ratecontrol.c
121 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
/*****************************************************************************
* ratecontrol.c: ratecontrol
*****************************************************************************
* Copyright (C) 2005-2024 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Michael Niedermayer <michaelni@gmx.at>
* Gabriel Bouvigne <gabriel.bouvigne@joost.com>
* Fiona Glaser <fiona@x264.com>
* Måns Rullgård <mru@mru.ath.cx>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
#undef NDEBUG // always check asserts, the speed effect is far too small to disable them
#include "common/common.h"
#include "ratecontrol.h"
#include "me.h"
typedef struct
{
int pict_type;
int frame_type;
int kept_as_ref;
double qscale;
int mv_bits;
int tex_bits;
int misc_bits;
double expected_bits; /* total expected bits up to the current frame (current one excluded) */
double expected_vbv;
double new_qscale;
float new_qp;
int i_count;
int p_count;
int s_count;
float blurred_complexity;
char direct_mode;
int16_t weight[3][2];
int16_t i_weight_denom[2];
int refcount[16];
int refs;
int64_t i_duration;
int64_t i_cpb_duration;
int out_num;
} ratecontrol_entry_t;
typedef struct
{
float coeff_min;
float coeff;
float count;
float decay;
float offset;
} predictor_t;
struct x264_ratecontrol_t
{
/* constants */
int b_abr;
int b_2pass;
int b_vbv;
int b_vbv_min_rate;
double fps;
double bitrate;
double rate_tolerance;
double qcompress;
int nmb; /* number of macroblocks in a frame */
int qp_constant[3];
/* current frame */
ratecontrol_entry_t *rce;
float qpm; /* qp for current macroblock: precise float for AQ */
float qpa_rc; /* average of macroblocks' qp before aq */
float qpa_rc_prev;
int qpa_aq; /* average of macroblocks' qp after aq */
int qpa_aq_prev;
float qp_novbv; /* QP for the current frame if 1-pass VBV was disabled. */
/* VBV stuff */
double buffer_size;
int64_t buffer_fill_final;
int64_t buffer_fill_final_min;
double buffer_fill; /* planned buffer, if all in-progress frames hit their bit budget */
double buffer_rate; /* # of bits added to buffer_fill after each frame */
double vbv_max_rate; /* # of bits added to buffer_fill per second */
predictor_t *pred; /* predict frame size from satd */
int single_frame_vbv;
float rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */
/* ABR stuff */
int last_satd;
double last_rceq;
double cplxr_sum; /* sum of bits*qscale/rceq */
double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */
int64_t filler_bits_sum; /* sum in bits of finished frames' filler data */
double wanted_bits_window; /* target bitrate * window */
double cbr_decay;
double short_term_cplxsum;
double short_term_cplxcount;
double rate_factor_constant;
double ip_offset;
double pb_offset;
/* 2pass stuff */
FILE *p_stat_file_out;
char *psz_stat_file_tmpname;
FILE *p_mbtree_stat_file_out;
char *psz_mbtree_stat_file_tmpname;
char *psz_mbtree_stat_file_name;
FILE *p_mbtree_stat_file_in;
int num_entries; /* number of ratecontrol_entry_ts */
ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */
ratecontrol_entry_t **entry_out;
double last_qscale;
double last_qscale_for[3]; /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */
int last_non_b_pict_type;
double accum_p_qp; /* for determining I-frame quant */
double accum_p_norm;
double last_accum_p_norm;
double lmin[3]; /* min qscale by frame type */
double lmax[3];
double lstep; /* max change (multiply) in qscale per frame */
struct
{
uint16_t *qp_buffer[2]; /* Global buffers for converting MB-tree quantizer data. */
int qpbuf_pos; /* In order to handle pyramid reordering, QP buffer acts as a stack.
* This value is the current position (0 or 1). */
int src_mb_count;
/* For rescaling */
int rescale_enabled;
float *scale_buffer[2]; /* Intermediate buffers */
int filtersize[2]; /* filter size (H/V) */
float *coeffs[2];
int *pos[2];
int srcdim[2]; /* Source dimensions (W/H) */
} mbtree;
/* MBRC stuff */
volatile float frame_size_estimated; /* Access to this variable must be atomic: double is
* not atomic on all arches we care about */
volatile float bits_so_far;
double frame_size_maximum; /* Maximum frame size due to MinCR */
double frame_size_planned;
double slice_size_planned;
predictor_t *row_pred;
predictor_t row_preds[3][2];
predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */
int bframes; /* # consecutive B-frames before this P-frame */
int bframe_bits; /* total cost of those frames */
int i_zones;
x264_zone_t *zones;
x264_zone_t *prev_zone;
/* hrd stuff */
int initial_cpb_removal_delay;
int initial_cpb_removal_delay_offset;
double nrt_first_access_unit; /* nominal removal time */
double previous_cpb_final_arrival_time;
uint64_t hrd_multiply_denom;
};
static int parse_zones( x264_t *h );
static int init_pass2(x264_t *);
static float rate_estimate_qscale( x264_t *h );
static int update_vbv( x264_t *h, int bits );
static void update_vbv_plan( x264_t *h, int overhead );
static float predict_size( predictor_t *p, float q, float var );
static void update_predictor( predictor_t *p, float q, float var, float bits );
#define CMP_OPT_FIRST_PASS( opt, param_val )\
{\
if( ( p = strstr( opts, opt "=" ) ) && sscanf( p, opt "=%d" , &i ) && param_val != i )\
{\
x264_log( h, X264_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i );\
return -1;\
}\
}
/* Terminology:
* qp = h.264's quantizer
* qscale = linearized quantizer = Lagrange multiplier
*/
static inline float qp2qscale( float qp )
{
return 0.85f * powf( 2.0f, ( qp - (12.0f + QP_BD_OFFSET) ) / 6.0f );
}
static inline float qscale2qp( float qscale )
{
return (12.0f + QP_BD_OFFSET) + 6.0f * log2f( qscale/0.85f );
}
/* Texture bitrate is not quite inversely proportional to qscale,
* probably due the the changing number of SKIP blocks.
* MV bits level off at about qp<=12, because the lambda used
* for motion estimation is constant there. */
static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale )
{
if( qscale<0.1 )
qscale = 0.1;
return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 )
+ rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 )
+ rce->misc_bits;
}
static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i, int b_store )
{
uint32_t sum = sum_ssd;
uint32_t ssd = sum_ssd >> 32;
if( b_store )
{
frame->i_pixel_sum[i] += sum;
frame->i_pixel_ssd[i] += ssd;
}
return ssd - ((uint64_t)sum * sum >> shift);
}
static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i, int b_chroma, int b_field, int b_store )
{
int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16;
int stride = frame->i_stride[i];
int offset = b_field
? 16 * mb_x + height * (mb_y&~1) * stride + (mb_y&1) * stride
: 16 * mb_x + height * mb_y * stride;
stride <<= b_field;
if( b_chroma )
{
ALIGNED_ARRAY_64( pixel, pix,[FENC_STRIDE*16] );
int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
int shift = 7 - CHROMA_V_SHIFT;
h->mc.load_deinterleave_chroma_fenc( pix, frame->plane[1] + offset, stride, height );
return ac_energy_var( h->pixf.var[chromapix]( pix, FENC_STRIDE ), shift, frame, 1, b_store )
+ ac_energy_var( h->pixf.var[chromapix]( pix+FENC_STRIDE/2, FENC_STRIDE ), shift, frame, 2, b_store );
}
else
return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[i] + offset, stride ), 8, frame, i, b_store );
}
// Find the total AC energy of the block in all planes.
static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame )
{
/* This function contains annoying hacks because GCC has a habit of reordering emms
* and putting it after floating point ops. As a result, we put the emms at the end of the
* function and make sure that its always called before the float math. Noinline makes
* sure no reordering goes on. */
uint32_t var;
x264_prefetch_fenc( h, frame, mb_x, mb_y );
if( h->mb.b_adaptive_mbaff )
{
/* We don't know the super-MB mode we're going to pick yet, so
* simply try both and pick the lower of the two. */
uint32_t var_interlaced, var_progressive;
var_interlaced = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 1, 1 );
var_progressive = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 0, 0 );
if( CHROMA444 )
{
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 1, 1 );
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 0, 0 );
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 1, 1 );
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 0, 0 );
}
else if( CHROMA_FORMAT )
{
var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 1, 1 );
var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 0, 0 );
}
var = X264_MIN( var_interlaced, var_progressive );
}
else
{
var = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, PARAM_INTERLACED, 1 );
if( CHROMA444 )
{
var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, PARAM_INTERLACED, 1 );
var += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, PARAM_INTERLACED, 1 );
}
else if( CHROMA_FORMAT )
var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, PARAM_INTERLACED, 1 );
}
x264_emms();
return var;
}
void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets )
{
/* Initialize frame stats */
for( int i = 0; i < 3; i++ )
{
frame->i_pixel_sum[i] = 0;
frame->i_pixel_ssd[i] = 0;
}
/* Degenerate cases */
if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 )
{
/* Need to init it anyways for MB tree */
if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 )
{
if( quant_offsets )
{
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy];
if( h->frames.b_have_lowres )
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] );
}
else
{
memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) );
memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) );
if( h->frames.b_have_lowres )
for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ )
frame->i_inv_qscale_factor[mb_xy] = 256;
}
}
/* Need variance data for weighted prediction */
if( h->param.analyse.i_weighted_pred )
{
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
ac_energy_mb( h, mb_x, mb_y, frame );
}
else
return;
}
/* Actual adaptive quantization */
else
{
/* constants chosen to result in approximately the same overall bitrate as without AQ.
* FIXME: while they're written in 5 significant digits, they're only tuned to 2. */
float strength;
float avg_adj = 0.f;
float bias_strength = 0.f;
if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE || h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
{
float bit_depth_correction = 1.f / (1 << (2*(BIT_DEPTH-8)));
float avg_adj_pow2 = 0.f;
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
{
uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
float qp_adj = powf( energy * bit_depth_correction + 1, 0.125f );
frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj;
avg_adj += qp_adj;
avg_adj_pow2 += qp_adj * qp_adj;
}
avg_adj /= h->mb.i_mb_count;
avg_adj_pow2 /= h->mb.i_mb_count;
strength = h->param.rc.f_aq_strength * avg_adj;
avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - 14.f) / avg_adj;
bias_strength = h->param.rc.f_aq_strength;
}
else
strength = h->param.rc.f_aq_strength * 1.0397f;
for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ )
for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ )
{
float qp_adj;
int mb_xy = mb_x + mb_y*h->mb.i_mb_stride;
if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED )
{
qp_adj = frame->f_qp_offset[mb_xy];
qp_adj = strength * (qp_adj - avg_adj) + bias_strength * (1.f - 14.f / (qp_adj * qp_adj));
}
else if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE )
{
qp_adj = frame->f_qp_offset[mb_xy];
qp_adj = strength * (qp_adj - avg_adj);
}
else
{
uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame );
qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8)));
}
if( quant_offsets )
qp_adj += quant_offsets[mb_xy];
frame->f_qp_offset[mb_xy] =
frame->f_qp_offset_aq[mb_xy] = qp_adj;
if( h->frames.b_have_lowres )
frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj);
}
}
/* Remove mean from SSD calculation */
for( int i = 0; i < 3; i++ )
{
uint64_t ssd = frame->i_pixel_ssd[i];
uint64_t sum = frame->i_pixel_sum[i];
int width = 16*h->mb.i_mb_width >> (i && CHROMA_H_SHIFT);
int height = 16*h->mb.i_mb_height >> (i && CHROMA_V_SHIFT);
frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height);
}
}
static int macroblock_tree_rescale_init( x264_t *h, x264_ratecontrol_t *rc )
{
/* Use fractional QP array dimensions to compensate for edge padding */
float srcdim[2] = {rc->mbtree.srcdim[0] / 16.f, rc->mbtree.srcdim[1] / 16.f};
float dstdim[2] = { h->param.i_width / 16.f, h->param.i_height / 16.f};
int srcdimi[2] = {ceil(srcdim[0]), ceil(srcdim[1])};
int dstdimi[2] = {ceil(dstdim[0]), ceil(dstdim[1])};
if( h->param.b_interlaced || h->param.b_fake_interlaced )
{
srcdimi[1] = (srcdimi[1]+1)&~1;
dstdimi[1] = (dstdimi[1]+1)&~1;
}
rc->mbtree.src_mb_count = srcdimi[0] * srcdimi[1];
CHECKED_MALLOC( rc->mbtree.qp_buffer[0], rc->mbtree.src_mb_count * sizeof(uint16_t) );
if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read )
CHECKED_MALLOC( rc->mbtree.qp_buffer[1], rc->mbtree.src_mb_count * sizeof(uint16_t) );
rc->mbtree.qpbuf_pos = -1;
/* No rescaling to do */
if( srcdimi[0] == dstdimi[0] && srcdimi[1] == dstdimi[1] )
return 0;
rc->mbtree.rescale_enabled = 1;
/* Allocate intermediate scaling buffers */
CHECKED_MALLOC( rc->mbtree.scale_buffer[0], srcdimi[0] * srcdimi[1] * sizeof(float) );
CHECKED_MALLOC( rc->mbtree.scale_buffer[1], dstdimi[0] * srcdimi[1] * sizeof(float) );
/* Allocate and calculate resize filter parameters and coefficients */
for( int i = 0; i < 2; i++ )
{
if( srcdim[i] > dstdim[i] ) // downscale
rc->mbtree.filtersize[i] = 1 + (2 * srcdimi[i] + dstdimi[i] - 1) / dstdimi[i];
else // upscale
rc->mbtree.filtersize[i] = 3;
CHECKED_MALLOC( rc->mbtree.coeffs[i], rc->mbtree.filtersize[i] * dstdimi[i] * sizeof(float) );
CHECKED_MALLOC( rc->mbtree.pos[i], dstdimi[i] * sizeof(int) );
/* Initialize filter coefficients */
float inc = srcdim[i] / dstdim[i];
float dmul = inc > 1.f ? dstdim[i] / srcdim[i] : 1.f;
float dstinsrc = 0.5f * inc - 0.5f;
int filtersize = rc->mbtree.filtersize[i];
for( int j = 0; j < dstdimi[i]; j++ )
{
int pos = dstinsrc - (filtersize - 2.f) * 0.5f;
float sum = 0.0;
rc->mbtree.pos[i][j] = pos;
for( int k = 0; k < filtersize; k++ )
{
float d = fabs( pos + k - dstinsrc ) * dmul;
float coeff = X264_MAX( 1.f - d, 0 );
rc->mbtree.coeffs[i][j * filtersize + k] = coeff;
sum += coeff;
}
sum = 1.0f / sum;
for( int k = 0; k < filtersize; k++ )
rc->mbtree.coeffs[i][j * filtersize + k] *= sum;
dstinsrc += inc;
}
}
/* Write back actual qp array dimensions */
rc->mbtree.srcdim[0] = srcdimi[0];
rc->mbtree.srcdim[1] = srcdimi[1];
return 0;
fail:
return -1;
}
static void macroblock_tree_rescale_destroy( x264_ratecontrol_t *rc )
{
for( int i = 0; i < 2; i++ )
{
x264_free( rc->mbtree.qp_buffer[i] );
x264_free( rc->mbtree.scale_buffer[i] );
x264_free( rc->mbtree.coeffs[i] );
x264_free( rc->mbtree.pos[i] );
}
}
static ALWAYS_INLINE float tapfilter( float *src, int pos, int max, int stride, float *coeff, int filtersize )
{
float sum = 0.f;
for( int i = 0; i < filtersize; i++, pos++ )
sum += src[x264_clip3( pos, 0, max-1 )*stride] * coeff[i];
return sum;
}
static void macroblock_tree_rescale( x264_t *h, x264_ratecontrol_t *rc, float *dst )
{
float *input, *output;
int filtersize, stride, height;
/* H scale first */
input = rc->mbtree.scale_buffer[0];
output = rc->mbtree.scale_buffer[1];
filtersize = rc->mbtree.filtersize[0];
stride = rc->mbtree.srcdim[0];
height = rc->mbtree.srcdim[1];
for( int y = 0; y < height; y++, input += stride, output += h->mb.i_mb_width )
{
float *coeff = rc->mbtree.coeffs[0];
for( int x = 0; x < h->mb.i_mb_width; x++, coeff+=filtersize )
output[x] = tapfilter( input, rc->mbtree.pos[0][x], stride, 1, coeff, filtersize );
}
/* V scale next */
input = rc->mbtree.scale_buffer[1];
output = dst;
filtersize = rc->mbtree.filtersize[1];
stride = h->mb.i_mb_width;
height = rc->mbtree.srcdim[1];
for( int x = 0; x < h->mb.i_mb_width; x++, input++, output++ )
{
float *coeff = rc->mbtree.coeffs[1];
for( int y = 0; y < h->mb.i_mb_height; y++, coeff+=filtersize )
output[y*stride] = tapfilter( input, rc->mbtree.pos[1][y], height, stride, coeff, filtersize );
}
}
int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets )
{
x264_ratecontrol_t *rc = h->rc;
uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type;
if( rc->entry[frame->i_frame].kept_as_ref )
{
uint8_t i_type;
if( rc->mbtree.qpbuf_pos < 0 )
{
do
{
rc->mbtree.qpbuf_pos++;
if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) )
goto fail;
if( fread( rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], sizeof(uint16_t), rc->mbtree.src_mb_count, rc->p_mbtree_stat_file_in ) != (unsigned)rc->mbtree.src_mb_count )
goto fail;
if( i_type != i_type_actual && rc->mbtree.qpbuf_pos == 1 )
{
x264_log( h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual );
return -1;
}
} while( i_type != i_type_actual );
}
float *dst = rc->mbtree.rescale_enabled ? rc->mbtree.scale_buffer[0] : frame->f_qp_offset;
h->mc.mbtree_fix8_unpack( dst, rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], rc->mbtree.src_mb_count );
if( rc->mbtree.rescale_enabled )
macroblock_tree_rescale( h, rc, frame->f_qp_offset );
if( h->frames.b_have_lowres )
for( int i = 0; i < h->mb.i_mb_count; i++ )
frame->i_inv_qscale_factor[i] = x264_exp2fix8( frame->f_qp_offset[i] );
rc->mbtree.qpbuf_pos--;
}
else
x264_adaptive_quant_frame( h, frame, quant_offsets );
return 0;
fail:
x264_log( h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n" );
return -1;
}
int x264_reference_build_list_optimal( x264_t *h )
{
ratecontrol_entry_t *rce = h->rc->rce;
x264_frame_t *frames[16];
x264_weight_t weights[16][3];
int refcount[16];
if( rce->refs != h->i_ref[0] )
return -1;
memcpy( frames, h->fref[0], sizeof(frames) );
memcpy( refcount, rce->refcount, sizeof(refcount) );
memcpy( weights, h->fenc->weight, sizeof(weights) );
memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) );
/* For now don't reorder ref 0; it seems to lower quality
in most cases due to skips. */
for( int ref = 1; ref < h->i_ref[0]; ref++ )
{
int max = -1;
int bestref = 1;
for( int i = 1; i < h->i_ref[0]; i++ )
/* Favor lower POC as a tiebreaker. */
COPY2_IF_GT( max, refcount[i], bestref, i );
/* FIXME: If there are duplicates from frames other than ref0 then it is possible
* that the optimal ordering doesn't place every duplicate. */
refcount[bestref] = -1;
h->fref[0][ref] = frames[bestref];
memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) );
}
return 0;
}
static char *strcat_filename( char *input, char *suffix )
{
char *output = x264_malloc( strlen( input ) + strlen( suffix ) + 1 );
if( !output )
return NULL;
strcpy( output, input );
strcat( output, suffix );
return output;
}
void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init )
{
x264_ratecontrol_t *rc = h->rc;
if( !b_init && rc->b_2pass )
return;
if( h->param.rc.i_rc_method == X264_RC_CRF )
{
/* Arbitrary rescaling to make CRF somewhat similar to QP.
* Try to compensate for MB-tree's effects as well. */
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress )
/ qp2qscale( h->param.rc.f_rf_constant + mbtree_offset + QP_BD_OFFSET );
}
if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 )
{
/* We don't support changing the ABR bitrate right now,
so if the stream starts as CBR, keep it CBR. */
if( rc->b_vbv_min_rate )
h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate;
if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) )
{
h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps;
x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n",
h->param.rc.i_vbv_buffer_size );
}
int kilobit_size = h->param.i_avcintra_class ? 1024 : 1000;
int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * kilobit_size;
int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * kilobit_size;
/* Init HRD */
if( h->param.i_nal_hrd && b_init )
{
h->sps->vui.hrd.i_cpb_cnt = 1;
h->sps->vui.hrd.b_cbr_hrd = h->param.i_nal_hrd == X264_NAL_HRD_CBR;
h->sps->vui.hrd.i_time_offset_length = 0;
#define BR_SHIFT 6
#define CPB_SHIFT 4
// normalize HRD size and rate to the value / scale notation
h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( vbv_max_bitrate ) - BR_SHIFT, 0, 15 );
h->sps->vui.hrd.i_bit_rate_value = vbv_max_bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT );
h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( vbv_buffer_size ) - CPB_SHIFT, 0, 15 );
h->sps->vui.hrd.i_cpb_size_value = vbv_buffer_size >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT );
#undef CPB_SHIFT
#undef BR_SHIFT
// arbitrary
#define MAX_DURATION 0.5
int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX );
int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick;
int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5);
h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 );
h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 );
h->sps->vui.hrd.i_dpb_output_delay_length = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 );
#undef MAX_DURATION
vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled;
vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
}
else if( h->param.i_nal_hrd && !b_init )
{
x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" );
return;
}
h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate;
h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size;
if( rc->b_vbv_min_rate )
rc->bitrate = (double)h->param.rc.i_bitrate * kilobit_size;
rc->buffer_rate = vbv_max_bitrate / rc->fps;
rc->vbv_max_rate = vbv_max_bitrate;
rc->buffer_size = vbv_buffer_size;
rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size;
if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR )
rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size
* 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate);
if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.f_rf_constant_max )
{
rc->rate_factor_max_increment = h->param.rc.f_rf_constant_max - h->param.rc.f_rf_constant;
if( rc->rate_factor_max_increment <= 0 )
{
x264_log( h, X264_LOG_WARNING, "CRF max must be greater than CRF\n" );
rc->rate_factor_max_increment = 0;
}
}
if( b_init )
{
if( h->param.rc.f_vbv_buffer_init > 1. )
h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 );
h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1);
rc->buffer_fill_final =
rc->buffer_fill_final_min = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale;
rc->b_vbv = 1;
rc->b_vbv_min_rate = !rc->b_2pass
&& h->param.rc.i_rc_method == X264_RC_ABR
&& h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate;
}
}
}
int x264_ratecontrol_new( x264_t *h )
{
x264_ratecontrol_t *rc;
x264_emms();
CHECKED_MALLOCZERO( h->rc, h->param.i_threads * sizeof(x264_ratecontrol_t) );
rc = h->rc;
rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read;
rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
/* FIXME: use integers */
if( h->param.i_fps_num > 0 && h->param.i_fps_den > 0 )
rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den;
else
rc->fps = 25.0;
if( h->param.rc.b_mb_tree )
{
h->param.rc.f_pb_factor = 1;
rc->qcompress = 1;
}
else
rc->qcompress = h->param.rc.f_qcompress;
rc->bitrate = h->param.rc.i_bitrate * (h->param.i_avcintra_class ? 1024. : 1000.);
rc->rate_tolerance = h->param.rc.f_rate_tolerance;
rc->nmb = h->mb.i_mb_count;
rc->last_non_b_pict_type = -1;
rc->cbr_decay = 1.0;
if( h->param.rc.i_rc_method != X264_RC_ABR && h->param.rc.b_stat_read )
{
x264_log( h, X264_LOG_ERROR, "CRF/CQP is incompatible with 2pass.\n" );
return -1;
}
x264_ratecontrol_init_reconfigurable( h, 1 );
if( h->param.i_nal_hrd )
{
uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale;
uint64_t num = 90000;
x264_reduce_fraction64( &num, &denom );
rc->hrd_multiply_denom = 90000 / num;
double bits_required = log2( num )
+ log2( h->sps->vui.i_time_scale )
+ log2( h->sps->vui.hrd.i_cpb_size_unscaled );
if( bits_required >= 63 )
{
x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" );
return -1;
}
}
if( rc->rate_tolerance < 0.01 )
{
x264_log( h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n" );
rc->rate_tolerance = 0.01;
}
h->mb.b_variable_qp = rc->b_vbv || h->param.rc.i_aq_mode;
if( rc->b_abr )
{
/* FIXME ABR_INIT_QP is actually used only in CRF */
#define ABR_INIT_QP (( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) + QP_BD_OFFSET)
rc->accum_p_norm = .01;
rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm;
/* estimated ratio that produces a reasonable QP for the first I-frame */
rc->cplxr_sum = .01 * pow( 7.0e5, rc->qcompress ) * pow( h->mb.i_mb_count, 0.5 );
rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps;
rc->last_non_b_pict_type = SLICE_TYPE_I;
}
rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor );
rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor );
rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX );
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX );
h->mb.ip_offset = rc->ip_offset + 0.5;
rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 );
rc->last_qscale = qp2qscale( 26 + QP_BD_OFFSET );
int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1;
CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds );
CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) );
static const float pred_coeff_table[3] = { 1.0, 1.0, 1.5 };
for( int i = 0; i < 3; i++ )
{
rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP );
rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min );
rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max );
for( int j = 0; j < num_preds; j++ )
{
rc->pred[i+j*5].coeff_min = pred_coeff_table[i] / 2;
rc->pred[i+j*5].coeff = pred_coeff_table[i];
rc->pred[i+j*5].count = 1.0;
rc->pred[i+j*5].decay = 0.5;
rc->pred[i+j*5].offset = 0.0;
}
for( int j = 0; j < 2; j++ )
{
rc->row_preds[i][j].coeff_min = .25 / 4;
rc->row_preds[i][j].coeff = .25;
rc->row_preds[i][j].count = 1.0;
rc->row_preds[i][j].decay = 0.5;
rc->row_preds[i][j].offset = 0.0;
}
}
rc->pred_b_from_p->coeff_min = 0.5 / 2;
rc->pred_b_from_p->coeff = 0.5;
rc->pred_b_from_p->count = 1.0;
rc->pred_b_from_p->decay = 0.5;
rc->pred_b_from_p->offset = 0.0;
if( parse_zones( h ) < 0 )
{
x264_log( h, X264_LOG_ERROR, "failed to parse zones\n" );
return -1;
}
/* Load stat file and init 2pass algo */
if( h->param.rc.b_stat_read )
{
char *p, *stats_in, *stats_buf;
/* read 1st pass stats */
assert( h->param.rc.psz_stat_in );
stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in );
if( !stats_buf )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
return -1;
}
if( h->param.rc.b_mb_tree )
{
char *mbtree_stats_in = strcat_filename( h->param.rc.psz_stat_in, ".mbtree" );
if( !mbtree_stats_in )
return -1;
rc->p_mbtree_stat_file_in = x264_fopen( mbtree_stats_in, "rb" );
x264_free( mbtree_stats_in );
if( !rc->p_mbtree_stat_file_in )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
return -1;
}
}
/* check whether 1st pass options were compatible with current options */
if( strncmp( stats_buf, "#options:", 9 ) )
{
x264_log( h, X264_LOG_ERROR, "options list in stats file not valid\n" );
return -1;
}
float res_factor, res_factor_bits;
{
int i, j;
uint32_t k, l;
char *opts = stats_buf;
stats_in = strchr( stats_buf, '\n' );
if( !stats_in )
return -1;
*stats_in = '\0';
stats_in++;
if( sscanf( opts, "#options: %dx%d", &i, &j ) != 2 )
{
x264_log( h, X264_LOG_ERROR, "resolution specified in stats file not valid\n" );
return -1;
}
else if( h->param.rc.b_mb_tree )
{
rc->mbtree.srcdim[0] = i;
rc->mbtree.srcdim[1] = j;
}
res_factor = (float)h->param.i_width * h->param.i_height / (i*j);
/* Change in bits relative to resolution isn't quite linear on typical sources,
* so we'll at least try to roughly approximate this effect. */
res_factor_bits = powf( res_factor, 0.7 );
if( !( p = strstr( opts, "timebase=" ) ) || sscanf( p, "timebase=%u/%u", &k, &l ) != 2 )
{
x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" );
return -1;
}
if( k != h->param.i_timebase_num || l != h->param.i_timebase_den )
{
x264_log( h, X264_LOG_ERROR, "timebase mismatch with 1st pass (%u/%u vs %u/%u)\n",
h->param.i_timebase_num, h->param.i_timebase_den, k, l );
return -1;
}
CMP_OPT_FIRST_PASS( "bitdepth", BIT_DEPTH );
CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) );
CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe );
CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid );
CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh );
CMP_OPT_FIRST_PASS( "open_gop", h->param.b_open_gop );
CMP_OPT_FIRST_PASS( "bluray_compat", h->param.b_bluray_compat );
CMP_OPT_FIRST_PASS( "mbtree", h->param.rc.b_mb_tree );
if( (p = strstr( opts, "interlaced=" )) )
{
char *current = h->param.b_interlaced ? h->param.b_tff ? "tff" : "bff" : h->param.b_fake_interlaced ? "fake" : "0";
char buf[5];
sscanf( p, "interlaced=%4s", buf );
if( strcmp( current, buf ) )
{
x264_log( h, X264_LOG_ERROR, "different interlaced setting than first pass (%s vs %s)\n", current, buf );
return -1;
}
}
if( (p = strstr( opts, "keyint=" )) )
{
p += 7;
char buf[13] = "infinite ";
if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE )
sprintf( buf, "%d ", h->param.i_keyint_max );
if( strncmp( p, buf, strlen(buf) ) )
{
x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n",
strlen(buf)-1, buf, strcspn(p, " "), p );
return -1;
}
}
if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR )
x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" );
if( !strstr( opts, "direct=3" ) && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
{
x264_log( h, X264_LOG_WARNING, "direct=auto not used on the first pass\n" );
h->mb.b_direct_auto_write = 1;
}
if( ( p = strstr( opts, "b_adapt=" ) ) && sscanf( p, "b_adapt=%d", &i ) && i >= X264_B_ADAPT_NONE && i <= X264_B_ADAPT_TRELLIS )
h->param.i_bframe_adaptive = i;
else if( h->param.i_bframe )
{
x264_log( h, X264_LOG_ERROR, "b_adapt method specified in stats file not valid\n" );
return -1;
}
if( (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size) && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) )
h->param.rc.i_lookahead = i;
}
/* find number of pics */
p = stats_in;
int num_entries;
for( num_entries = -1; p; num_entries++ )
p = strchr( p + 1, ';' );
if( !num_entries )
{
x264_log( h, X264_LOG_ERROR, "empty stats file\n" );
return -1;
}
rc->num_entries = num_entries;
if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 )
{
x264_log( h, X264_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n",
h->param.i_frame_total, rc->num_entries );
}
if( h->param.i_frame_total > rc->num_entries )
{
x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n",
h->param.i_frame_total, rc->num_entries );
return -1;
}
CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) );
CHECKED_MALLOC( rc->entry_out, rc->num_entries * sizeof(ratecontrol_entry_t*) );
/* init all to skipped p frames */
for( int i = 0; i < rc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rc->entry[i];
rce->pict_type = SLICE_TYPE_P;
rce->qscale = rce->new_qscale = qp2qscale( 20 + QP_BD_OFFSET );
rce->misc_bits = rc->nmb + 10;
rce->new_qp = 0;
rc->entry_out[i] = rce;
}
/* read stats */
p = stats_in;
double total_qp_aq = 0;
for( int i = 0; i < rc->num_entries; i++ )
{
ratecontrol_entry_t *rce;
int frame_number = 0;
int frame_out_number = 0;
char pict_type = 0;
int e;
char *next;
float qp_rc, qp_aq;
int ref;
next= strchr(p, ';');
if( next )
*next++ = 0; //sscanf is unbelievably slow on long strings
e = sscanf( p, " in:%d out:%d ", &frame_number, &frame_out_number );
if( frame_number < 0 || frame_number >= rc->num_entries )
{
x264_log( h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i );
return -1;
}
if( frame_out_number < 0 || frame_out_number >= rc->num_entries )
{
x264_log( h, X264_LOG_ERROR, "bad frame output number (%d) at stats line %d\n", frame_out_number, i );
return -1;
}
rce = &rc->entry[frame_number];
rc->entry_out[frame_out_number] = rce;
rce->direct_mode = 0;
e += sscanf( p, " in:%*d out:%*d type:%c dur:%"SCNd64" cpbdur:%"SCNd64" q:%f aq:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c",
&pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp_rc, &qp_aq, &rce->tex_bits,
&rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count,
&rce->s_count, &rce->direct_mode );
rce->tex_bits *= res_factor_bits;
rce->mv_bits *= res_factor_bits;
rce->misc_bits *= res_factor_bits;
rce->i_count *= res_factor;
rce->p_count *= res_factor;
rce->s_count *= res_factor;
p = strstr( p, "ref:" );
if( !p )
goto parse_error;
p += 4;
for( ref = 0; ref < 16; ref++ )
{
if( sscanf( p, " %d", &rce->refcount[ref] ) != 1 )
break;
p = strchr( p+1, ' ' );
if( !p )
goto parse_error;
}
rce->refs = ref;
/* find weights */
rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
char *w = strchr( p, 'w' );
if( w )
{
int count = sscanf( w, "w:%hd,%hd,%hd,%hd,%hd,%hd,%hd,%hd",
&rce->i_weight_denom[0], &rce->weight[0][0], &rce->weight[0][1],
&rce->i_weight_denom[1], &rce->weight[1][0], &rce->weight[1][1],
&rce->weight[2][0], &rce->weight[2][1] );
if( count == 3 )
rce->i_weight_denom[1] = -1;
else if( count != 8 )
rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1;
}
if( pict_type != 'b' )
rce->kept_as_ref = 1;
switch( pict_type )
{
case 'I':
rce->frame_type = X264_TYPE_IDR;
rce->pict_type = SLICE_TYPE_I;
break;
case 'i':
rce->frame_type = X264_TYPE_I;
rce->pict_type = SLICE_TYPE_I;
break;
case 'P':
rce->frame_type = X264_TYPE_P;
rce->pict_type = SLICE_TYPE_P;
break;
case 'B':
rce->frame_type = X264_TYPE_BREF;
rce->pict_type = SLICE_TYPE_B;
break;
case 'b':
rce->frame_type = X264_TYPE_B;
rce->pict_type = SLICE_TYPE_B;
break;
default: e = -1; break;
}
if( e < 14 )
{
parse_error:
x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e );
return -1;
}
rce->qscale = qp2qscale( qp_rc );
total_qp_aq += qp_aq;
p = next;
}
if( !h->param.b_stitchable )
h->pps->i_pic_init_qp = SPEC_QP( (int)(total_qp_aq / rc->num_entries + 0.5) );
x264_free( stats_buf );
if( h->param.rc.i_rc_method == X264_RC_ABR )
{
if( init_pass2( h ) < 0 )
return -1;
} /* else we're using constant quant, so no need to run the bitrate allocation */
}
/* Open output file */
/* If input and output files are the same, output to a temp file
* and move it to the real name only when it's complete */
if( h->param.rc.b_stat_write )
{
char *p;
rc->psz_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".temp" );
if( !rc->psz_stat_file_tmpname )
return -1;
rc->p_stat_file_out = x264_fopen( rc->psz_stat_file_tmpname, "wb" );
if( rc->p_stat_file_out == NULL )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" );
return -1;
}
p = x264_param2string( &h->param, 1 );
if( p )
fprintf( rc->p_stat_file_out, "#options: %s\n", p );
x264_free( p );
if( h->param.rc.b_mb_tree && !h->param.rc.b_stat_read )
{
rc->psz_mbtree_stat_file_tmpname = strcat_filename( h->param.rc.psz_stat_out, ".mbtree.temp" );
rc->psz_mbtree_stat_file_name = strcat_filename( h->param.rc.psz_stat_out, ".mbtree" );
if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name )
return -1;
rc->p_mbtree_stat_file_out = x264_fopen( rc->psz_mbtree_stat_file_tmpname, "wb" );
if( rc->p_mbtree_stat_file_out == NULL )
{
x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" );
return -1;
}
}
}
if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) )
{
if( !h->param.rc.b_stat_read )
{
rc->mbtree.srcdim[0] = h->param.i_width;
rc->mbtree.srcdim[1] = h->param.i_height;
}
if( macroblock_tree_rescale_init( h, rc ) < 0 )
return -1;
}
for( int i = 0; i<h->param.i_threads; i++ )
{
h->thread[i]->rc = rc+i;
if( i )
{
rc[i] = rc[0];
h->thread[i]->param = h->param;
h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp;
h->thread[i]->mb.ip_offset = h->mb.ip_offset;
}
}
return 0;
fail:
return -1;
}
static int parse_zone( x264_t *h, x264_zone_t *z, char *p )
{
int len = 0;
char *tok, UNUSED *saveptr=NULL;
z->param = NULL;
z->f_bitrate_factor = 1;
if( 3 <= sscanf(p, "%d,%d,q=%d%n", &z->i_start, &z->i_end, &z->i_qp, &len) )
z->b_force_qp = 1;
else if( 3 <= sscanf(p, "%d,%d,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) )
z->b_force_qp = 0;
else if( 2 <= sscanf(p, "%d,%d%n", &z->i_start, &z->i_end, &len) )
z->b_force_qp = 0;
else
{
x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p );
return -1;
}
p += len;
if( !*p )
return 0;
CHECKED_MALLOC( z->param, sizeof(x264_param_t) );
memcpy( z->param, &h->param, sizeof(x264_param_t) );
z->param->opaque = NULL;
z->param->param_free = x264_free;
while( (tok = strtok_r( p, ",", &saveptr )) )
{
char *val = strchr( tok, '=' );
if( val )
{
*val = '\0';
val++;
}
if( x264_param_parse( z->param, tok, val ) )
{
x264_log( h, X264_LOG_ERROR, "invalid zone param: %s = %s\n", tok, val );
return -1;
}
p = NULL;
}
return 0;
fail:
return -1;
}
static int parse_zones( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
if( h->param.rc.psz_zones && !h->param.rc.i_zones )
{
char *psz_zones, *p;
CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 );
strcpy( psz_zones, h->param.rc.psz_zones );
h->param.rc.i_zones = 1;
for( p = psz_zones; *p; p++ )
h->param.rc.i_zones += (*p == '/');
CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) );
p = psz_zones;
for( int i = 0; i < h->param.rc.i_zones; i++ )
{
int i_tok = strcspn( p, "/" );
p[i_tok] = 0;
if( parse_zone( h, &h->param.rc.zones[i], p ) )
{
x264_free( psz_zones );
return -1;
}
p += i_tok + 1;
}
x264_free( psz_zones );
}
if( h->param.rc.i_zones > 0 )
{
for( int i = 0; i < h->param.rc.i_zones; i++ )
{
x264_zone_t z = h->param.rc.zones[i];
if( z.i_start < 0 || z.i_start > z.i_end )
{
x264_log( h, X264_LOG_ERROR, "invalid zone: start=%d end=%d\n",
z.i_start, z.i_end );
return -1;
}
else if( !z.b_force_qp && z.f_bitrate_factor <= 0 )
{
x264_log( h, X264_LOG_ERROR, "invalid zone: bitrate_factor=%f\n",
z.f_bitrate_factor );
return -1;
}
}
rc->i_zones = h->param.rc.i_zones + 1;
CHECKED_MALLOC( rc->zones, rc->i_zones * sizeof(x264_zone_t) );
memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) );
// default zone to fall back to if none of the others match
rc->zones[0].i_start = 0;
rc->zones[0].i_end = INT_MAX;
rc->zones[0].b_force_qp = 0;
rc->zones[0].f_bitrate_factor = 1;
CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) );
memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) );
rc->zones[0].param->opaque = NULL;
for( int i = 1; i < rc->i_zones; i++ )
{
if( !rc->zones[i].param )
rc->zones[i].param = rc->zones[0].param;
}
}
return 0;
fail:
return -1;
}
static x264_zone_t *get_zone( x264_t *h, int frame_num )
{
x264_ratecontrol_t *rc = h->rc;
for( int i = rc->i_zones - 1; i >= 0; i-- )
{
x264_zone_t *z = &rc->zones[i];
if( frame_num >= z->i_start && frame_num <= z->i_end )
return z;
}
return NULL;
}
void x264_ratecontrol_summary( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 )
{
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
qscale2qp( pow( base_cplx, 1 - rc->qcompress )
* rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset - QP_BD_OFFSET );
}
}
void x264_ratecontrol_delete( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
int b_regular_file;
if( rc->p_stat_file_out )
{
b_regular_file = x264_is_regular_file( rc->p_stat_file_out );
fclose( rc->p_stat_file_out );
if( h->i_frame >= rc->num_entries && b_regular_file )
if( x264_rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 )
{
x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out );
}
x264_free( rc->psz_stat_file_tmpname );
}
if( rc->p_mbtree_stat_file_out )
{
b_regular_file = x264_is_regular_file( rc->p_mbtree_stat_file_out );
fclose( rc->p_mbtree_stat_file_out );
if( h->i_frame >= rc->num_entries && b_regular_file )
if( x264_rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 )
{
x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n",
rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name );
}
x264_free( rc->psz_mbtree_stat_file_tmpname );
x264_free( rc->psz_mbtree_stat_file_name );
}
if( rc->p_mbtree_stat_file_in )
fclose( rc->p_mbtree_stat_file_in );
x264_free( rc->pred );
x264_free( rc->pred_b_from_p );
x264_free( rc->entry );
x264_free( rc->entry_out );
macroblock_tree_rescale_destroy( rc );
if( rc->zones )
{
x264_param_cleanup( rc->zones[0].param );
x264_free( rc->zones[0].param );
for( int i = 1; i < rc->i_zones; i++ )
if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free )
{
x264_param_cleanup( rc->zones[i].param );
rc->zones[i].param->param_free( rc->zones[i].param );
}
x264_free( rc->zones );
}
x264_free( rc );
}
static void accum_p_qp_update( x264_t *h, float qp )
{
x264_ratecontrol_t *rc = h->rc;
rc->accum_p_qp *= .95;
rc->accum_p_norm *= .95;
rc->accum_p_norm += 1;
if( h->sh.i_type == SLICE_TYPE_I )
rc->accum_p_qp += qp + rc->ip_offset;
else
rc->accum_p_qp += qp;
}
void x264_ratecontrol_zone_init( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) )
x264_encoder_reconfig_apply( h, zone->param );
rc->prev_zone = zone;
}
/* Before encoding a frame, choose a QP for it */
void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead )
{
x264_ratecontrol_t *rc = h->rc;
ratecontrol_entry_t *rce = NULL;
x264_zone_t *zone = get_zone( h, h->fenc->i_frame );
float q;
x264_emms();
if( h->param.rc.b_stat_read )
{
int frame = h->fenc->i_frame;
assert( frame >= 0 && frame < rc->num_entries );
rce = rc->rce = &rc->entry[frame];
if( h->sh.i_type == SLICE_TYPE_B
&& h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO )
{
h->sh.b_direct_spatial_mv_pred = ( rce->direct_mode == 's' );
h->mb.b_direct_auto_read = ( rce->direct_mode == 's' || rce->direct_mode == 't' );
}
}
if( rc->b_vbv )
{
memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) );
memset( h->fdec->f_row_qp, 0, h->mb.i_mb_height * sizeof(float) );
memset( h->fdec->f_row_qscale, 0, h->mb.i_mb_height * sizeof(float) );
rc->row_pred = rc->row_preds[h->sh.i_type];
rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
update_vbv_plan( h, overhead );
const x264_level_t *l = x264_levels;
while( l->level_idc != 0 && l->level_idc != h->param.i_level_idc )
l++;
int mincr = l->mincr;
if( h->param.b_bluray_compat )
mincr = 4;
/* Profiles above High don't require minCR, so just set the maximum to a large value. */
if( h->sps->i_profile_idc > PROFILE_HIGH )
rc->frame_size_maximum = 1e9;
else
{
/* The spec has a bizarre special case for the first frame. */
if( h->i_frame == 0 )
{
//384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR
double fr = 1. / (h->param.i_level_idc >= 60 ? 300 : 172);
int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height;
rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr;
}
else
{
//384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR
rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr;
}
}
}
if( h->sh.i_type != SLICE_TYPE_B )
rc->bframes = h->fenc->i_bframes;
if( rc->b_abr )
{
q = qscale2qp( rate_estimate_qscale( h ) );
}
else if( rc->b_2pass )
{
rce->new_qscale = rate_estimate_qscale( h );
q = qscale2qp( rce->new_qscale );
}
else /* CQP */
{
if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref )
q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2;
else
q = rc->qp_constant[ h->sh.i_type ];
if( zone )
{
if( zone->b_force_qp )
q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
else
q -= 6*log2f( zone->f_bitrate_factor );
}
}
if( i_force_qp != X264_QP_AUTO )
q = i_force_qp - 1;
q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
rc->qpa_rc = rc->qpa_rc_prev =
rc->qpa_aq = rc->qpa_aq_prev = 0;
h->fdec->f_qp_avg_rc =
h->fdec->f_qp_avg_aq =
rc->qpm = q;
if( rce )
rce->new_qp = q;
accum_p_qp_update( h, rc->qpm );
if( h->sh.i_type != SLICE_TYPE_B )
rc->last_non_b_pict_type = h->sh.i_type;
}
static float predict_row_size( x264_t *h, int y, float qscale )
{
/* average between two predictors:
* absolute SATD, and scaled bit cost of the colocated row in the previous frame */
x264_ratecontrol_t *rc = h->rc;
float pred_s = predict_size( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y] );
if( h->sh.i_type == SLICE_TYPE_I || qscale >= h->fref[0][0]->f_row_qscale[y] )
{
if( h->sh.i_type == SLICE_TYPE_P
&& h->fref[0][0]->i_type == h->fdec->i_type
&& h->fref[0][0]->f_row_qscale[y] > 0
&& h->fref[0][0]->i_row_satd[y] > 0
&& (abs(h->fref[0][0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2))
{
float pred_t = h->fref[0][0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref[0][0]->i_row_satd[y]
* h->fref[0][0]->f_row_qscale[y] / qscale;
return (pred_s + pred_t) * 0.5f;
}
return pred_s;
}
/* Our QP is lower than the reference! */
else
{
float pred_intra = predict_size( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y] );
/* Sum: better to overestimate than underestimate by using only one of the two predictors. */
return pred_intra + pred_s;
}
}
static int row_bits_so_far( x264_t *h, int y )
{
int bits = 0;
for( int i = h->i_threadslice_start; i <= y; i++ )
bits += h->fdec->i_row_bits[i];
return bits;
}
static float predict_row_size_to_end( x264_t *h, int y, float qp )
{
float qscale = qp2qscale( qp );
float bits = 0;
for( int i = y+1; i < h->i_threadslice_end; i++ )
bits += predict_row_size( h, i, qscale );
return bits;
}
/* TODO:
* eliminate all use of qp in row ratecontrol: make it entirely qscale-based.
* make this function stop being needlessly O(N^2)
* update more often than once per row? */
int x264_ratecontrol_mb( x264_t *h, int bits )
{
x264_ratecontrol_t *rc = h->rc;
const int y = h->mb.i_mb_y;
h->fdec->i_row_bits[y] += bits;
rc->qpa_aq += h->mb.i_qp;
if( h->mb.i_mb_x != h->mb.i_mb_width - 1 )
return 0;
x264_emms();
rc->qpa_rc += rc->qpm * h->mb.i_mb_width;
if( !rc->b_vbv )
return 0;
float qscale = qp2qscale( rc->qpm );
h->fdec->f_row_qp[y] = rc->qpm;
h->fdec->f_row_qscale[y] = qscale;
update_predictor( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] );
if( h->sh.i_type != SLICE_TYPE_I && rc->qpm < h->fref[0][0]->f_row_qp[y] )
update_predictor( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] );
/* update ratecontrol per-mbpair in MBAFF */
if( SLICE_MBAFF && !(y&1) )
return 0;
/* FIXME: We don't currently support the case where there's a slice
* boundary in between. */
int can_reencode_row = h->sh.i_first_mb <= ((h->mb.i_mb_y - SLICE_MBAFF) * h->mb.i_mb_stride);
/* tweak quality based on difference from predicted size */
float prev_row_qp = h->fdec->f_row_qp[y];
float qp_absolute_max = h->param.rc.i_qp_max;
if( rc->rate_factor_max_increment )
qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment );
float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max );
float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min );
float step_size = 0.5f;
float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned;
float bits_so_far = row_bits_so_far( h, y );
rc->bits_so_far = bits_so_far;
float max_frame_error = x264_clip3f( 1.0 / h->mb.i_mb_height, 0.05, 0.25 );
float max_frame_size = rc->frame_size_maximum - rc->frame_size_maximum * max_frame_error;
max_frame_size = X264_MIN( max_frame_size, rc->buffer_fill - rc->buffer_rate * max_frame_error );
float size_of_other_slices = 0;
if( h->param.b_sliced_threads )
{
float bits_so_far_of_other_slices = 0;
for( int i = 0; i < h->param.i_threads; i++ )
if( h != h->thread[i] )
{
size_of_other_slices += h->thread[i]->rc->frame_size_estimated;
bits_so_far_of_other_slices += h->thread[i]->rc->bits_so_far;
}
float weight = x264_clip3f( (bits_so_far_of_other_slices + rc->frame_size_estimated) / (size_of_other_slices + rc->frame_size_estimated), 0.0, 1.0 );
float frame_size_planned = rc->frame_size_planned - rc->frame_size_planned * max_frame_error;
float size_of_other_slices_planned = X264_MIN( frame_size_planned, max_frame_size ) - rc->slice_size_planned;
size_of_other_slices_planned = X264_MAX( size_of_other_slices_planned, bits_so_far_of_other_slices );
size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned;
}
if( y < h->i_threadslice_end-1 )
{
/* B-frames shouldn't use lower QP than their reference frames. */
if( h->sh.i_type == SLICE_TYPE_B )
{
qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) );
rc->qpm = X264_MAX( rc->qpm, qp_min );
}
float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned;
buffer_left_planned = X264_MAX( buffer_left_planned, 0.f );
/* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */
float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance;
float b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
float trust_coeff = x264_clip3f( bits_so_far / slice_size_planned, 0.0, 1.0 );
/* Don't increase the row QPs until a sufficient amount of the bits of the frame have been processed, in case a flat */
/* area at the top of the frame was measured inaccurately. */
if( trust_coeff < 0.05f )
qp_max = qp_absolute_max = prev_row_qp;
if( h->sh.i_type != SLICE_TYPE_I )
rc_tol *= 0.5f;
if( !rc->b_vbv_min_rate )
qp_min = X264_MAX( qp_min, rc->qp_novbv );
while( rc->qpm < qp_max
&& ((b1 > rc->frame_size_planned + rc_tol) ||
(b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv) ||
(b1 > rc->buffer_fill - buffer_left_planned * 0.5f)) )
{
rc->qpm += step_size;
b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
}
float b_max = b1 + ((rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 0.90f - b1) * trust_coeff;
rc->qpm -= step_size;
float b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
while( rc->qpm > qp_min && rc->qpm < prev_row_qp
&& (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv)
&& (b2 < max_frame_size)
&& ((b2 < rc->frame_size_planned * 0.8f) || (b2 < b_max)) )
{
b1 = b2;
rc->qpm -= step_size;
b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
}
rc->qpm += step_size;
/* avoid VBV underflow or MinCR violation */
while( rc->qpm < qp_absolute_max && (b1 > max_frame_size) )
{
rc->qpm += step_size;
b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices;
}
rc->frame_size_estimated = b1 - size_of_other_slices;
/* If the current row was large enough to cause a large QP jump, try re-encoding it. */
if( rc->qpm > qp_max && prev_row_qp < qp_max && can_reencode_row )
{
/* Bump QP to halfway in between... close enough. */
rc->qpm = x264_clip3f( (prev_row_qp + rc->qpm)*0.5f, prev_row_qp + 1.0f, qp_max );
rc->qpa_rc = rc->qpa_rc_prev;
rc->qpa_aq = rc->qpa_aq_prev;
h->fdec->i_row_bits[y] = 0;
h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
return -1;
}
}
else
{
rc->frame_size_estimated = bits_so_far;
/* Last-ditch attempt: if the last row of the frame underflowed the VBV,
* try again. */
if( rc->qpm < qp_max && can_reencode_row
&& (bits_so_far + size_of_other_slices > X264_MIN( rc->frame_size_maximum, rc->buffer_fill )) )
{
rc->qpm = qp_max;
rc->qpa_rc = rc->qpa_rc_prev;
rc->qpa_aq = rc->qpa_aq_prev;
h->fdec->i_row_bits[y] = 0;
h->fdec->i_row_bits[y-SLICE_MBAFF] = 0;
return -1;
}
}
rc->qpa_rc_prev = rc->qpa_rc;
rc->qpa_aq_prev = rc->qpa_aq;
return 0;
}
int x264_ratecontrol_qp( x264_t *h )
{
x264_emms();
return x264_clip3( h->rc->qpm + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
}
int x264_ratecontrol_mb_qp( x264_t *h )
{
x264_emms();
float qp = h->rc->qpm;
if( h->param.rc.i_aq_mode )
{
/* MB-tree currently doesn't adjust quantizers in unreferenced frames. */
float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy];
/* Scale AQ's effect towards zero in emergency mode. */
if( qp > QP_MAX_SPEC )
qp_offset *= (QP_MAX - qp) / (QP_MAX - QP_MAX_SPEC);
qp += qp_offset;
}
return x264_clip3( qp + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max );
}
/* In 2pass, force the same frame types as in the 1st pass */
int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
{
x264_ratecontrol_t *rc = h->rc;
if( h->param.rc.b_stat_read )
{
if( frame_num >= rc->num_entries )
{
/* We could try to initialize everything required for ABR and
* adaptive B-frames, but that would be complicated.
* So just calculate the average QP used so far. */
h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + QP_BD_OFFSET
: 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX );
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / h->param.rc.f_ip_factor ) + 0.5 ), 0, QP_MAX );
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * h->param.rc.f_pb_factor ) + 0.5 ), 0, QP_MAX );
x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries );
x264_log( h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant );
if( h->param.i_bframe_adaptive )
x264_log( h, X264_LOG_ERROR, "disabling adaptive B-frames\n" );
for( int i = 0; i < h->param.i_threads; i++ )
{
h->thread[i]->rc->b_abr = 0;
h->thread[i]->rc->b_2pass = 0;
h->thread[i]->param.rc.i_rc_method = X264_RC_CQP;
h->thread[i]->param.rc.b_stat_read = 0;
h->thread[i]->param.i_bframe_adaptive = 0;
h->thread[i]->param.i_scenecut_threshold = 0;
h->thread[i]->param.rc.b_mb_tree = 0;
if( h->thread[i]->param.i_bframe > 1 )
h->thread[i]->param.i_bframe = 1;
}
return X264_TYPE_AUTO;
}
return rc->entry[frame_num].frame_type;
}
else
return X264_TYPE_AUTO;
}
void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm )
{
ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame];
if( h->param.analyse.i_weighted_pred <= 0 )
return;
if( rce->i_weight_denom[0] >= 0 )
SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0][0], rce->i_weight_denom[0], rce->weight[0][1] );
if( rce->i_weight_denom[1] >= 0 )
{
SET_WEIGHT( frm->weight[0][1], 1, rce->weight[1][0], rce->i_weight_denom[1], rce->weight[1][1] );
SET_WEIGHT( frm->weight[0][2], 1, rce->weight[2][0], rce->i_weight_denom[1], rce->weight[2][1] );
}
}
/* After encoding one frame, save stats and update ratecontrol state */
int x264_ratecontrol_end( x264_t *h, int bits, int *filler )
{
x264_ratecontrol_t *rc = h->rc;
const int *mbs = h->stat.frame.i_mb_count;
x264_emms();
h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP];
h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4] + mbs[I_PCM];
h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8];
for( int i = B_DIRECT; i <= B_8x8; i++ )
h->stat.frame.i_mb_count_p += mbs[i];
h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
h->fdec->f_qp_avg_aq = (float)rc->qpa_aq / h->mb.i_mb_count;
h->fdec->f_crf_avg = h->param.rc.f_rf_constant + h->fdec->f_qp_avg_rc - rc->qp_novbv;
if( h->param.rc.b_stat_write )
{
char c_type = h->sh.i_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i')
: h->sh.i_type==SLICE_TYPE_P ? 'P'
: h->fenc->b_kept_as_ref ? 'B' : 'b';
int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0];
int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0];
char c_direct = h->mb.b_direct_auto_write ?
( dir_frame>0 ? 's' : dir_frame<0 ? 't' :
dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' )
: '-';
if( fprintf( rc->p_stat_file_out,
"in:%d out:%d type:%c dur:%"PRId64" cpbdur:%"PRId64" q:%.2f aq:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:",
h->fenc->i_frame, h->i_frame,
c_type, h->fenc->i_duration,
h->fenc->i_cpb_duration,
rc->qpa_rc, h->fdec->f_qp_avg_aq,
h->stat.frame.i_tex_bits,
h->stat.frame.i_mv_bits,
h->stat.frame.i_misc_bits,
h->stat.frame.i_mb_count_i,
h->stat.frame.i_mb_count_p,
h->stat.frame.i_mb_count_skip,
c_direct) < 0 )
goto fail;
/* Only write information for reference reordering once. */
int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1;
for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref[0]); i++ )
{
int refcount = use_old_stats ? rc->rce->refcount[i]
: PARAM_INTERLACED ? h->stat.frame.i_mb_count_ref[0][i*2]
+ h->stat.frame.i_mb_count_ref[0][i*2+1]
: h->stat.frame.i_mb_count_ref[0][i];
if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 )
goto fail;
}
if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->sh.weight[0][0].weightfn )
{
if( fprintf( rc->p_stat_file_out, "w:%d,%d,%d",
h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 )
goto fail;
if( h->sh.weight[0][1].weightfn || h->sh.weight[0][2].weightfn )
{
if( fprintf( rc->p_stat_file_out, ",%d,%d,%d,%d,%d ",
h->sh.weight[0][1].i_denom, h->sh.weight[0][1].i_scale, h->sh.weight[0][1].i_offset,
h->sh.weight[0][2].i_scale, h->sh.weight[0][2].i_offset ) < 0 )
goto fail;
}
else if( fprintf( rc->p_stat_file_out, " " ) < 0 )
goto fail;
}
if( fprintf( rc->p_stat_file_out, ";\n") < 0 )
goto fail;
/* Don't re-write the data in multi-pass mode. */
if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read )
{
uint8_t i_type = h->sh.i_type;
h->mc.mbtree_fix8_pack( rc->mbtree.qp_buffer[0], h->fenc->f_qp_offset, h->mb.i_mb_count );
if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 )
goto fail;
if( fwrite( rc->mbtree.qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < (unsigned)h->mb.i_mb_count )
goto fail;
}
}
if( rc->b_abr )
{
if( h->sh.i_type != SLICE_TYPE_B )
rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq;
else
{
/* Depends on the fact that B-frame's QP is an offset from the following P-frame's.
* Not perfectly accurate with B-refs, but good enough. */
rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * h->param.rc.f_pb_factor);
}
rc->cplxr_sum *= rc->cbr_decay;
rc->wanted_bits_window += h->fenc->f_duration * rc->bitrate;
rc->wanted_bits_window *= rc->cbr_decay;
}
if( rc->b_2pass )
rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale( rc->rce->new_qp ) );
if( h->mb.b_variable_qp )
{
if( h->sh.i_type == SLICE_TYPE_B )
{
rc->bframe_bits += bits;
if( h->fenc->b_last_minigop_bframe )
{
update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ),
h->fref[1][h->i_ref[1]-1]->i_satd, rc->bframe_bits / rc->bframes );
rc->bframe_bits = 0;
}
}
}
*filler = update_vbv( h, bits );
rc->filler_bits_sum += *filler * 8;
if( h->sps->vui.b_nal_hrd_parameters_present )
{
if( h->fenc->i_frame == 0 )
{
// access unit initialises the HRD
h->fenc->hrd_timing.cpb_initial_arrival_time = 0;
rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit = (double)rc->initial_cpb_removal_delay / 90000;
}
else
{
h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)(h->fenc->i_cpb_delay - h->i_cpb_delay_pir_offset) *
h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
if( h->fenc->b_keyframe )
{
rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time;
rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay;
rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset;
}
double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000;
if( !h->fenc->b_keyframe )
cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000;
if( h->sps->vui.hrd.b_cbr_hrd )
h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time;
else
h->fenc->hrd_timing.cpb_initial_arrival_time = X264_MAX( rc->previous_cpb_final_arrival_time, cpb_earliest_arrival_time );
}
int filler_bits = *filler ? X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), *filler )*8 : 0;
// Equation C-6
h->fenc->hrd_timing.cpb_final_arrival_time = rc->previous_cpb_final_arrival_time = h->fenc->hrd_timing.cpb_initial_arrival_time +
(double)(bits + filler_bits) / h->sps->vui.hrd.i_bit_rate_unscaled;
h->fenc->hrd_timing.dpb_output_time = (double)h->fenc->i_dpb_output_delay * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale +
h->fenc->hrd_timing.cpb_removal_time;
}
return 0;
fail:
x264_log( h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n" );
return -1;
}
/****************************************************************************
* 2 pass functions
***************************************************************************/
/**
* modify the bitrate curve from pass1 for one frame
*/
static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num)
{
x264_ratecontrol_t *rcc= h->rc;
x264_zone_t *zone = get_zone( h, frame_num );
double q;
if( h->param.rc.b_mb_tree )
{
double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress );
}
else
q = pow( rce->blurred_complexity, 1 - rcc->qcompress );
// avoid NaN's in the rc_eq
if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 )
q = rcc->last_qscale_for[rce->pict_type];
else
{
rcc->last_rceq = q;
q /= rate_factor;
rcc->last_qscale = q;
}
if( zone )
{
if( zone->b_force_qp )
q = qp2qscale( zone->i_qp );
else
q /= zone->f_bitrate_factor;
}
return q;
}
static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q, int frame_num)
{
x264_ratecontrol_t *rcc = h->rc;
const int pict_type = rce->pict_type;
x264_zone_t *zone = get_zone( h, frame_num );
// force I/B quants as a function of P quants
if( pict_type == SLICE_TYPE_I )
{
double iq = q;
double pq = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
double ip_factor = h->param.rc.f_ip_factor;
/* don't apply ip_factor if the following frame is also I */
if( rcc->accum_p_norm <= 0 )
q = iq;
else if( rcc->accum_p_norm >= 1 )
q = pq / ip_factor;
else
q = rcc->accum_p_norm * pq / ip_factor + (1 - rcc->accum_p_norm) * iq;
}
else if( pict_type == SLICE_TYPE_B )
{
q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
if( !rce->kept_as_ref )
q *= h->param.rc.f_pb_factor;
}
else if( pict_type == SLICE_TYPE_P
&& rcc->last_non_b_pict_type == SLICE_TYPE_P
&& rce->tex_bits == 0 )
{
q = rcc->last_qscale_for[SLICE_TYPE_P];
}
/* last qscale / qdiff stuff */
if( rcc->last_non_b_pict_type == pict_type &&
(pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1) )
{
double last_q = rcc->last_qscale_for[pict_type];
double max_qscale = last_q * rcc->lstep;
double min_qscale = last_q / rcc->lstep;
if ( q > max_qscale ) q = max_qscale;
else if( q < min_qscale ) q = min_qscale;
}
rcc->last_qscale_for[pict_type] = q;
if( pict_type != SLICE_TYPE_B )
rcc->last_non_b_pict_type = pict_type;
if( pict_type == SLICE_TYPE_I )
{
rcc->last_accum_p_norm = rcc->accum_p_norm;
rcc->accum_p_norm = 0;
rcc->accum_p_qp = 0;
}
if( pict_type == SLICE_TYPE_P )
{
float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 );
rcc->accum_p_qp = mask * (qscale2qp( q ) + rcc->accum_p_qp);
rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm);
}
if( zone )
{
if( zone->b_force_qp )
q = qp2qscale( zone->i_qp );
else
q /= zone->f_bitrate_factor;
}
return q;
}
static float predict_size( predictor_t *p, float q, float var )
{
return (p->coeff*var + p->offset) / (q*p->count);
}
static void update_predictor( predictor_t *p, float q, float var, float bits )
{
float range = 1.5;
if( var < 10 )
return;
float old_coeff = p->coeff / p->count;
float old_offset = p->offset / p->count;
float new_coeff = X264_MAX( (bits*q - old_offset) / var, p->coeff_min );
float new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range );
float new_offset = bits*q - new_coeff_clipped * var;
if( new_offset >= 0 )
new_coeff = new_coeff_clipped;
else
new_offset = 0;
p->count *= p->decay;
p->coeff *= p->decay;
p->offset *= p->decay;
p->count ++;
p->coeff += new_coeff;
p->offset += new_offset;
}
// update VBV after encoding a frame
static int update_vbv( x264_t *h, int bits )
{
int filler = 0;
int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled;
x264_ratecontrol_t *rcc = h->rc;
x264_ratecontrol_t *rct = h->thread[0]->rc;
int64_t buffer_size = (int64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
if( rcc->last_satd >= h->mb.i_mb_count )
update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits );
if( !rcc->b_vbv )
return filler;
uint64_t buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
rct->buffer_fill_final -= buffer_diff;
rct->buffer_fill_final_min -= buffer_diff;
if( rct->buffer_fill_final_min < 0 )
{
double underflow = (double)rct->buffer_fill_final_min / h->sps->vui.i_time_scale;
if( rcc->rate_factor_max_increment && rcc->qpm >= rcc->qp_novbv + rcc->rate_factor_max_increment )
x264_log( h, X264_LOG_DEBUG, "VBV underflow due to CRF-max (frame %d, %.0f bits)\n", h->i_frame, underflow );
else
x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, underflow );
rct->buffer_fill_final =
rct->buffer_fill_final_min = 0;
}
if( h->param.i_avcintra_class )
buffer_diff = buffer_size;
else
buffer_diff = (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration;
rct->buffer_fill_final += buffer_diff;
rct->buffer_fill_final_min += buffer_diff;
if( rct->buffer_fill_final > buffer_size )
{
if( h->param.rc.b_filler )
{
int64_t scale = (int64_t)h->sps->vui.i_time_scale * 8;
filler = (rct->buffer_fill_final - buffer_size + scale - 1) / scale;
bits = h->param.i_avcintra_class ? filler * 8 : X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8;
buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale;
rct->buffer_fill_final -= buffer_diff;
rct->buffer_fill_final_min -= buffer_diff;
}
else
{
rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size );
rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, buffer_size );
}
}
return filler;
}
void x264_hrd_fullness( x264_t *h )
{
x264_ratecontrol_t *rct = h->thread[0]->rc;
uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom;
uint64_t cpb_state = rct->buffer_fill_final;
uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale;
uint64_t multiply_factor = 90000 / rct->hrd_multiply_denom;
if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > (int64_t)cpb_size )
{
x264_log( h, X264_LOG_WARNING, "CPB %s: %.0f bits in a %.0f-bit buffer\n",
rct->buffer_fill_final < 0 ? "underflow" : "overflow",
(double)rct->buffer_fill_final / h->sps->vui.i_time_scale, (double)cpb_size / h->sps->vui.i_time_scale );
}
h->initial_cpb_removal_delay = (multiply_factor * cpb_state) / denom;
h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size) / denom - h->initial_cpb_removal_delay;
int64_t decoder_buffer_fill = h->initial_cpb_removal_delay * denom / multiply_factor;
rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, decoder_buffer_fill );
}
// provisionally update VBV according to the planned size of all frames currently in progress
static void update_vbv_plan( x264_t *h, int overhead )
{
x264_ratecontrol_t *rcc = h->rc;
rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final_min / h->sps->vui.i_time_scale;
if( h->i_thread_frames > 1 )
{
int j = rcc - h->thread[0]->rc;
for( int i = 1; i < h->i_thread_frames; i++ )
{
x264_t *t = h->thread[ (j+i)%h->i_thread_frames ];
double bits = t->rc->frame_size_planned;
if( !t->b_thread_active )
continue;
bits = X264_MAX(bits, t->rc->frame_size_estimated);
rcc->buffer_fill -= bits;
rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 );
rcc->buffer_fill += t->rc->buffer_rate;
rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
}
}
rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size );
rcc->buffer_fill -= overhead;
}
// clip qscale to between lmin and lmax
static double clip_qscale( x264_t *h, int pict_type, double q )
{
x264_ratecontrol_t *rcc = h->rc;
double lmin = rcc->lmin[pict_type];
double lmax = rcc->lmax[pict_type];
if( rcc->rate_factor_max_increment )
lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) );
if( lmin==lmax )
return lmin;
else if( rcc->b_2pass )
{
double min2 = log( lmin );
double max2 = log( lmax );
q = (log(q) - min2)/(max2-min2) - 0.5;
q = 1.0/(1.0 + exp( -4*q ));
q = q*(max2-min2) + min2;
return exp( q );
}
else
return x264_clip3f( q, lmin, lmax );
}
// apply VBV constraints
static double vbv_pass1( x264_t *h, int pict_type, double q )
{
x264_ratecontrol_t *rcc = h->rc;
/* B-frames are not directly subject to VBV,
* since they are controlled by the P-frames' QPs. */
if( rcc->b_vbv && rcc->last_satd > 0 )
{
double q0 = q;
double fenc_cpb_duration = (double)h->fenc->i_cpb_duration *
h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
/* Lookahead VBV: raise the quantizer as necessary such that no frames in
* the lookahead overflow and such that the buffer is in a reasonable state
* by the end of the lookahead. */
if( h->param.rc.i_lookahead )
{
int terminate = 0;
/* Avoid an infinite loop. */
for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ )
{
double frame_q[3];
double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
double buffer_fill_cur = rcc->buffer_fill - cur_bits;
double target_fill;
double total_duration = 0;
double last_duration = fenc_cpb_duration;
frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q;
frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor;
frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor;
/* Loop over the planned future frames. */
for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ )
{
total_duration += last_duration;
buffer_fill_cur += rcc->vbv_max_rate * last_duration;
int i_type = h->fenc->i_planned_type[j];
int i_satd = h->fenc->i_planned_satd[j];
if( i_type == X264_TYPE_AUTO )
break;
i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P;
cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd );
buffer_fill_cur -= cur_bits;
last_duration = h->fenc->f_planned_cpb_duration[j];
}
/* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */
target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 );
if( buffer_fill_cur < target_fill )
{
q *= 1.01;
terminate |= 1;
continue;
}
/* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */
target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size );
if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill )
{
q /= 1.01;
terminate |= 2;
continue;
}
break;
}
}
/* Fallback to old purely-reactive algorithm: no lookahead. */
else
{
if( ( pict_type == SLICE_TYPE_P ||
( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) &&
rcc->buffer_fill/rcc->buffer_size < 0.5 )
{
q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 );
}
/* Now a hard threshold to make sure the frame fits in VBV.
* This one is mostly for I-frames. */
double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
/* For small VBVs, allow the frame to use up the entire VBV. */
double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1;
/* For single-frame VBVs, request that the frame use up the entire VBV. */
double min_fill_factor = rcc->single_frame_vbv ? 1 : 2;
if( bits > rcc->buffer_fill/max_fill_factor )
{
double qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 );
q /= qf;
bits *= qf;
}
if( bits < rcc->buffer_rate/min_fill_factor )
{
double qf = x264_clip3f( bits*min_fill_factor/rcc->buffer_rate, 0.001, 1.0 );
q *= qf;
}
q = X264_MAX( q0, q );
}
/* Check B-frame complexity, and use up any bits that would
* overflow before the next P-frame. */
if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv )
{
int nb = rcc->bframes;
double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
double pbbits = bits;
double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd );
double space;
double bframe_cpb_duration = 0;
double minigop_cpb_duration;
for( int i = 0; i < nb; i++ )
bframe_cpb_duration += h->fenc->f_planned_cpb_duration[i];
if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate )
{
nb = 0;
bframe_cpb_duration = 0;
}
pbbits += nb * bbits;
minigop_cpb_duration = bframe_cpb_duration + fenc_cpb_duration;
space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size;
if( pbbits < space )
{
q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) );
}
q = X264_MAX( q0/2, q );
}
if( !rcc->b_vbv_min_rate )
q = X264_MAX( q0, q );
}
return clip_qscale( h, pict_type, q );
}
// update qscale for 1 frame based on actual bits used so far
static float rate_estimate_qscale( x264_t *h )
{
float q;
x264_ratecontrol_t *rcc = h->rc;
ratecontrol_entry_t rce = {0};
int pict_type = h->sh.i_type;
int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I]
+ h->stat.i_frame_size[SLICE_TYPE_P]
+ h->stat.i_frame_size[SLICE_TYPE_B])
- rcc->filler_bits_sum;
if( rcc->b_2pass )
{
rce = *rcc->rce;
if( pict_type != rce.pict_type )
{
x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n",
slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] );
}
}
if( pict_type == SLICE_TYPE_B )
{
/* B-frames don't have independent ratecontrol, but rather get the
* average QP of the two adjacent P-frames + an offset */
int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type);
int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type);
int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc);
int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc);
float q0 = h->fref_nearest[0]->f_qp_avg_rc;
float q1 = h->fref_nearest[1]->f_qp_avg_rc;
if( h->fref_nearest[0]->i_type == X264_TYPE_BREF )
q0 -= rcc->pb_offset/2;
if( h->fref_nearest[1]->i_type == X264_TYPE_BREF )
q1 -= rcc->pb_offset/2;
if( i0 && i1 )
q = (q0 + q1) / 2 + rcc->ip_offset;
else if( i0 )
q = q1;
else if( i1 )
q = q0;
else
q = (q0*dt1 + q1*dt0) / (dt0 + dt1);
if( h->fenc->b_kept_as_ref )
q += rcc->pb_offset/2;
else
q += rcc->pb_offset;
rcc->qp_novbv = q;
q = qp2qscale( q );
if( rcc->b_2pass )
rcc->frame_size_planned = qscale2bits( &rce, q );
else
rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref[1][h->i_ref[1]-1]->i_satd );
/* Apply MinCR and buffer fill restrictions */
if( rcc->b_vbv )
{
double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );
if( rcc->frame_size_planned > frame_size_maximum )
{
q *= rcc->frame_size_planned / frame_size_maximum;
rcc->frame_size_planned = frame_size_maximum;
}
}
rcc->frame_size_estimated = rcc->frame_size_planned;
/* For row SATDs */
if( rcc->b_vbv )
rcc->last_satd = x264_rc_analyse_slice( h );
return q;
}
else
{
double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate;
double predicted_bits = total_bits;
if( h->i_thread_frames > 1 )
{
int j = rcc - h->thread[0]->rc;
for( int i = 1; i < h->i_thread_frames; i++ )
{
x264_t *t = h->thread[(j+i) % h->i_thread_frames];
double bits = t->rc->frame_size_planned;
if( !t->b_thread_active )
continue;
bits = X264_MAX(bits, t->rc->frame_size_estimated);
predicted_bits += bits;
}
}
if( rcc->b_2pass )
{
double lmin = rcc->lmin[pict_type];
double lmax = rcc->lmax[pict_type];
double diff;
/* Adjust ABR buffer based on distance to the end of the video. */
if( rcc->num_entries > h->i_frame )
{
double final_bits = rcc->entry_out[rcc->num_entries-1]->expected_bits;
double video_pos = rce.expected_bits / final_bits;
double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries );
abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 );
}
diff = predicted_bits - rce.expected_bits;
q = rce.new_qscale;
q /= x264_clip3f((abr_buffer - diff) / abr_buffer, .5, 2);
if( h->i_frame >= rcc->fps && rcc->expected_bits_sum >= 1 )
{
/* Adjust quant based on the difference between
* achieved and expected bitrate so far */
double cur_time = (double)h->i_frame / rcc->num_entries;
double w = x264_clip3f( cur_time*100, 0.0, 1.0 );
q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
}
rcc->qp_novbv = qscale2qp( q );
if( rcc->b_vbv )
{
/* Do not overflow vbv */
double expected_size = qscale2bits( &rce, q );
double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
double expected_fullness = rce.expected_vbv / rcc->buffer_size;
double qmax = q*(2 - expected_fullness);
double size_constraint = 1 + expected_fullness;
qmax = X264_MAX( qmax, rce.new_qscale );
if( expected_fullness < .05 )
qmax = lmax;
qmax = X264_MIN(qmax, lmax);
while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) ||
((expected_vbv < 0) && (q < lmax)))
{
q *= 1.05;
expected_size = qscale2bits(&rce, q);
expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
}
rcc->last_satd = x264_rc_analyse_slice( h );
}
q = x264_clip3f( q, lmin, lmax );
}
else /* 1pass ABR */
{
/* Calculate the quantizer which would have produced the desired
* average bitrate if it had been applied to all frames so far.
* Then modulate that quant based on the current frame's complexity
* relative to the average complexity so far (using the 2pass RCEQ).
* Then bias the quant up or down if total size so far was far from
* the target.
* Result: Depending on the value of rate_tolerance, there is a
* tradeoff between quality and bitrate precision. But at large
* tolerances, the bit distribution approaches that of 2pass. */
double wanted_bits, overflow = 1;
rcc->last_satd = x264_rc_analyse_slice( h );
rcc->short_term_cplxsum *= 0.5;
rcc->short_term_cplxcount *= 0.5;
rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION);
rcc->short_term_cplxcount ++;
rce.tex_bits = rcc->last_satd;
rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount;
rce.mv_bits = 0;
rce.p_count = rcc->nmb;
rce.i_count = 0;
rce.s_count = 0;
rce.qscale = 1;
rce.pict_type = pict_type;
rce.i_duration = h->fenc->i_duration;
if( h->param.rc.i_rc_method == X264_RC_CRF )
{
q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame );
}
else
{
q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame );
/* ABR code can potentially be counterproductive in CBR, so just don't bother.
* Don't run it if the frame complexity is zero either. */
if( !rcc->b_vbv_min_rate && rcc->last_satd )
{
// FIXME is it simpler to keep track of wanted_bits in ratecontrol_end?
int i_frame_done = h->i_frame;
double time_done = i_frame_done / rcc->fps;
if( h->param.b_vfr_input && i_frame_done > 0 )
time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den;
wanted_bits = time_done * rcc->bitrate;
if( wanted_bits > 0 )
{
abr_buffer *= X264_MAX( 1, sqrt( time_done ) );
overflow = x264_clip3f( 1.0 + (predicted_bits - wanted_bits) / abr_buffer, .5, 2 );
q *= overflow;
}
}
}
if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1
/* should test _next_ pict type, but that isn't decided yet */
&& rcc->last_non_b_pict_type != SLICE_TYPE_I )
{
q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm );
q /= h->param.rc.f_ip_factor;
}
else if( h->i_frame > 0 )
{
if( h->param.rc.i_rc_method != X264_RC_CRF )
{
/* Asymmetric clipping, because symmetric would prevent
* overflow control in areas of rapidly oscillating complexity */
double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep;
double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep;
if( overflow > 1.1 && h->i_frame > 3 )
lmax *= rcc->lstep;
else if( overflow < 0.9 )
lmin /= rcc->lstep;
q = x264_clip3f(q, lmin, lmax);
}
}
else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 )
{
q = qp2qscale( ABR_INIT_QP ) / h->param.rc.f_ip_factor;
}
rcc->qp_novbv = qscale2qp( q );
q = vbv_pass1( h, pict_type, q );
}
rcc->last_qscale_for[pict_type] =
rcc->last_qscale = q;
if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 )
rcc->last_qscale_for[SLICE_TYPE_P] = q * h->param.rc.f_ip_factor;
if( rcc->b_2pass )
rcc->frame_size_planned = qscale2bits( &rce, q );
else
rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd );
/* Apply MinCR and buffer fill restrictions */
if( rcc->b_vbv )
{
double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) );
if( rcc->frame_size_planned > frame_size_maximum )
{
q *= rcc->frame_size_planned / frame_size_maximum;
rcc->frame_size_planned = frame_size_maximum;
}
/* Always use up the whole VBV in this case. */
if( rcc->single_frame_vbv )
rcc->frame_size_planned = X264_MIN( rcc->buffer_rate, frame_size_maximum );
}
rcc->frame_size_estimated = rcc->frame_size_planned;
return q;
}
}
static void threads_normalize_predictors( x264_t *h )
{
double totalsize = 0;
for( int i = 0; i < h->param.i_threads; i++ )
totalsize += h->thread[i]->rc->slice_size_planned;
double factor = h->rc->frame_size_planned / totalsize;
for( int i = 0; i < h->param.i_threads; i++ )
h->thread[i]->rc->slice_size_planned *= factor;
}
void x264_threads_distribute_ratecontrol( x264_t *h )
{
int row;
x264_ratecontrol_t *rc = h->rc;
x264_emms();
float qscale = qp2qscale( rc->qpm );
/* Initialize row predictors */
if( h->i_frame == 0 )
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
if( t != h )
memcpy( t->rc->row_preds, rc->row_preds, sizeof(rc->row_preds) );
}
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
if( t != h )
memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) );
t->rc->row_pred = t->rc->row_preds[h->sh.i_type];
/* Calculate the planned slice size. */
if( rc->b_vbv && rc->frame_size_planned )
{
int size = 0;
for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
size += h->fdec->i_row_satd[row];
t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], qscale, size );
}
else
t->rc->slice_size_planned = 0;
}
if( rc->b_vbv && rc->frame_size_planned )
{
threads_normalize_predictors( h );
if( rc->single_frame_vbv )
{
/* Compensate for our max frame error threshold: give more bits (proportionally) to smaller slices. */
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
float max_frame_error = x264_clip3f( 1.0 / (t->i_threadslice_end - t->i_threadslice_start), 0.05, 0.25 );
t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned;
}
threads_normalize_predictors( h );
}
for( int i = 0; i < h->param.i_threads; i++ )
h->thread[i]->rc->frame_size_estimated = h->thread[i]->rc->slice_size_planned;
}
}
void x264_threads_merge_ratecontrol( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
x264_emms();
for( int i = 0; i < h->param.i_threads; i++ )
{
x264_t *t = h->thread[i];
x264_ratecontrol_t *rct = h->thread[i]->rc;
if( h->param.rc.i_vbv_buffer_size )
{
int size = 0;
for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ )
size += h->fdec->i_row_satd[row];
int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits;
int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width;
update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits );
}
if( !i )
continue;
rc->qpa_rc += rct->qpa_rc;
rc->qpa_aq += rct->qpa_aq;
}
}
void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next )
{
if( cur != prev )
{
#define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var))
/* these vars are updated in x264_ratecontrol_start()
* so copy them from the context that most recently started (prev)
* to the context that's about to start (cur). */
COPY(accum_p_qp);
COPY(accum_p_norm);
COPY(last_satd);
COPY(last_rceq);
COPY(last_qscale_for);
COPY(last_non_b_pict_type);
COPY(short_term_cplxsum);
COPY(short_term_cplxcount);
COPY(bframes);
COPY(prev_zone);
COPY(mbtree.qpbuf_pos);
/* these vars can be updated by x264_ratecontrol_init_reconfigurable */
COPY(bitrate);
COPY(buffer_size);
COPY(buffer_rate);
COPY(vbv_max_rate);
COPY(single_frame_vbv);
COPY(cbr_decay);
COPY(rate_factor_constant);
COPY(rate_factor_max_increment);
#undef COPY
}
if( cur != next )
{
#define COPY(var) next->rc->var = cur->rc->var
/* these vars are updated in x264_ratecontrol_end()
* so copy them from the context that most recently ended (cur)
* to the context that's about to end (next) */
COPY(cplxr_sum);
COPY(expected_bits_sum);
COPY(filler_bits_sum);
COPY(wanted_bits_window);
COPY(bframe_bits);
COPY(initial_cpb_removal_delay);
COPY(initial_cpb_removal_delay_offset);
COPY(nrt_first_access_unit);
COPY(previous_cpb_final_arrival_time);
#undef COPY
}
//FIXME row_preds[] (not strictly necessary, but would improve prediction)
/* the rest of the variables are either constant or thread-local */
}
static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over )
{
/* find an interval ending on an overflow or underflow (depending on whether
* we're adding or removing bits), and starting on the earliest frame that
* can influence the buffer fill of that end frame. */
x264_ratecontrol_t *rcc = h->rc;
const double buffer_min = .1 * rcc->buffer_size;
const double buffer_max = .9 * rcc->buffer_size;
double fill = fills[*t0-1];
double parity = over ? 1. : -1.;
int start = -1, end = -1;
for( int i = *t0; i < rcc->num_entries; i++ )
{
fill += (rcc->entry_out[i]->i_cpb_duration * rcc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale -
qscale2bits( rcc->entry_out[i], rcc->entry_out[i]->new_qscale )) * parity;
fill = x264_clip3f(fill, 0, rcc->buffer_size);
fills[i] = fill;
if( fill <= buffer_min || i == 0 )
{
if( end >= 0 )
break;
start = i;
}
else if( fill >= buffer_max && start >= 0 )
end = i;
}
*t0 = start;
*t1 = end;
return start >= 0 && end >= 0;
}
static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max )
{
x264_ratecontrol_t *rcc = h->rc;
double qscale_orig, qscale_new;
int adjusted = 0;
if( t0 > 0 )
t0++;
for( int i = t0; i <= t1; i++ )
{
qscale_orig = rcc->entry_out[i]->new_qscale;
qscale_orig = x264_clip3f( qscale_orig, qscale_min, qscale_max );
qscale_new = qscale_orig * adjustment;
qscale_new = x264_clip3f( qscale_new, qscale_min, qscale_max );
rcc->entry_out[i]->new_qscale = qscale_new;
adjusted = adjusted || (qscale_new != qscale_orig);
}
return adjusted;
}
static double count_expected_bits( x264_t *h )
{
x264_ratecontrol_t *rcc = h->rc;
double expected_bits = 0;
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = rcc->entry_out[i];
rce->expected_bits = expected_bits;
expected_bits += qscale2bits( rce, rce->new_qscale );
}
return expected_bits;
}
static int vbv_pass2( x264_t *h, double all_available_bits )
{
/* for each interval of buffer_full .. underflow, uniformly increase the qp of all
* frames in the interval until either buffer is full at some intermediate frame or the
* last frame in the interval no longer underflows. Recompute intervals and repeat.
* Then do the converse to put bits back into overflow areas until target size is met */
x264_ratecontrol_t *rcc = h->rc;
double *fills;
double expected_bits = 0;
double adjustment;
double prev_bits = 0;
int t0, t1;
double qscale_min = qp2qscale( h->param.rc.i_qp_min );
double qscale_max = qp2qscale( h->param.rc.i_qp_max );
int iterations = 0;
int adj_min, adj_max;
CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) );
fills++;
/* adjust overall stream size */
do
{
iterations++;
prev_bits = expected_bits;
if( expected_bits )
{ /* not first iteration */
adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9);
fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
t0 = 0;
/* fix overflows */
adj_min = 1;
while( adj_min && find_underflow( h, fills, &t0, &t1, 1 ) )
{
adj_min = fix_underflow( h, t0, t1, adjustment, qscale_min, qscale_max );
t0 = t1;
}
}
fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init);
t0 = 0;
/* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */
adj_max = 1;
while( adj_max && find_underflow( h, fills, &t0, &t1, 0 ) )
adj_max = fix_underflow( h, t0, t1, 1.001, qscale_min, qscale_max );
expected_bits = count_expected_bits( h );
} while( (expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) );
if( !adj_max )
x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n");
/* store expected vbv filling values for tracking when encoding */
for( int i = 0; i < rcc->num_entries; i++ )
rcc->entry_out[i]->expected_vbv = rcc->buffer_size - fills[i];
x264_free( fills-1 );
return 0;
fail:
return -1;
}
static int init_pass2( x264_t *h )
{
x264_ratecontrol_t *rcc = h->rc;
uint64_t all_const_bits = 0;
double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale;
double duration = 0;
for( int i = 0; i < rcc->num_entries; i++ )
duration += rcc->entry[i].i_duration;
duration *= timescale;
uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration;
double rate_factor, step_mult;
double qblur = h->param.rc.f_qblur;
double cplxblur = h->param.rc.f_complexity_blur;
const int filter_size = (int)(qblur*4) | 1;
double expected_bits;
double *qscale, *blurred_qscale;
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
/* find total/average complexity & const_bits */
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
all_const_bits += rce->misc_bits;
}
if( all_available_bits < all_const_bits)
{
x264_log( h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n",
(int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)) );
return -1;
}
/* Blur complexities, to reduce local fluctuation of QP.
* We don't blur the QPs directly, because then one very simple frame
* could drag down the QP of a nearby complex frame and give it more
* bits than intended. */
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
double weight_sum = 0;
double cplx_sum = 0;
double weight = 1.0;
double gaussian_weight;
/* weighted average of cplx of future frames */
for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ )
{
ratecontrol_entry_t *rcj = &rcc->entry[i+j];
double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
if( weight < .0001 )
break;
gaussian_weight = weight * exp( -j*j/200.0 );
weight_sum += gaussian_weight;
cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
}
/* weighted average of cplx of past frames */
weight = 1.0;
for( int j = 0; j <= cplxblur*2 && j <= i; j++ )
{
ratecontrol_entry_t *rcj = &rcc->entry[i-j];
double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION;
gaussian_weight = weight * exp( -j*j/200.0 );
weight_sum += gaussian_weight;
cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration;
weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 );
if( weight < .0001 )
break;
}
rce->blurred_complexity = cplx_sum / weight_sum;
}
CHECKED_MALLOC( qscale, sizeof(double)*rcc->num_entries );
if( filter_size > 1 )
CHECKED_MALLOC( blurred_qscale, sizeof(double)*rcc->num_entries );
else
blurred_qscale = qscale;
/* Search for a factor which, when multiplied by the RCEQ values from
* each frame, adds up to the desired total size.
* There is no exact closed-form solution because of VBV constraints and
* because qscale2bits is not invertible, but we can start with the simple
* approximation of scaling the 1st pass by the ratio of bitrates.
* The search range is probably overkill, but speed doesn't matter here. */
expected_bits = 1;
for( int i = 0; i < rcc->num_entries; i++ )
{
double q = get_qscale(h, &rcc->entry[i], 1.0, i);
expected_bits += qscale2bits(&rcc->entry[i], q);
rcc->last_qscale_for[rcc->entry[i].pict_type] = q;
}
step_mult = all_available_bits / expected_bits;
rate_factor = 0;
for( double step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5)
{
expected_bits = 0;
rate_factor += step;
rcc->last_non_b_pict_type = -1;
rcc->last_accum_p_norm = 1;
rcc->accum_p_norm = 0;
rcc->last_qscale_for[0] =
rcc->last_qscale_for[1] =
rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor;
/* find qscale */
for( int i = 0; i < rcc->num_entries; i++ )
{
qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, -1 );
rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i];
}
/* fixed I/B qscale relative to P */
for( int i = rcc->num_entries-1; i >= 0; i-- )
{
qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i], i );
assert(qscale[i] >= 0);
}
/* smooth curve */
if( filter_size > 1 )
{
assert( filter_size%2 == 1 );
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
double q = 0.0, sum = 0.0;
for( int j = 0; j < filter_size; j++ )
{
int idx = i+j-filter_size/2;
double d = idx-i;
double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) );
if( idx < 0 || idx >= rcc->num_entries )
continue;
if( rce->pict_type != rcc->entry[idx].pict_type )
continue;
q += qscale[idx] * coeff;
sum += coeff;
}
blurred_qscale[i] = q/sum;
}
}
/* find expected bits */
for( int i = 0; i < rcc->num_entries; i++ )
{
ratecontrol_entry_t *rce = &rcc->entry[i];
rce->new_qscale = clip_qscale( h, rce->pict_type, blurred_qscale[i] );
assert(rce->new_qscale >= 0);
expected_bits += qscale2bits( rce, rce->new_qscale );
}
if( expected_bits > all_available_bits )
rate_factor -= step;
}
x264_free( qscale );
if( filter_size > 1 )
x264_free( blurred_qscale );
if( rcc->b_vbv )
if( vbv_pass2( h, all_available_bits ) )
return -1;
expected_bits = count_expected_bits( h );
if( fabs( expected_bits/all_available_bits - 1.0 ) > 0.01 )
{
double avgq = 0;
for( int i = 0; i < rcc->num_entries; i++ )
avgq += rcc->entry[i].new_qscale;
avgq = qscale2qp( avgq / rcc->num_entries );
if( expected_bits > all_available_bits || !rcc->b_vbv )
x264_log( h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n" );
x264_log( h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
(float)h->param.rc.i_bitrate,
expected_bits * rcc->fps / (rcc->num_entries * 1000.),
avgq );
if( expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2 )
{
if( h->param.rc.i_qp_min > 0 )
x264_log( h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min );
else
x264_log( h, X264_LOG_WARNING, "try reducing target bitrate\n" );
}
else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 )
{
if( h->param.rc.i_qp_max < QP_MAX )
x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max );
else
x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n");
}
else if( !(rcc->b_2pass && rcc->b_vbv) )
x264_log( h, X264_LOG_WARNING, "internal error\n" );
}
return 0;
fail:
return -1;
}