy+(m2y) );\
    COPY3_IF_LT( bcost, costs[3], bmx, omx+(m3x), bmy, omy+(m3y) );\
}

#define COST_MV_X3_ABS( m0x, m0y, m1x, m1y, m2x, m2y )\
{\
    h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
        p_fref_w + (m0x) + (m0y)*stride,\
        p_fref_w + (m1x) + (m1y)*stride,\
        p_fref_w + (m2x) + (m2y)*stride,\
        stride, costs );\
    costs[0] += p_cost_mvx[(m0x)*4]; /* no cost_mvy */\
    costs[1] += p_cost_mvx[(m1x)*4];\
    costs[2] += p_cost_mvx[(m2x)*4];\
    COPY3_IF_LT( bcost, costs[0], bmx, m0x, bmy, m0y );\
    COPY3_IF_LT( bcost, costs[1], bmx, m1x, bmy, m1y );\
    COPY3_IF_LT( bcost, costs[2], bmx, m2x, bmy, m2y );\
}

/*  1  */
/* 101 */
/*  1  */
#define DIA1_ITER( mx, my )\
{\
    omx = mx; omy = my;\
    COST_MV_X4( 0,-1, 0,1, -1,0, 1,0 );\
}

#define CROSS( start, x_max, y_max )\
{\
    int i = start;\
    if( (x_max) <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\
        for( ; i < (x_max)-2; i+=4 )\
            COST_MV_X4( i,0, -i,0, i+2,0, -i-2,0 );\
    for( ; i < (x_max); i+=2 )\
    {\
        if( omx+i <= mv_x_max )\
            COST_MV( omx+i, omy );\
        if( omx-i >= mv_x_min )\
            COST_MV( omx-i, omy );\
    }\
    i = start;\
    if( (y_max) <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\
        for( ; i < (y_max)-2; i+=4 )\
            COST_MV_X4( 0,i, 0,-i, 0,i+2, 0,-i-2 );\
    for( ; i < (y_max); i+=2 )\
    {\
        if( omy+i <= mv_y_max )\
            COST_MV( omx, omy+i );\
        if( omy-i >= mv_y_min )\
            COST_MV( omx, omy-i );\
    }\
}

#define FPEL(mv) (((mv)+2)>>2) /* Convert subpel MV to fullpel with rounding... */
#define SPEL(mv) ((mv)*4)      /* ... and the reverse. */
#define SPELx2(mv) (SPEL(mv)&0xFFFCFFFC) /* for two packed MVs */

void x264_me_search_ref( x264_t *h, x264_me_t *m, int16_t (*mvc)[2], int i_mvc, int *p_halfpel_thresh )
{
    const int bw = x264_pixel_size[m->i_pixel].w;
    const int bh = x264_pixel_size[m->i_pixel].h;
    const int i_pixel = m->i_pixel;
    const int stride = m->i_stride[0];
    int i_me_range = h->param.analyse.i_me_range;
    int bmx, bmy, bcost = COST_MAX;
    int bpred_cost = COST_MAX;
    int omx, omy, pmx, pmy;
    pixel *p_fenc = m->p_fenc[0];
    pixel *p_fref_w = m->p_fref_w;
    ALIGNED_ARRAY_32( pixel, pix,[16*16] );
    ALIGNED_ARRAY_8( int16_t, mvc_temp,[16],[2] );

    ALIGNED_ARRAY_16( int, costs,[16] );

    int mv_x_min = h->mb.mv_limit_fpel[0][0];
    int mv_y_min = h->mb.mv_limit_fpel[0][1];
    int mv_x_max = h->mb.mv_limit_fpel[1][0];
    int mv_y_max = h->mb.mv_limit_fpel[1][1];
/* Special version of pack to allow shortcuts in CHECK_MVRANGE */
#define pack16to32_mask2(mx,my) (((uint32_t)(mx)<<16)|((uint32_t)(my)&0x7FFF))
    uint32_t mv_min = pack16to32_mask2( -mv_x_min, -mv_y_min );
    uint32_t mv_max = pack16to32_mask2( mv_x_max, mv_y_max )|0x8000;
    uint32_t pmv, bpred_mv = 0;

#define CHECK_MVRANGE(mx,my) (!(((pack16to32_mask2(mx,my) + mv_min) | (mv_max - pack16to32_mask2(mx,my))) & 0x80004000))

    const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
    const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];

    /* Try extra predictors if provided.  If subme >= 3, check subpel predictors,
     * otherwise round them to fullpel. */
    if( h->mb.i_subpel_refine >= 3 )
    {
        /* Calculate and check the MVP first */
        int bpred_mx = x264_clip3( m->mvp[0], SPEL(mv_x_min), SPEL(mv_x_max) );
        int bpred_my = x264_clip3( m->mvp[1], SPEL(mv_y_min), SPEL(mv_y_max) );
        pmv = pack16to32_mask( bpred_mx, bpred_my );
        pmx = FPEL( bpred_mx );
        pmy = FPEL( bpred_my );

        COST_MV_HPEL( bpred_mx, bpred_my, bpred_cost );
        int pmv_cost = bpred_cost;

        if( i_mvc > 0 )
        {
            /* Clip MV candidates and eliminate those equal to zero and pmv. */
            int valid_mvcs = x264_predictor_clip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
            if( valid_mvcs > 0 )
            {
                int i = 1, cost;
                /* We stuff pmv here to branchlessly pick between pmv and the various
                 * MV candidates. [0] gets skipped in order to maintain alignment for
                 * x264_predictor_clip. */
                M32( mvc_temp[1] ) = pmv;
                bpred_cost <<= 4;
                do
                {
                    int mx = mvc_temp[i+1][0];
                    int my = mvc_temp[i+1][1];
                    COST_MV_HPEL( mx, my, cost );
                    COPY1_IF_LT( bpred_cost, (cost << 4) + i );
                } while( ++i <= valid_mvcs );
                bpred_mx = mvc_temp[(bpred_cost&15)+1][0];
                bpred_my = mvc_temp[(bpred_cost&15)+1][1];
                bpred_cost >>= 4;
            }
        }

        /* Round the best predictor back to fullpel and get the cost, since this is where
         * we'll be starting the fullpel motion search. */
        bmx = FPEL( bpred_mx );
        bmy = FPEL( bpred_my );
        bpred_mv = pack16to32_mask(bpred_mx, bpred_my);
        if( bpred_mv&0x00030003 ) /* Only test if the tested predictor is actually subpel... */
            COST_MV( bmx, bmy );
        else                          /* Otherwise just copy the cost (we already know it) */
            bcost = bpred_cost;

        /* Test the zero vector if it hasn't been tested yet. */
        if( pmv )
        {
            if( bmx|bmy ) COST_MV( 0, 0 );
        }
        /* If a subpel mv candidate was better than the zero vector, the previous
         * fullpel check won't have gotten it even if the pmv was zero. So handle
         * that possibility here. */
        else
        {
            COPY3_IF_LT( bcost, pmv_cost, bmx, 0, bmy, 0 );
        }
    }
    else
    {
        /* Calculate and check the fullpel MVP first */
        bmx = pmx = x264_clip3( FPEL(m->mvp[0]), mv_x_min, mv_x_max );
        bmy = pmy = x264_clip3( FPEL(m->mvp[1]), mv_y_min, mv_y_max );
        pmv = pack16to32_mask( bmx, bmy );

        /* Because we are rounding the predicted motion vector to fullpel, there will be
         * an extra MV cost in 15 out of 16 cases.  However, when the predicted MV is
         * chosen as the best predictor, it is often the case that the subpel search will
         * result in a vector at or next to the predicted motion vector.  Therefore, we omit
         * the cost of the MV from the rounded MVP to avoid unfairly biasing against use of
         * the predicted motion vector.
         *
         * Disclaimer: this is a post-hoc rationalization for why this hack works. */
        bcost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[bmy*stride+bmx], stride );

        if( i_mvc > 0 )
        {
            /* Like in subme>=3, except we also round the candidates to fullpel. */
            int valid_mvcs = x264_predictor_roundclip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
            if( valid_mvcs > 0 )
            {
                int i = 1, cost;
                M32( mvc_temp[1] ) = pmv;
                bcost <<= 4;
                do
                {
                    int mx = mvc_temp[i+1][0];
                    int my = mvc_temp[i+1][1];
                    cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[my*stride+mx], stride ) + BITS_MVD( mx, my );
                    COPY1_IF_LT( bcost, (cost << 4) + i );
                } while( ++i <= valid_mvcs );
                bmx = mvc_temp[(bcost&15)+1][0];
                bmy = mvc_temp[(bcost&15)+1][1];
                bcost >>= 4;
            }
        }

        /* Same as above, except the condition is simpler. */
        if( pmv )
            COST_MV( 0, 0 );
    }

    switch( h->mb.i_me_method )
    {
        case X264_ME_DIA:
        {
            /* diamond search, radius 1 */
            bcost <<= 4;
            int i = i_me_range;
            do
            {
                COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs );
                COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
                COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
                COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
                COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
                if( !(bcost&15) )
                    break;
                bmx -= (int32_t)((uint32_t)bcost<<28)>>30;
                bmy -= (int32_t)((uint32_t)bcost<<30)>>30;
                bcost &= ~15;
            } while( --i && CHECK_MVRANGE(bmx, bmy) );
            bcost >>= 4;
            break;
        }

        case X264_ME_HEX:
        {
    me_hex2:
            /* hexagon search, radius 2 */
    #if 0
            for( int i = 0; i < i_me_range/2; i++ )
            {
                omx = bmx; omy = bmy;
                COST_MV( omx-2, omy   );
                COST_MV( omx-1, omy+2 );
                COST_MV( omx+1, omy+2 );
                COST_MV( omx+2, omy   );
                COST_MV( omx+1, omy-2 );
                COST_MV( omx-1, omy-2 );
                if( bmx == omx && bmy == omy )
                    break;
                if( !CHECK_MVRANGE(bmx, bmy) )
                    break;
            }
    #else
            /* equivalent to the above, but eliminates duplicate candidates */

            /* hexagon */
            COST_MV_X3_DIR( -2,0, -1, 2,  1, 2, costs   );
            COST_MV_X3_DIR(  2,0,  1,-2, -1,-2, costs+4 ); /* +4 for 16-byte alignment */
            bcost <<= 3;
            COPY1_IF_LT( bcost, (costs[0]<<3)+2 );
            COPY1_IF_LT( bcost, (costs[1]<<3)+3 );
            COPY1_IF_LT( bcost, (costs[2]<<3)+4 );
            COPY1_IF_LT( bcost, (costs[4]<<3)+5 );
            COPY1_IF_LT( bcost, (costs[5]<<3)+6 );
            COPY1_IF_LT( bcost, (costs[6]<<3)+7 );

            if( bcost&7 )
            {
                int dir = (bcost&7)-2;
                bmx += hex2[dir+1][0];
                bmy += hex2[dir+1][1];

                /* half hexagon, not overlapping the previous iteration */
                for( int i = (i_me_range>>1) - 1; i > 0 && CHECK_MVRANGE(bmx, bmy); i-- )
                {
                    COST_MV_X3_DIR( hex2[dir+0][0], hex2[dir+0][1],
                                    hex2[dir+1][0], hex2[dir+1][1],
                                    hex2[dir+2][0], hex2[dir+2][1],
                                    costs );
                    bcost &= ~7;
                    COPY1_IF_LT( bcost, (costs[0]<<3)+1 );
                    COPY1_IF_LT( bcost, (costs[1]<<3)+2 );
                    COPY1_IF_LT( bcost, (costs[2]<<3)+3 );
                    if( !(bcost&7) )
                        break;
                    dir += (bcost&7)-2;
                    dir = mod6m1[dir+1];
                    bmx += hex2[dir+1][0];
                    bmy += hex2[dir+1][1];
                }
            }
            bcost >>= 3;
    #endif
            /* square refine */
            bcost <<= 4;
            COST_MV_X4_DIR(  0,-1,  0,1, -1,0, 1,0, costs );
            COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
            COPY1_IF_LT( bcost, (costs[1]<<4)+2 );
            COPY1_IF_LT( bcost, (costs[2]<<4)+3 );
            COPY1_IF_LT( bcost, (costs[3]<<4)+4 );
            COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs );
            COPY1_IF_LT( bcost, (costs[0]<<4)+5 );
            COPY1_IF_LT( bcost, (costs[1]<<4)+6 );
            COPY1_IF_LT( bcost, (costs[2]<<4)+7 );
            COPY1_IF_LT( bcost, (costs[3]<<4)+8 );
            bmx += square1[bcost&15][0];
            bmy += square1[bcost&15][1];
            bcost >>= 4;
            break;
        }

        case X264_ME_UMH:
        {
            /* Uneven-cross Multi-Hexagon-grid Search
             * as in JM, except with different early termination */

            static const uint8_t pixel_size_shift[7] = { 0, 1, 1, 2, 3, 3, 4 };

            int ucost1, ucost2;
            int cross_start = 1;

            /* refine predictors */
            ucost1 = bcost;
            DIA1_ITER( pmx, pmy );
            if( pmx | pmy )
                DIA1_ITER( 0, 0 );

            if( i_pixel == PIXEL_4x4 )
                goto me_hex2;

            ucost2 = bcost;
            if( (bmx | bmy) && ((bmx-pmx) | (bmy-pmy)) )
                DIA1_ITER( bmx, bmy );
            if( bcost == ucost2 )
                cross_start = 3;
            omx = bmx; omy = bmy;

            /* early termination */
#define SAD_THRESH(v) ( bcost < ( v >> pixel_size_shift[i_pixel] ) )
            if( bcost == ucost2 && SAD_THRESH(2000) )
            {
                COST_MV_X4( 0,-2, -1,-1, 1,-1, -2,0 );
                COST_MV_X4( 2, 0, -1, 1, 1, 1,  0,2 );
                if( bcost == ucost1 && SAD_THRESH(500) )
                    break;
                if( bcost == ucost2 )
                {
                    int range = (i_me_range>>1) | 1;
                    CROSS( 3, range, range );
                    COST_MV_X4( -1,-2, 1,-2, -2,-1, 2,-1 );
                    COST_MV_X4( -2, 1, 2, 1, -1, 2, 1, 2 );
                    if( bcost == ucost2 )
                        break;
                    cross_start = range + 2;
                }
            }

            /* adaptive search range */
            if( i_mvc )
            {
                /* range multipliers based on casual inspection of some statistics of
                 * average distance between current predictor and final mv found by ESA.
                 * these have not been tuned much by actual encoding. */
                static const uint8_t range_mul[4][4] =
                {
                    { 3, 3, 4, 4 },
                    { 3, 4, 4, 4 },
                    { 4, 4, 4, 5 },
                    { 4, 4, 5, 6 },
                };
                int mvd;
                int sad_ctx, mvd_ctx;
                int denom = 1;

                if( i_mvc == 1 )
                {
                    if( i_pixel == PIXEL_16x16 )
                        /* mvc is probably the same as mvp, so the difference isn't meaningful.
                         * but prediction usually isn't too bad, so just use medium range */
                        mvd = 25;
                    else
                        mvd = abs( m->mvp[0] - mvc[0][0] )
                            + abs( m->mvp[1] - mvc[0][1] );
                }
                else
                {
                    /* calculate the degree of agreement between predictors. */
                    /* in 16x16, mvc includes all the neighbors used to make mvp,
                     * so don't count mvp separately. */
                    denom = i_mvc - 1;
                    mvd = 0;
                    if( i_pixel != PIXEL_16x16 )
                    {
                        mvd = abs( m->mvp[0] - mvc[0][0] )
                            + abs( m->mvp[1] - mvc[0][1] );
                        denom++;
                    }
                    mvd += x264_predictor_difference( mvc, i_mvc );
                }

                sad_ctx = SAD_THRESH(1000) ? 0
                        : SAD_THRESH(2000) ? 1
                        : SAD_THRESH(4000) ? 2 : 3;
                mvd_ctx = mvd < 10*denom ? 0
                        : mvd < 20*denom ? 1
                        : mvd < 40*denom ? 2 : 3;

                i_me_range = i_me_range * range_mul[mvd_ctx][sad_ctx] >> 2;
            }

            /* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy.
             * we are still centered on the same place as the DIA2. is this desirable? */
            CROSS( cross_start, i_me_range, i_me_range>>1 );

            COST_MV_X4( -2,-2, -2,2, 2,-2, 2,2 );

            /* hexagon grid */
            omx = bmx; omy = bmy;
            const uint16_t *p_cost_omvx = p_cost_mvx + omx*4;
            const uint16_t *p_cost_omvy = p_cost_mvy + omy*4;
            int i = 1;
            do
            {
                static const int8_t hex4[16][2] = {
                    { 0,-4}, { 0, 4}, {-2,-3}, { 2,-3},
                    {-4,-2}, { 4,-2}, {-4,-1}, { 4,-1},
                    {-4, 0}, { 4, 0}, {-4, 1}, { 4, 1},
                    {-4, 2}, { 4, 2}, {-2, 3}, { 2, 3},
                };

                if( 4*i > X264_MIN4( mv_x_max-omx, omx-mv_x_min,
                                     mv_y_max-omy, omy-mv_y_min ) )
                {
                    for( int j = 0; j < 16; j++ )
                    {
                        int mx = omx + hex4[j][0]*i;
                        int my = omy + hex4[j][1]*i;
                        if( CHECK_MVRANGE(mx, my) )
                            COST_MV( mx, my );
                    }
                }
                else
                {
                    int dir = 0;
                    pixel *pix_base = p_fref_w + omx + (omy-4*i)*stride;
                    int dy = i*stride;
#define SADS(k,x0,y0,x1,y1,x2,y2,x3,y3)\
                    h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
                            pix_base x0*i+(y0-2*k+4)*dy,\
                            pix_base x1*i+(y1-2*k+4)*dy,\
                            pix_base x2*i+(y2-2*k+4)*dy,\
                            pix_base x3*i+(y3-2*k+4)*dy,\
                            stride, costs+4*k );\
                    pix_base += 2*dy;
#define ADD_MVCOST(k,x,y) costs[k] += p_cost_omvx[x*4*i] + p_cost_omvy[y*4*i]
#define MIN_MV(k,x,y)     COPY2_IF_LT( bcost, costs[k], dir, x*16+(y&15) )
                    SADS( 0, +0,-4, +0,+4, -2,-3, +2,-3 );
                    SADS( 1, -4,-2, +4,-2, -4,-1, +4,-1 );
                    SADS( 2, -4,+0, +4,+0, -4,+1, +4,+1 );
                    SADS( 3, -4,+2, +4,+2, -2,+3, +2,+3 );
                    ADD_MVCOST(  0, 0,-4 );
                    ADD_MVCOST(  1, 0, 4 );
                    ADD_MVCOST(  2,-2,-3 );
                    ADD_MVCOST(  3, 2,-3 );
                    ADD_MVCOST(  4,-4,-2 );
                    ADD_MVCOST(  5, 4,-2 );
                    ADD_MVCOST(  6,-4,-1 );
                    ADD_MVCOST(  7, 4,-1 );
                    ADD_MVCOST(  8,-4, 0 );
                    ADD_MVCOST(  9, 4, 0 );
                    ADD_MVCOST( 10,-4, 1 );
                    ADD_MVCOST( 11, 4, 1 );
                    ADD_MVCOST( 12,-4, 2 );
                    ADD_MVCOST( 13, 4, 2 );
                    ADD_MVCOST( 14,-2, 3 );
                    ADD_MVCOST( 15, 2, 3 );
                    MIN_MV(  0, 0,-4 );
                    MIN_MV(  1, 0, 4 );
                    MIN_MV(  2,-2,-3 );
                    MIN_MV(  3, 2,-3 );
                    MIN_MV(  4,-4,-2 );
                    MIN_MV(  5, 4,-2 );
                    MIN_MV(  6,-4,-1 );
                    MIN_MV(  7, 4,-1 );
                    MIN_MV(  8,-4, 0 );
                    MIN_MV(  9, 4, 0 );
                    MIN_MV( 10,-4, 1 );
                    MIN_MV( 11, 4, 1 );
                    MIN_MV( 12,-4, 2 );
                    MIN_MV( 13, 4, 2 );
                    MIN_MV( 14,-2, 3 );
                    MIN_MV( 15, 2, 3 );
#undef SADS
#undef ADD_MVCOST
#undef MIN_MV
                    if( dir )
                    {
                        bmx = omx + i*(dir>>4);
                        bmy = omy + i*((int32_t)((uint32_t)dir<<28)>>28);
                    }
                }
            } while( ++i <= i_me_range>>2 );
            if( bmy <= mv_y_max && bmy >= mv_y_min && bmx <= mv_x_max && bmx >= mv_x_min )
                goto me_hex2;
            break;
        }

        case X264_ME_ESA:
        case X264_ME_TESA:
        {
            const int min_x = X264_MAX( bmx - i_me_range, mv_x_min );
            const int min_y = X264_MAX( bmy - i_me_range, mv_y_min );
            const int max_x = X264_MIN( bmx + i_me_range, mv_x_max );
            const int max_y = X264_MIN( bmy + i_me_range, mv_y_max );
            /* SEA is fastest in multiples of 4 */
            const int width = (max_x - min_x + 3) & ~3;
#if 0
            /* plain old exhaustive search */
            for( int my = min_y; my <= max_y; my++ )
                for( int mx = min_x; mx < min_x + width; mx++ )
                    COST_MV( mx, my );
#else
            /* successive elimination by comparing DC before a full SAD,
             * because sum(abs(diff)) >= abs(diff(sum)). */
            uint16_t *sums_base = m->integral;
            ALIGNED_ARRAY_16( int, enc_dc,[4] );
            int sad_size = i_pixel <= PIXEL_8x8 ? PIXEL_8x8 : PIXEL_4x4;
            int delta = x264_pixel_size[sad_size].w;
            int16_t *xs = h->scratch_buffer;
            int xn;
            uint16_t *cost_fpel_mvx = h->cost_mv_fpel[h->mb.i_qp][-m->mvp[0]&3] + (-m->mvp[0]>>2);

            h->pixf.sad_x4[sad_size]( (pixel*)x264_zero, p_fenc, p_fenc+delta,
                p_fenc+delta*FENC_STRIDE, p_fenc+delta+delta*FENC_STRIDE,
                FENC_STRIDE, enc_dc );
            if( delta == 4 )
                sums_base += stride * (h->fenc->i_lines[0] + PADV*2);
            if( i_pixel == PIXEL_16x16 || i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
                delta *= stride;
            if( i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
                enc_dc[1] = enc_dc[2];

            if( h->mb.i_me_method == X264_ME_TESA )
            {
                // ADS threshold, then SAD threshold, then keep the best few SADs, then SATD
                mvsad_t *mvsads = (mvsad_t *)(xs + ((width+31)&~31) + 4);
                int nmvsad = 0, limit;
                int sad_thresh = i_me_range <= 16 ? 10 : i_me_range <= 24 ? 11 : 12;
                int bsad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+bmy*stride+bmx, stride )
                         + BITS_MVD( bmx, bmy );
                for( int my = min_y; my <= max_y; my++ )
                {
                    int i;
                    int ycost = p_cost_mvy[my*4];
                    if( bsad <= ycost )
                        continue;
                    bsad -= ycost;
                    xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
                                               cost_fpel_mvx+min_x, xs, width, bsad * 17 >> 4 );
                    for( i = 0; i < xn-2; i += 3 )
                    {
                        pixel *ref = p_fref_w+min_x+my*stride;
                        ALIGNED_ARRAY_16( int, sads,[4] ); /* padded to [4] for asm */
                        h->pixf.sad_x3[i_pixel]( p_fenc, ref+xs[i], ref+xs[i+1], ref+xs[i+2], stride, sads );
                        for( int j = 0; j < 3; j++ )
                        {
                            int sad = sads[j] + cost_fpel_mvx[xs[i+j]];
                            if( sad < bsad*sad_thresh>>3 )
                            {
                                COPY1_IF_LT( bsad, sad );
                                mvsads[nmvsad].sad = sad + ycost;
                                mvsads[nmvsad].mv[0] = min_x+xs[i+j];
                                mvsads[nmvsad].mv[1] = my;
                                nmvsad++;
                            }
                        }
                    }
                    for( ; i < xn; i++ )
                    {
                        int mx = min_x+xs[i];
                        int sad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+mx+my*stride, stride )
                                + cost_fpel_mvx[xs[i]];
                        if( sad < bsad*sad_thresh>>3 )
                        {
                            COPY1_IF_LT( bsad, sad );
                            mvsads[nmvsad].sad = sad + ycost;
                            mvsads[nmvsad].mv[0] = mx;
                            mvsads[nmvsad].mv[1] = my;
                            nmvsad++;
                        }
                    }
                    bsad += ycost;
                }

                limit = i_me_range >> 1;
                sad_thresh = bsad*sad_thresh>>3;
                while( nmvsad > limit*2 && sad_thresh > bsad )
                {
                    int i = 0;
                    // halve the range if the domain is too large... eh, close enough
                    sad_thresh = (sad_thresh + bsad) >> 1;
                    while( i < nmvsad && mvsads[i].sad <= sad_thresh )
                        i++;
                    for( int j = i; j < nmvsad; j++ )
                    {
                        uint32_t sad;
                        if( WORD_SIZE == 8 && sizeof(mvsad_t) == 8 )
                        {
                            uint64_t mvsad = M64( &mvsads[i] ) = M64( &mvsads[j] );
#if WORDS_BIGENDIAN
                            mvsad >>= 32;
#endif
                            sad = mvsad;
                        }
                        else
                        {
                            sad = mvsads[j].sad;
                            CP32( mvsads[i].mv, mvsads[j].mv );
                            mvsads[i].sad = sad;
                        }
                        i += (sad - (sad_thresh+1)) >> 31;
                    }
                    nmvsad = i;
                }
                while( nmvsad > limit )
                {
                    int bi = 0;
                    for( int i = 1; i < nmvsad; i++ )
                        if( mvsads[i].sad > mvsads[bi].sad )
                            bi = i;
                    nmvsad--;
                    if( sizeof( mvsad_t ) == sizeof( uint64_t ) )
                        CP64( &mvsads[bi], &mvsads[nmvsad] );
                    else
                        mvsads[bi] = mvsads[nmvsad];
                }
                for( int i = 0; i < nmvsad; i++ )
                    COST_MV( mvsads[i].mv[0], mvsads[i].mv[1] );
            }
            else
            {
                // just ADS and SAD
                for( int my = min_y; my <= max_y; my++ )
                {
                    int i;
                    int ycost = p_cost_mvy[my*4];
                    if( bcost <= ycost )
                        continue;
                    bcost -= ycost;
                    xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
                                               cost_fpel_mvx+min_x, xs, width, bcost );
                    for( i = 0; i < xn-2; i += 3 )
                        COST_MV_X3_ABS( min_x+xs[i],my, min_x+xs[i+1],my, min_x+xs[i+2],my );
                    bcost += ycost;
                    for( ; i < xn; i++ )
                        COST_MV( min_x+xs[i], my );
                }
            }
#endif
        }
        break;
    }

    /* -> qpel mv */
    uint32_t bmv = pack16to32_mask(bmx,bmy);
    uint32_t bmv_spel = SPELx2(bmv);
    if( h->mb.i_subpel_refine < 3 )
    {
        m->cost_mv = p_cost_mvx[bmx*4] + p_cost_mvy[bmy*4];
        m->cost = bcost;
        /* compute the real cost */
        if( bmv == pmv ) m->cost += m->cost_mv;
        M32( m->mv ) = bmv_spel;
    }
    else
    {
        M32(m->mv) = bpred_cost < bcost ? bpred_mv : bmv_spel;
        m->cost = X264_MIN( bpred_cost, bcost );
    }

    /* subpel refine */
    if( h->mb.i_subpel_refine >= 2 )
    {
        int hpel = subpel_iterations[h->mb.i_subpel_refine][2];
        int qpel = subpel_iterations[h->mb.i_subpel_refine][3];
        refine_subpel( h, m, hpel, qpel, p_halfpel_thresh, 0 );
    }
}
#undef COST_MV

void x264_me_refine_qpel( x264_t *h, x264_me_t *m )
{
    int hpel = subpel_iterations[h->mb.i_subpel_refine][0];
    int qpel = subpel_iterations[h->mb.i_subpel_refine][1];

    if( m->i_pixel <= PIXEL_8x8 )
        m->cost -= m->i_ref_cost;

    refine_subpel( h, m, hpel, qpel, NULL, 1 );
}

void x264_me_refine_qpel_refdupe( x264_t *h, x264_me_t *m, int *p_halfpel_thresh )
{
    refine_subpel( h, m, 0, X264_MIN( 2, subpel_iterations[h->mb.i_subpel_refine][3] ), p_halfpel_thresh, 0 );
}

#define COST_MV_SAD( mx, my ) \
{ \
    intptr_t stride = 16; \
    pixel *src = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
    int cost = h->pixf.fpelcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
             + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
    COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my ); \
}

#define COST_MV_SATD( mx, my, dir ) \
if( b_refine_qpel || (dir^1) != odir ) \
{ \
    intptr_t stride = 16; \
    pixel *src = h->mc.get_ref( pix, &stride, &m->p_fref[0], m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
    int cost = h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
             + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
    if( b_chroma_me && cost < bcost ) \
    { \
        if( CHROMA444 ) \
        { \
            stride = 16; \
            src = h->mc.get_ref( pix, &stride, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
            cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[1], FENC_STRIDE, src, stride ); \
            if( cost < bcost ) \
            { \
                stride = 16; \
                src = h->mc.get_ref( pix, &stride, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
                cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[2], FENC_STRIDE, src, stride ); \
            } \
        } \
        else \
        { \
            h->mc.mc_chroma( pix, pix+8, 16, m->p_fref[4], m->i_stride[1], \
                             mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
            if( m->weight[1].weightfn ) \
                m->weight[1].weightfn[bw>>3]( pix, 16, pix, 16, &m->weight[1], bh>>chroma_v_shift ); \
            cost += h->pixf.mbcmp[chromapix]( m->p_fenc[1], FENC_STRIDE, pix, 16 ); \
            if( cost < bcost ) \
            { \
                if( m->weight[2].weightfn ) \
                    m->weight[2].weightfn[bw>>3]( pix+8, 16, pix+8, 16, &m->weight[2], bh>>chroma_v_shift ); \
                cost += h->pixf.mbcmp[chromapix]( m->p_fenc[2], FENC_STRIDE, pix+8, 16 ); \
            } \
        } \
    } \
    COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, bdir, dir ); \
}

static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel )
{
    const int bw = x264_pixel_size[m->i_pixel].w;
    const int bh = x264_pixel_size[m->i_pixel].h;
    const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
    const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];
    const int i_pixel = m->i_pixel;
    const int b_chroma_me = h->mb.b_chroma_me && (i_pixel <= PIXEL_8x8 || CHROMA444);
    int chromapix = h->luma2chroma_pixel[i_pixel];
    int chroma_v_shift = CHROMA_V_SHIFT;
    int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;

    ALIGNED_ARRAY_32( pixel, pix,[64*18] ); // really 17x17x2, but round up for alignment
    ALIGNED_ARRAY_16( int, costs,[4] );

    int bmx = m->mv[0];
    int bmy = m->mv[1];
    int bcost = m->cost;
    int odir = -1, bdir;

    /* halfpel diamond search */
    if( hpel_iters )
    {
        /* try the subpel component of the predicted mv */
        if( h->mb.i_subpel_refine < 3 )
        {
            int mx = x264_clip3( m->mvp[0], h->mb.mv_min_spel[0]+2, h->mb.mv_max_spel[0]-2 );
            int my = x264_clip3( m->mvp[1], h->mb.mv_min_spel[1]+2, h->mb.mv_max_spel[1]-2 );
            if( (mx-bmx)|(my-bmy) )
                COST_MV_SAD( mx, my );
        }

        bcost <<= 6;
        for( int i = hpel_iters; i > 0; i-- )
        {
            int omx = bmx, omy = bmy;
            intptr_t stride = 64; // candidates are either all hpel or all qpel, so one stride is enough
            pixel *src0, *src1, *src2, *src3;
            src0 = h->mc.get_ref( pix,    &stride, m->p_fref, m->i_stride[0], omx, omy-2, bw, bh+1, &m->weight[0] );
            src2 = h->mc.get_ref( pix+32, &stride, m->p_fref, m->i_stride[0], omx-2, omy, bw+4, bh, &m->weight[0] );
            src1 = src0 + stride;
            src3 = src2 + 1;
            h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], src0, src1, src2, src3, stride, costs );
            costs[0] += p_cost_mvx[omx  ] + p_cost_mvy[omy-2];
            costs[1] += p_cost_mvx[omx  ] + p_cost_mvy[omy+2];
            costs[2] += p_cost_mvx[omx-2] + p_cost_mvy[omy  ];
            costs[3] += p_cost_mvx[omx+2] + p_cost_mvy[omy  ];
            COPY1_IF_LT( bcost, (costs[0]<<6)+2 );
            COPY1_IF_LT( bcost, (costs[1]<<6)+6 );
            COPY1_IF_LT( bcost, (costs[2]<<6)+16 );
            COPY1_IF_LT( bcost, (costs[3]<<6)+48 );
            if( !(bcost&63) )
                break;
            bmx -= (int32_t)((uint32_t)bcost<<26)>>29;
            bmy -= (int32_t)((uint32_t)bcost<<29)>>29;
            bcost &= ~63;
        }
        bcost >>= 6;
    }

    if( !b_refine_qpel && (h->pixf.mbcmp_unaligned[0] != h->pixf.fpelcmp[0] || b_chroma_me) )
    {
        bcost = COST_MAX;
        COST_MV_SATD( bmx, bmy, -1 );
    }

    /* early termination when examining multiple reference frames */
    if( p_halfpel_thresh )
    {
        if( (bcost*7)>>3 > *p_halfpel_thresh )
        {
            m->cost = bcost;
            m->mv[0] = bmx;
            m->mv[1] = bmy;
            // don't need cost_mv
            return;
        }
        else if( bcost < *p_halfpel_thresh )
            *p_halfpel_thresh = bcost;
    }

    /* quarterpel diamond search */
    if( h->mb.i_subpel_refine != 1 )
    {
        bdir = -1;
        for( int i = qpel_iters; i > 0; i-- )
        {
            if( bmy <= h->mb.mv_min_spel[1] || bmy >= h->mb.mv_max_spel[1] || bmx <= h->mb.mv_min_spel[0] || bmx >= h->mb.mv_max_spel[0] )
                break;
            odir = bdir;
            int omx = bmx, omy = bmy;
            COST_MV_SATD( omx, omy - 1, 0 );
            COST_MV_SATD( omx, omy + 1, 1 );
            COST_MV_SATD( omx - 1, omy, 2 );
            COST_MV_SATD( omx + 1, omy, 3 );
            if( (bmx == omx) & (bmy == omy) )
                break;
        }
    }
    /* Special simplified case for subme=1 */
    else if( bmy > h->mb.mv_min_spel[1] && bmy < h->mb.mv_max_spel[1] && bmx > h->mb.mv_min_spel[0] && bmx < h->mb.mv_max_spel[0] )
    {
        int omx = bmx, omy = bmy;
        /* We have to use mc_luma because all strides must be the same to use fpelcmp_x4 */
        h->mc.mc_luma( pix   , 64, m->p_fref, m->i_stride[0], omx, omy-1, bw, bh, &m->weight[0] );
        h->mc.mc_luma( pix+16, 64, m->p_fref, m->i_stride[0], omx, omy+1, bw, bh, &m->weight[0] );
        h->mc.mc_luma( pix+32, 64, m->p_fref, m->i_stride[0], omx-1, omy, bw, bh, &m->weight[0] );
        h->mc.mc_luma( pix+48, 64, m->p_fref, m->i_stride[0], omx+1, omy, bw, bh, &m->weight[0] );
        h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], pix, pix+16, pix+32, pix+48, 64, costs );
        costs[0] += p_cost_mvx[omx  ] + p_cost_mvy[omy-1];
        costs[1] += p_cost_mvx[omx  ] + p_cost_mvy[omy+1];
        costs[2] += p_cost_mvx[omx-1] + p_cost_mvy[omy  ];
        costs[3] += p_cost_mvx[omx+1] + p_cost_mvy[omy  ];
        bcost <<= 4;
        COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
        COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
        COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
        COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
        bmx -= (int32_t)((uint32_t)bcost<<28)>>30;
        bmy -= (int32_t)((uint32_t)bcost<<30)>>30;
        bcost >>= 4;
    }

    m->cost = bcost;
    m->mv[0] = bmx;
    m->mv[1] = bmy;
    m->cost_mv = p_cost_mvx[bmx] + p_cost_mvy[bmy];
}

#define BIME_CACHE( dx, dy, list )\
{\
    x264_me_t *m = m##list;\
    int i = 4 + 3*dx + dy;\
    int mvx = bm##list##x+dx;\
    int mvy = bm##list##y+dy;\
    stride[0][list][i] = bw;\
    src[0][list][i] = h->mc.get_ref( pixy_buf[list][i], &stride[0][list][i], &m->p_fref[0],\
                                     m->i_stride[0], mvx, mvy, bw, bh, x264_weight_none );\
    if( rd )\
    {\
        if( CHROMA444 )\
        {\
            stride[1][list][i] = bw;\
            src[1][list][i] = h->mc.get_ref( pixu_buf[list][i], &stride[1][list][i], &m->p_fref[4],\
                                             m->i_stride[1], mvx, mvy, bw, bh, x264_weight_none );\
            stride[2][list][i] = bw;\
            src[2][list][i] = h->mc.get_ref( pixv_buf[list][i], &stride[2][list][i], &m->p_fref[8],\
                                             m->i_stride[2], mvx, mvy, bw, bh, x264_weight_none );\
        }\
        else if( CHROMA_FORMAT )\
            h->mc.mc_chroma( pixu_buf[list][i], pixv_buf[list][i], 8, m->p_fref[4], m->i_stride[1],\
                             mvx, 2*(mvy+mv##list##y_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift );\
    }\
}

#define SATD_THRESH(cost) (cost+(cost>>4))

/* Don't unroll the BIME_CACHE loop. I couldn't find any way to force this
 * other than making its iteration count not a compile-time constant. */
#define x264_iter_kludge x264_template(iter_kludge)
int x264_iter_kludge = 0;

static ALWAYS_INLINE void me_refine_bidir( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2, int rd )
{
    int x = i8&1;
    int y = i8>>1;
    int s8 = X264_SCAN8_0 + 2*x + 16*y;
    int16_t *cache0_mv = h->mb.cache.mv[0][s8];
    int16_t *cache1_mv = h->mb.cache.mv[1][s8];
    const int i_pixel = m0->i_pixel;
    const int bw = x264_pixel_size[i_pixel].w;
    const int bh = x264_pixel_size[i_pixel].h;
    ALIGNED_ARRAY_32( pixel, pixy_buf,[2],[9][16*16] );
    ALIGNED_ARRAY_32( pixel, pixu_buf,[2],[9][16*16] );
    ALIGNED_ARRAY_32( pixel, pixv_buf,[2],[9][16*16] );
    pixel *src[3][2][9];
    int chromapix = h->luma2chroma_pixel[i_pixel];
    int chroma_v_shift = CHROMA_V_SHIFT;
    int chroma_x = (8 >> CHROMA_H_SHIFT) * x;
    int chroma_y = (8 >> chroma_v_shift) * y;
    pixel *pix  = &h->mb.pic.p_fdec[0][8*x + 8*y*FDEC_STRIDE];
    pixel *pixu = CHROMA_FORMAT ? &h->mb.pic.p_fdec[1][chroma_x + chroma_y*FDEC_STRIDE] : NULL;
    pixel *pixv = CHROMA_FORMAT ? &h->mb.pic.p_fdec[2][chroma_x + chroma_y*FDEC_STRIDE] : NULL;
    int ref0 = h->mb.cache.ref[0][s8];
    int ref1 = h->mb.cache.ref[1][s8];
    const int mv0y_offset = chroma_v_shift & MB_INTERLACED & ref0 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
    const int mv1y_offset = chroma_v_shift & MB_INTERLACED & ref1 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
    intptr_t stride[3][2][9];
    int bm0x = m0->mv[0];
    int bm0y = m0->mv[1];
    int bm1x = m1->mv[0];
    int bm1y = m1->mv[1];
    int bcost = COST_MAX;
    int mc_list0 = 1, mc_list1 = 1;
    uint64_t bcostrd = COST_MAX64;
    uint16_t amvd;
    /* each byte of visited represents 8 possible m1y positions, so a 4D array isn't needed */
    ALIGNED_ARRAY_64( uint8_t, visited,[8],[8][8] );
    /* all permutations of an offset in up to 2 of the dimensions */
    ALIGNED_4( static const int8_t dia4d[33][4] ) =
    {
        {0,0,0,0},
        {0,0,0,1}, {0,0,0,-1}, {0,0,1,0}, {0,0,-1,0},
        {0,1,0,0}, {0,-1,0,0}, {1,0,0,0}, {-1,0,0,0},
        {0,0,1,1}, {0,0,-1,-1},{0,1,1,0}, {0,-1,-1,0},
        {1,1,0,0}, {-1,-1,0,0},{1,0,0,1}, {-1,0,0,-1},
        {0,1,0,1}, {0,-1,0,-1},{1,0,1,0}, {-1,0,-1,0},
        {0,0,-1,1},{0,0,1,-1}, {0,-1,1,0},{0,1,-1,0},
        {-1,1,0,0},{1,-1,0,0}, {1,0,0,-1},{-1,0,0,1},
        {0,-1,0,1},{0,1,0,-1}, {-1,0,1,0},{1,0,-1,0},
    };

    if( bm0y < h->mb.mv_min_spel[1] + 8 || bm1y < h->mb.mv_min_spel[1] + 8 ||
        bm0y > h->mb.mv_max_spel[1] - 8 || bm1y > h->mb.mv_max_spel[1] - 8 ||
        bm0x < h->mb.mv_min_spel[0] + 8 || bm1x < h->mb.mv_min_spel[0] + 8 ||
        bm0x > h->mb.mv_max_spel[0] - 8 || bm1x > h->mb.mv_max_spel[0] - 8 )
        return;

    if( rd && m0->i_pixel != PIXEL_16x16 && i8 != 0 )
    {
        x264_mb_predict_mv( h, 0, i8<<2, bw>>2, m0->mvp );
        x264_mb_predict_mv( h, 1, i8<<2, bw>>2, m1->mvp );
    }

    const uint16_t *p_cost_m0x = m0->p_cost_mv - m0->mvp[0];
    const uint16_t *p_cost_m0y = m0->p_cost_mv - m0->mvp[1];
    const uint16_t *p_cost_m1x = m1->p_cost_mv - m1->mvp[0];
    const uint16_t *p_cost_m1y = m1->p_cost_mv - m1->mvp[1];

    h->mc.memzero_aligned( visited, sizeof(uint8_t[8][8][8]) );

    for( int pass = 0; pass < 8; pass++ )
    {
        int bestj = 0;
        /* check all mv pairs that differ in at most 2 components from the current mvs. */
        /* doesn't do chroma ME. this probably doesn't matter, as the gains
         * from bidir ME are the same with and without chroma ME. */

        if( mc_list0 )
            for( int j = x264_iter_kludge; j < 9; j++ )
                BIME_CACHE( square1[j][0], square1[j][1], 0 );

        if( mc_list1 )
            for( int j = x264_iter_kludge; j < 9; j++ )
                BIME_CACHE( square1[j][0], square1[j][1], 1 );

        for( int j = !!pass; j < 33; j++ )
        {
            int m0x = dia4d[j][0] + bm0x;
            int m0y = dia4d[j][1] + bm0y;
            int m1x = dia4d[j][2] + bm1x;
            int m1y = dia4d[j][3] + bm1y;
            if( !pass || !((visited[(m0x)&7][(m0y)&7][(m1x)&7] & (1<<((m1y)&7)))) )
            {
                int i0 = 4 + 3*dia4d[j][0] + dia4d[j][1];
                int i1 = 4 + 3*dia4d[j][2] + dia4d[j][3];
                visited[(m0x)&7][(m0y)&7][(m1x)&7] |= (1<<((m1y)&7));
                h->mc.avg[i_pixel]( pix, FDEC_STRIDE, src[0][0][i0], stride[0][0][i0], src[0][1][i1], stride[0][1][i1], i_weight );
                int cost = h->pixf.mbcmp[i_pixel]( m0->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE )
                         + p_cost_m0x[m0x] + p_cost_m0y[m0y] + p_cost_m1x[m1x] + p_cost_m1y[m1y];
                if( rd )
                {
                    if( cost < SATD_THRESH(bcost) )
                    {
                        bcost = X264_MIN( cost, bcost );
                        M32( cache0_mv ) = pack16to32_mask(m0x,m0y);
                        M32( cache1_mv ) = pack16to32_mask(m1x,m1y);
                        if( CHROMA444 )
                        {
                            h->mc.avg[i_pixel]( pixu, FDEC_STRIDE, src[1][0][i0], stride[1][0][i0], src[1][1][i1], stride[1][1][i1], i_weight );
                            h->mc.avg[i_pixel]( pixv, FDEC_STRIDE, src[2][0][i0], stride[2][0][i0], src[2][1][i1], stride[2][1][i1], i_weight );
                        }
                        else if( CHROMA_FORMAT )
                        {
                            h->mc.avg[chromapix]( pixu, FDEC_STRIDE, pixu_buf[0][i0], 8, pixu_buf[1][i1], 8, i_weight );
                            h->mc.avg[chromapix]( pixv, FDEC_STRIDE, pixv_buf[0][i0], 8, pixv_buf[1][i1], 8, i_weight );
                        }
                        uint64_t costrd = x264_rd_cost_part( h, i_lambda2, i8*4, m0->i_pixel );
                        COPY2_IF_LT( bcostrd, costrd, bestj, j );
                    }
                }
                else
                    COPY2_IF_LT( bcost, cost, bestj, j );
            }
        }

        if( !bestj )
            break;

        bm0x += dia4d[bestj][0];
        bm0y += dia4d[bestj][1];
        bm1x += dia4d[bestj][2];
        bm1y += dia4d[bestj][3];

        mc_list0 = M16( &dia4d[bestj][0] );
        mc_list1 = M16( &dia4d[bestj][2] );
    }

    if( rd )
    {
        x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 0, pack16to32_mask(bm0x, bm0y) );
        amvd = pack8to16( X264_MIN(abs(bm0x - m0->mvp[0]),33), X264_MIN(abs(bm0y - m0->mvp[1]),33) );
        x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 0, amvd );

        x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 1, pack16to32_mask(bm1x, bm1y) );
        amvd = pack8to16( X264_MIN(abs(bm1x - m1->mvp[0]),33), X264_MIN(abs(bm1y - m1->mvp[1]),33) );
        x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 1, amvd );
    }

    m0->mv[0] = bm0x;
    m0->mv[1] = bm0y;
    m1->mv[0] = bm1x;
    m1->mv[1] = bm1y;
}

void x264_me_refine_bidir_satd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight )
{
    me_refine_bidir( h, m0, m1, i_weight, 0, 0, 0 );
}

void x264_me_refine_bidir_rd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2 )
{
    /* Motion compensation is done as part of bidir_rd; don't repeat
     * it in encoding. */
    h->mb.b_skip_mc = 1;
    me_refine_bidir( h, m0, m1, i_weight, i8, i_lambda2, 1 );
    h->mb.b_skip_mc = 0;
}

#undef COST_MV_SATD
#define COST_MV_SATD( mx, my, dst, avoid_mvp ) \
{ \
    if( !avoid_mvp || !(mx == pmx && my == pmy) ) \
    { \
        h->mc.mc_luma( pix, FDEC_STRIDE, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
        dst = h->pixf.mbcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE ) \
            + p_cost_mvx[mx] + p_cost_mvy[my]; \
        COPY1_IF_LT( bsatd, dst ); \
    } \
    else \
        dst = COST_MAX; \
}

#define COST_MV_RD( mx, my, satd, do_dir, mdir ) \
{ \
    if( satd <= SATD_THRESH(bsatd) ) \
    { \
        uint64_t cost; \
        M32( cache_mv ) = pack16to32_mask(mx,my); \
        if( CHROMA444 ) \
        { \
            h->mc.mc_luma( pixu, FDEC_STRIDE, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
            h->mc.mc_luma( pixv, FDEC_STRIDE, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
        } \
        else if( CHROMA_FORMAT && m->i_pixel <= PIXEL_8x8 ) \
        { \
            h->mc.mc_chroma( pixu, pixv, FDEC_STRIDE, m->p_fref[4], m->i_stride[1], \
                             mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
            if( m->weight[1].weightfn ) \
                m->weight[1].weightfn[bw>>3]( pixu, FDEC_STRIDE, pixu, FDEC_STRIDE, &m->weight[1], bh>>chroma_v_shift ); \
            if( m->weight[2].weightfn ) \
                m->weight[2].weightfn[bw>>3]( pixv, FDEC_STRIDE, pixv, FDEC_STRIDE, &m->weight[2], bh>>chroma_v_shift ); \
        } \
        cost = x264_rd_cost_part( h, i_lambda2, i4, m->i_pixel ); \
        COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, dir, do_dir?mdir:dir ); \
    } \
}

void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int i_list )
{
    int16_t *cache_mv = h->mb.cache.mv[i_list][x264_scan8[i4]];
    const uint16_t *p_cost_mvx, *p_cost_mvy;
    const int bw = x264_pixel_size[m->i_pixel].w;
    const int bh = x264_pixel_size[m->i_pixel].h;
    const int i_pixel = m->i_pixel;
    int chroma_v_shift = CHROMA_V_SHIFT;
    int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;

    uint64_t bcost = COST_MAX64;
    int bmx = m->mv[0];
    int bmy = m->mv[1];
    int omx, omy, pmx, pmy;
    int satd, bsatd;
    int dir = -2;
    int i8 = i4>>2;
    uint16_t amvd;

    pixel *pix  = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]];
    pixel *pixu, *pixv;
    if( CHROMA444 )
    {
        pixu = &h->mb.pic.p_fdec[1][block_idx_xy_fdec[i4]];
        pixv = &h->mb.pic.p_fdec[2][block_idx_xy_fdec[i4]];
    }
    else if( CHROMA_FORMAT )
    {
        pixu = &h->mb.pic.p_fdec[1][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
        pixv = &h->mb.pic.p_fdec[2][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
    }
    else
    {
        pixu = NULL;
        pixv = NULL;
    }

    h->mb.b_skip_mc = 1;

    if( m->i_pixel != PIXEL_16x16 && i4 != 0 )
        x264_mb_predict_mv( h, i_list, i4, bw>>2, m->mvp );
    pmx = m->mvp[0];
    pmy = m->mvp[1];
    p_cost_mvx = m->p_cost_mv - pmx;
    p_cost_mvy = m->p_cost_mv - pmy;
    COST_MV_SATD( bmx, bmy, bsatd, 0 );
    if( m->i_pixel != PIXEL_16x16 )
        COST_MV_RD( bmx, bmy, 0, 0, 0 )
    else
        bcost = m->cost;

    /* check the predicted mv */
    if( (bmx != pmx || bmy != pmy)
        && pmx >= h->mb.mv_min_spel[0] && pmx <= h->mb.mv_max_spel[0]
        && pmy >= h->mb.mv_min_spel[1] && pmy <= h->mb.mv_max_spel[1] )
    {
        COST_MV_SATD( pmx, pmy, satd, 0 );
        COST_MV_RD  ( pmx, pmy, satd, 0, 0 );
        /* The hex motion search is guaranteed to not repeat the center candidate,
         * so if pmv is chosen, set the "MV to avoid checking" to bmv instead. */
        if( bmx == pmx && bmy == pmy )
        {
            pmx = m->mv[0];
            pmy = m->mv[1];
        }
    }

    if( bmy < h->mb.mv_min_spel[1] + 3 || bmy > h->mb.mv_max_spel[1] - 3 ||
        bmx < h->mb.mv_min_spel[0] + 3 || bmx > h->mb.mv_max_spel[0] - 3 )
    {
        h->mb.b_skip_mc = 0;
        return;
    }

    /* subpel hex search, same pattern as ME HEX. */
    dir = -2;
    omx = bmx;
    omy = bmy;
    for( int j = 0; j < 6; j++ )
    {
        COST_MV_SATD( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1 );
        COST_MV_RD  ( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1, j );
    }

    if( dir != -2 )
    {
        /* half hexagon, not overlapping the previous iteration */
        for( int i = 1; i < 10; i++ )
        {
            const int odir = mod6m1[dir+1];
            if( bmy < h->mb.mv_min_spel[1] + 3 ||
                bmy > h->mb.mv_max_spel[1] - 3 )
                break;
            dir = -2;
            omx = bmx;
            omy = bmy;
            for( int j = 0; j < 3; j++ )
            {
                COST_MV_SATD( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1 );
                COST_MV_RD  ( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1, odir-1+j );
            }
            if( dir == -2 )
                break;
        }
    }

    /* square refine, same pattern as ME HEX. */
    omx = bmx;
    omy = bmy;
    for( int i = 0; i < 8; i++ )
    {
        COST_MV_SATD( omx + square1[i+1][0], omy + square1[i+1][1], satd, 1 );
        COST_MV_RD  ( omx + square1[i+1][0], omy + square1[i+1][1], satd, 0, 0 );
    }

    m->cost = bcost;
    m->mv[0] = bmx;
    m->mv[1] = bmy;
    x264_macroblock_cache_mv ( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, pack16to32_mask(bmx, bmy) );
    amvd = pack8to16( X264_MIN(abs(bmx - m->mvp[0]),66), X264_MIN(abs(bmy - m->mvp[1]),66) );
    x264_macroblock_cache_mvd( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, amvd );
    h->mb.b_skip_mc = 0;
}