rdo.c 47.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/*****************************************************************************
 * rdo.c: rate-distortion optimization
 *****************************************************************************
 * Copyright (C) 2005-2024 x264 project
 *
 * Authors: Loren Merritt <lorenm@u.washington.edu>
 *          Fiona Glaser <fiona@x264.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
 *
 * This program is also available under a commercial proprietary license.
 * For more information, contact us at licensing@x264.com.
 *****************************************************************************/

/* duplicate all the writer functions, just calculating bit cost
 * instead of writing the bitstream.
 * TODO: use these for fast 1st pass too. */

#define RDO_SKIP_BS 1

/* Transition and size tables for abs<9 MVD and residual coding */
/* Consist of i_prefix-2 1s, one zero, and a bypass sign bit */
#define x264_cabac_transition_unary x264_template(cabac_transition_unary)
uint8_t x264_cabac_transition_unary[15][128];
#define x264_cabac_size_unary x264_template(cabac_size_unary)
uint16_t x264_cabac_size_unary[15][128];
/* Transition and size tables for abs>9 MVD */
/* Consist of 5 1s and a bypass sign bit */
static uint8_t cabac_transition_5ones[128];
static uint16_t cabac_size_5ones[128];

/* CAVLC: produces exactly the same bit count as a normal encode */
/* this probably still leaves some unnecessary computations */
#define bs_write1(s,v)     ((s)->i_bits_encoded += 1)
#define bs_write(s,n,v)    ((s)->i_bits_encoded += (n))
#define bs_write_ue(s,v)   ((s)->i_bits_encoded += bs_size_ue(v))
#define bs_write_se(s,v)   ((s)->i_bits_encoded += bs_size_se(v))
#define bs_write_te(s,v,l) ((s)->i_bits_encoded += bs_size_te(v,l))
#undef  x264_macroblock_write_cavlc
#define x264_macroblock_write_cavlc  static macroblock_size_cavlc
#include "cavlc.c"

/* CABAC: not exactly the same. x264_cabac_size_decision() keeps track of
 * fractional bits, but only finite precision. */
#undef  x264_cabac_encode_decision
#undef  x264_cabac_encode_decision_noup
#undef  x264_cabac_encode_bypass
#undef  x264_cabac_encode_terminal
#undef  x264_cabac_encode_ue_bypass
#define x264_cabac_encode_decision(c,x,v) x264_cabac_size_decision(c,x,v)
#define x264_cabac_encode_decision_noup(c,x,v) x264_cabac_size_decision_noup(c,x,v)
#define x264_cabac_encode_terminal(c)     ((c)->f8_bits_encoded += 7)
#define x264_cabac_encode_bypass(c,v)     ((c)->f8_bits_encoded += 256)
#define x264_cabac_encode_ue_bypass(c,e,v) ((c)->f8_bits_encoded += (bs_size_ue_big(v+(1<<e)-1)-e)<<8)
#undef  x264_macroblock_write_cabac
#define x264_macroblock_write_cabac  static macroblock_size_cabac
#include "cabac.c"

#define COPY_CABAC h->mc.memcpy_aligned( &cabac_tmp.f8_bits_encoded, &h->cabac.f8_bits_encoded, \
        sizeof(int) + (CHROMA444 ? 1024+12 : 460) )
#define COPY_CABAC_PART( pos, size ) memcpy( &cb->state[pos], &h->cabac.state[pos], size )

static ALWAYS_INLINE uint64_t cached_hadamard( x264_t *h, int size, int x, int y )
{
    static const uint8_t hadamard_shift_x[4] = {4,   4,   3,   3};
    static const uint8_t hadamard_shift_y[4] = {4-0, 3-0, 4-1, 3-1};
    static const uint8_t  hadamard_offset[4] = {0,   1,   3,   5};
    int cache_index = (x >> hadamard_shift_x[size]) + (y >> hadamard_shift_y[size])
                    + hadamard_offset[size];
    uint64_t res = h->mb.pic.fenc_hadamard_cache[cache_index];
    if( res )
        return res - 1;
    else
    {
        pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
        res = h->pixf.hadamard_ac[size]( fenc, FENC_STRIDE );
        h->mb.pic.fenc_hadamard_cache[cache_index] = res + 1;
        return res;
    }
}

static ALWAYS_INLINE int cached_satd( x264_t *h, int size, int x, int y )
{
    static const uint8_t satd_shift_x[3] = {3,   2,   2};
    static const uint8_t satd_shift_y[3] = {2-1, 3-2, 2-2};
    static const uint8_t  satd_offset[3] = {0,   8,   16};
    int cache_index = (x >> satd_shift_x[size - PIXEL_8x4]) + (y >> satd_shift_y[size - PIXEL_8x4])
                    + satd_offset[size - PIXEL_8x4];
    int res = h->mb.pic.fenc_satd_cache[cache_index];
    if( res )
        return res - 1;
    else
    {
        pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
        int dc = h->pixf.sad[size]( fenc, FENC_STRIDE, (pixel*)x264_zero, 0 ) >> 1;
        res = h->pixf.satd[size]( fenc, FENC_STRIDE, (pixel*)x264_zero, 0 ) - dc;
        h->mb.pic.fenc_satd_cache[cache_index] = res + 1;
        return res;
    }
}

/* Psy RD distortion metric: SSD plus "Absolute Difference of Complexities" */
/* SATD and SA8D are used to measure block complexity. */
/* The difference between SATD and SA8D scores are both used to avoid bias from the DCT size.  Using SATD */
/* only, for example, results in overusage of 8x8dct, while the opposite occurs when using SA8D. */

/* FIXME:  Is there a better metric than averaged SATD/SA8D difference for complexity difference? */
/* Hadamard transform is recursive, so a SATD+SA8D can be done faster by taking advantage of this fact. */
/* This optimization can also be used in non-RD transform decision. */

static inline int ssd_plane( x264_t *h, int size, int p, int x, int y )
{
    int satd = 0;
    pixel *fdec = h->mb.pic.p_fdec[p] + x + y*FDEC_STRIDE;
    pixel *fenc = h->mb.pic.p_fenc[p] + x + y*FENC_STRIDE;
    if( p == 0 && h->mb.i_psy_rd )
    {
        /* If the plane is smaller than 8x8, we can't do an SA8D; this probably isn't a big problem. */
        if( size <= PIXEL_8x8 )
        {
            uint64_t fdec_acs = h->pixf.hadamard_ac[size]( fdec, FDEC_STRIDE );
            uint64_t fenc_acs = cached_hadamard( h, size, x, y );
            satd = abs((int32_t)fdec_acs - (int32_t)fenc_acs)
                 + abs((int32_t)(fdec_acs>>32) - (int32_t)(fenc_acs>>32));
            satd >>= 1;
        }
        else
        {
            int dc = h->pixf.sad[size]( fdec, FDEC_STRIDE, (pixel*)x264_zero, 0 ) >> 1;
            satd = abs(h->pixf.satd[size]( fdec, FDEC_STRIDE, (pixel*)x264_zero, 0 ) - dc - cached_satd( h, size, x, y ));
        }
        int64_t tmp = ((int64_t)satd * h->mb.i_psy_rd * h->mb.i_psy_rd_lambda + 128) >> 8;
        satd = X264_MIN( tmp, COST_MAX );
    }
    return h->pixf.ssd[size](fenc, FENC_STRIDE, fdec, FDEC_STRIDE) + satd;
}

static inline int ssd_mb( x264_t *h )
{
    int i_ssd = ssd_plane( h, PIXEL_16x16, 0, 0, 0 );
    if( CHROMA_FORMAT )
    {
        int chroma_size = h->luma2chroma_pixel[PIXEL_16x16];
        int chroma_ssd = ssd_plane( h, chroma_size, 1, 0, 0 ) + ssd_plane( h, chroma_size, 2, 0, 0 );
        i_ssd += ((uint64_t)chroma_ssd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
    }
    return i_ssd;
}

static int rd_cost_mb( x264_t *h, int i_lambda2 )
{
    int b_transform_bak = h->mb.b_transform_8x8;
    int i_ssd;
    int i_bits;
    int type_bak = h->mb.i_type;

    x264_macroblock_encode( h );

    if( h->mb.b_deblock_rdo )
        x264_macroblock_deblock( h );

    i_ssd = ssd_mb( h );

    if( IS_SKIP( h->mb.i_type ) )
    {
        i_bits = (1 * i_lambda2 + 128) >> 8;
    }
    else if( h->param.b_cabac )
    {
        x264_cabac_t cabac_tmp;
        COPY_CABAC;
        macroblock_size_cabac( h, &cabac_tmp );
        i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 32768 ) >> 16;
    }
    else
    {
        macroblock_size_cavlc( h );
        i_bits = ( (uint64_t)h->out.bs.i_bits_encoded * i_lambda2 + 128 ) >> 8;
    }

    h->mb.b_transform_8x8 = b_transform_bak;
    h->mb.i_type = type_bak;

    return X264_MIN( i_ssd + i_bits, COST_MAX );
}

/* partition RD functions use 8 bits more precision to avoid large rounding errors at low QPs */

static uint64_t rd_cost_subpart( x264_t *h, int i_lambda2, int i4, int i_pixel )
{
    uint64_t i_ssd, i_bits;

    x264_macroblock_encode_p4x4( h, i4 );
    if( i_pixel == PIXEL_8x4 )
        x264_macroblock_encode_p4x4( h, i4+1 );
    if( i_pixel == PIXEL_4x8 )
        x264_macroblock_encode_p4x4( h, i4+2 );

    i_ssd = ssd_plane( h, i_pixel, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
    if( CHROMA444 )
    {
        int chromassd = ssd_plane( h, i_pixel, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
                      + ssd_plane( h, i_pixel, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
        chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
        i_ssd += chromassd;
    }

    if( h->param.b_cabac )
    {
        x264_cabac_t cabac_tmp;
        COPY_CABAC;
        subpartition_size_cabac( h, &cabac_tmp, i4, i_pixel );
        i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
    }
    else
        i_bits = subpartition_size_cavlc( h, i4, i_pixel );

    return (i_ssd<<8) + i_bits;
}

uint64_t x264_rd_cost_part( x264_t *h, int i_lambda2, int i4, int i_pixel )
{
    uint64_t i_ssd, i_bits;
    int i8 = i4 >> 2;

    if( i_pixel == PIXEL_16x16 )
    {
        int i_cost = rd_cost_mb( h, i_lambda2 );
        return i_cost;
    }

    if( i_pixel > PIXEL_8x8 )
        return rd_cost_subpart( h, i_lambda2, i4, i_pixel );

    h->mb.i_cbp_luma = 0;

    x264_macroblock_encode_p8x8( h, i8 );
    if( i_pixel == PIXEL_16x8 )
        x264_macroblock_encode_p8x8( h, i8+1 );
    if( i_pixel == PIXEL_8x16 )
        x264_macroblock_encode_p8x8( h, i8+2 );

    int ssd_x = 8*(i8&1);
    int ssd_y = 8*(i8>>1);
    i_ssd = ssd_plane( h, i_pixel, 0, ssd_x, ssd_y );
    if( CHROMA_FORMAT )
    {
        int chroma_size = h->luma2chroma_pixel[i_pixel];
        int chroma_ssd = ssd_plane( h, chroma_size, 1, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT )
                       + ssd_plane( h, chroma_size, 2, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT );
        i_ssd += ((uint64_t)chroma_ssd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
    }

    if( h->param.b_cabac )
    {
        x264_cabac_t cabac_tmp;
        COPY_CABAC;
        partition_size_cabac( h, &cabac_tmp, i8, i_pixel );
        i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
    }
    else
        i_bits = (uint64_t)partition_size_cavlc( h, i8, i_pixel ) * i_lambda2;

    return (i_ssd<<8) + i_bits;
}

static uint64_t rd_cost_i8x8( x264_t *h, int i_lambda2, int i8, int i_mode, pixel edge[4][32] )
{
    uint64_t i_ssd, i_bits;
    int plane_count = CHROMA444 ? 3 : 1;
    int i_qp = h->mb.i_qp;
    h->mb.i_cbp_luma &= ~(1<<i8);
    h->mb.b_transform_8x8 = 1;

    for( int p = 0; p < plane_count; p++ )
    {
        x264_mb_encode_i8x8( h, p, i8, i_qp, i_mode, edge[p], 1 );
        i_qp = h->mb.i_chroma_qp;
    }

    i_ssd = ssd_plane( h, PIXEL_8x8, 0, (i8&1)*8, (i8>>1)*8 );
    if( CHROMA444 )
    {
        int chromassd = ssd_plane( h, PIXEL_8x8, 1, (i8&1)*8, (i8>>1)*8 )
                      + ssd_plane( h, PIXEL_8x8, 2, (i8&1)*8, (i8>>1)*8 );
        chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
        i_ssd += chromassd;
    }

    if( h->param.b_cabac )
    {
        x264_cabac_t cabac_tmp;
        COPY_CABAC;
        partition_i8x8_size_cabac( h, &cabac_tmp, i8, i_mode );
        i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
    }
    else
        i_bits = (uint64_t)partition_i8x8_size_cavlc( h, i8, i_mode ) * i_lambda2;

    return (i_ssd<<8) + i_bits;
}

static uint64_t rd_cost_i4x4( x264_t *h, int i_lambda2, int i4, int i_mode )
{
    uint64_t i_ssd, i_bits;
    int plane_count = CHROMA444 ? 3 : 1;
    int i_qp = h->mb.i_qp;

    for( int p = 0; p < plane_count; p++ )
    {
        x264_mb_encode_i4x4( h, p, i4, i_qp, i_mode, 1 );
        i_qp = h->mb.i_chroma_qp;
    }

    i_ssd = ssd_plane( h, PIXEL_4x4, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
    if( CHROMA444 )
    {
        int chromassd = ssd_plane( h, PIXEL_4x4, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
                      + ssd_plane( h, PIXEL_4x4, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
        chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
        i_ssd += chromassd;
    }

    if( h->param.b_cabac )
    {
        x264_cabac_t cabac_tmp;
        COPY_CABAC;
        partition_i4x4_size_cabac( h, &cabac_tmp, i4, i_mode );
        i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
    }
    else
        i_bits = (uint64_t)partition_i4x4_size_cavlc( h, i4, i_mode ) * i_lambda2;

    return (i_ssd<<8) + i_bits;
}

static uint64_t rd_cost_chroma( x264_t *h, int i_lambda2, int i_mode, int b_dct )
{
    uint64_t i_ssd, i_bits;

    if( b_dct )
        x264_mb_encode_chroma( h, 0, h->mb.i_chroma_qp );

    int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
    i_ssd = ssd_plane( h, chromapix, 1, 0, 0 )
          + ssd_plane( h, chromapix, 2, 0, 0 );

    h->mb.i_chroma_pred_mode = i_mode;

    if( h->param.b_cabac )
    {
        x264_cabac_t cabac_tmp;
        COPY_CABAC;
        chroma_size_cabac( h, &cabac_tmp );
        i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
    }
    else
        i_bits = (uint64_t)chroma_size_cavlc( h ) * i_lambda2;

    return (i_ssd<<8) + i_bits;
}
/****************************************************************************
 * Trellis RD quantization
 ****************************************************************************/

#define TRELLIS_SCORE_MAX  (~0ULL) // marks the node as invalid
#define TRELLIS_SCORE_BIAS (1ULL<<60) // bias so that all valid scores are positive, even after negative contributions from psy
#define CABAC_SIZE_BITS 8
#define LAMBDA_BITS 4

/* precalculate the cost of coding various combinations of bits in a single context */
void x264_rdo_init( void )
{
    for( int i_prefix = 0; i_prefix < 15; i_prefix++ )
    {
        for( int i_ctx = 0; i_ctx < 128; i_ctx++ )
        {
            int f8_bits = 0;
            uint8_t ctx = i_ctx;

            for( int i = 1; i < i_prefix; i++ )
                f8_bits += x264_cabac_size_decision2( &ctx, 1 );
            if( i_prefix > 0 && i_prefix < 14 )
                f8_bits += x264_cabac_size_decision2( &ctx, 0 );
            f8_bits += 1 << CABAC_SIZE_BITS; //sign

            x264_cabac_size_unary[i_prefix][i_ctx] = f8_bits;
            x264_cabac_transition_unary[i_prefix][i_ctx] = ctx;
        }
    }
    for( int i_ctx = 0; i_ctx < 128; i_ctx++ )
    {
        int f8_bits = 0;
        uint8_t ctx = i_ctx;

        for( int i = 0; i < 5; i++ )
            f8_bits += x264_cabac_size_decision2( &ctx, 1 );
        f8_bits += 1 << CABAC_SIZE_BITS; //sign

        cabac_size_5ones[i_ctx] = f8_bits;
        cabac_transition_5ones[i_ctx] = ctx;
    }
}

typedef struct
{
    uint64_t score;
    int level_idx; // index into level_tree[]
    uint8_t cabac_state[4]; // just contexts 0,4,8,9 of the 10 relevant to coding abs_level_m1
} trellis_node_t;

typedef struct
{
    uint16_t next;
    uint16_t abs_level;
} trellis_level_t;

// TODO:
// save cabac state between blocks?
// use trellis' RD score instead of x264_mb_decimate_score?
// code 8x8 sig/last flags forwards with deadzone and save the contexts at
//   each position?
// change weights when using CQMs?

// possible optimizations:
// make scores fit in 32bit
// save quantized coefs during rd, to avoid a duplicate trellis in the final encode
// if trellissing all MBRD modes, finish SSD calculation so we can skip all of
//   the normal dequant/idct/ssd/cabac

// the unquant_mf here is not the same as dequant_mf:
// in normal operation (dct->quant->dequant->idct) the dct and idct are not
// normalized. quant/dequant absorb those scaling factors.
// in this function, we just do (quant->unquant) and want the output to be
// comparable to the input. so unquant is the direct inverse of quant,
// and uses the dct scaling factors, not the idct ones.

#define SIGN(x,y) ((x^(y >> 31))-(y >> 31))

#define SET_LEVEL(ndst, nsrc, l) {\
    if( sizeof(trellis_level_t) == sizeof(uint32_t) )\
        M32( &level_tree[levels_used] ) = pack16to32( nsrc.level_idx, l );\
    else\
        level_tree[levels_used] = (trellis_level_t){ nsrc.level_idx, l };\
    ndst.level_idx = levels_used;\
    levels_used++;\
}

// encode all values of the dc coef in a block which is known to have no ac
static NOINLINE
int trellis_dc_shortcut( int sign_coef, int quant_coef, int unquant_mf, int coef_weight, int lambda2, uint8_t *cabac_state, int cost_sig )
{
    uint64_t bscore = TRELLIS_SCORE_MAX;
    int ret = 0;
    int q = abs( quant_coef );
    for( int abs_level = q-1; abs_level <= q; abs_level++ )
    {
        int unquant_abs_level = (unquant_mf * abs_level + 128) >> 8;

        /* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */
        int d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);
        uint64_t score = (int64_t)d*d * coef_weight;

        /* code the proposed level, and count how much entropy it would take */
        if( abs_level )
        {
            unsigned f8_bits = cost_sig;
            int prefix = X264_MIN( abs_level - 1, 14 );
            f8_bits += x264_cabac_size_decision_noup2( cabac_state+1, prefix > 0 );
            f8_bits += x264_cabac_size_unary[prefix][cabac_state[5]];
            if( abs_level >= 15 )
                f8_bits += bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS;
            score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );
        }

        COPY2_IF_LT( bscore, score, ret, abs_level );
    }
    return SIGN(ret, sign_coef);
}

// encode one value of one coef in one context
static ALWAYS_INLINE
int trellis_coef( int j, int const_level, int abs_level, int prefix, int suffix_cost,
                  int node_ctx, int level1_ctx, int levelgt1_ctx, uint64_t ssd, int cost_siglast[3],
                  trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
                  trellis_level_t *level_tree, int levels_used, int lambda2, uint8_t *level_state )
{
    uint64_t score = nodes_prev[j].score + ssd;
    /* code the proposed level, and count how much entropy it would take */
    unsigned f8_bits = cost_siglast[ j ? 1 : 2 ];
    uint8_t level1_state = (j >= 3) ? nodes_prev[j].cabac_state[level1_ctx>>2] : level_state[level1_ctx];
    f8_bits += x264_cabac_entropy[level1_state ^ (const_level > 1)];
    uint8_t levelgt1_state;
    if( const_level > 1 )
    {
        levelgt1_state = j >= 6 ? nodes_prev[j].cabac_state[levelgt1_ctx-6] : level_state[levelgt1_ctx];
        f8_bits += x264_cabac_size_unary[prefix][levelgt1_state] + suffix_cost;
    }
    else
        f8_bits += 1 << CABAC_SIZE_BITS;
    score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );

    /* save the node if it's better than any existing node with the same cabac ctx */
    if( score < nodes_cur[node_ctx].score )
    {
        nodes_cur[node_ctx].score = score;
        if( j == 2 || (j <= 3 && node_ctx == 4) ) // init from input state
            M32(nodes_cur[node_ctx].cabac_state) = M32(level_state+12);
        else if( j >= 3 )
            M32(nodes_cur[node_ctx].cabac_state) = M32(nodes_prev[j].cabac_state);
        if( j >= 3 ) // skip the transition if we're not going to reuse the context
            nodes_cur[node_ctx].cabac_state[level1_ctx>>2] = x264_cabac_transition[level1_state][const_level > 1];
        if( const_level > 1 && node_ctx == 7 )
            nodes_cur[node_ctx].cabac_state[levelgt1_ctx-6] = x264_cabac_transition_unary[prefix][levelgt1_state];
        nodes_cur[node_ctx].level_idx = nodes_prev[j].level_idx;
        SET_LEVEL( nodes_cur[node_ctx], nodes_prev[j], abs_level );
    }
    return levels_used;
}

// encode one value of one coef in all contexts, templated by which value that is.
// in ctx_lo, the set of live nodes is contiguous and starts at ctx0, so return as soon as we've seen one failure.
// in ctx_hi, they're contiguous within each block of 4 ctxs, but not necessarily starting at the beginning,
// so exploiting that would be more complicated.
static NOINLINE
int trellis_coef0_0( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
                     trellis_level_t *level_tree, int levels_used )
{
    nodes_cur[0].score = nodes_prev[0].score + ssd0;
    nodes_cur[0].level_idx = nodes_prev[0].level_idx;
    for( int j = 1; j < 4 && (int64_t)nodes_prev[j].score >= 0; j++ )
    {
        nodes_cur[j].score = nodes_prev[j].score;
        if( j >= 3 )
            M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
        SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
    }
    return levels_used;
}

static NOINLINE
int trellis_coef0_1( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
                     trellis_level_t *level_tree, int levels_used )
{
    for( int j = 1; j < 8; j++ )
        // this branch only affects speed, not function; there's nothing wrong with updating invalid nodes in coef0.
        if( (int64_t)nodes_prev[j].score >= 0 )
        {
            nodes_cur[j].score = nodes_prev[j].score;
            if( j >= 3 )
                M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
            SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
        }
    return levels_used;
}

#define COEF(const_level, ctx_hi, j, ...)\
    if( !j || (int64_t)nodes_prev[j].score >= 0 )\
        levels_used = trellis_coef( j, const_level, abs_level, prefix, suffix_cost, __VA_ARGS__,\
                                    j?ssd1:ssd0, cost_siglast, nodes_cur, nodes_prev,\
                                    level_tree, levels_used, lambda2, level_state );\
    else if( !ctx_hi )\
        return levels_used;

static NOINLINE
int trellis_coef1_0( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
                     trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
                     trellis_level_t *level_tree, int levels_used, int lambda2,
                     uint8_t *level_state )
{
    int abs_level = 1, prefix = 1, suffix_cost = 0;
    COEF( 1, 0, 0, 1, 1, 0 );
    COEF( 1, 0, 1, 2, 2, 0 );
    COEF( 1, 0, 2, 3, 3, 0 );
    COEF( 1, 0, 3, 3, 4, 0 );
    return levels_used;
}

static NOINLINE
int trellis_coef1_1( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
                     trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
                     trellis_level_t *level_tree, int levels_used, int lambda2,
                     uint8_t *level_state )
{
    int abs_level = 1, prefix = 1, suffix_cost = 0;
    COEF( 1, 1, 1, 2, 2, 0 );
    COEF( 1, 1, 2, 3, 3, 0 );
    COEF( 1, 1, 3, 3, 4, 0 );
    COEF( 1, 1, 4, 4, 0, 0 );
    COEF( 1, 1, 5, 5, 0, 0 );
    COEF( 1, 1, 6, 6, 0, 0 );
    COEF( 1, 1, 7, 7, 0, 0 );
    return levels_used;
}

static NOINLINE
int trellis_coefn_0( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
                     trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
                     trellis_level_t *level_tree, int levels_used, int lambda2,
                     uint8_t *level_state, int levelgt1_ctx )
{
    int prefix = X264_MIN( abs_level-1, 14 );
    int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
    COEF( 2, 0, 0, 4, 1, 5 );
    COEF( 2, 0, 1, 4, 2, 5 );
    COEF( 2, 0, 2, 4, 3, 5 );
    COEF( 2, 0, 3, 4, 4, 5 );
    return levels_used;
}

static NOINLINE
int trellis_coefn_1( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
                     trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
                     trellis_level_t *level_tree, int levels_used, int lambda2,
                     uint8_t *level_state, int levelgt1_ctx )
{
    int prefix = X264_MIN( abs_level-1, 14 );
    int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
    COEF( 2, 1, 1, 4, 2, 5 );
    COEF( 2, 1, 2, 4, 3, 5 );
    COEF( 2, 1, 3, 4, 4, 5 );
    COEF( 2, 1, 4, 5, 0, 6 );
    COEF( 2, 1, 5, 6, 0, 7 );
    COEF( 2, 1, 6, 7, 0, 8 );
    COEF( 2, 1, 7, 7, 0, levelgt1_ctx );
    return levels_used;
}

static ALWAYS_INLINE
int quant_trellis_cabac( x264_t *h, dctcoef *dct,
                         udctcoef *quant_mf, udctcoef *quant_bias, const int *unquant_mf,
                         const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
                         int b_chroma, int dc, int num_coefs, int idx )
{
    ALIGNED_ARRAY_64( dctcoef, orig_coefs, [64] );
    ALIGNED_ARRAY_64( dctcoef, quant_coefs, [64] );
    const uint32_t *coef_weight1 = num_coefs == 64 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
    const uint32_t *coef_weight2 = num_coefs == 64 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
    const int b_interlaced = MB_INTERLACED;
    uint8_t *cabac_state_sig = &h->cabac.state[ x264_significant_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
    uint8_t *cabac_state_last = &h->cabac.state[ x264_last_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
    int levelgt1_ctx = b_chroma && dc ? 8 : 9;

    if( dc )
    {
        if( num_coefs == 16 )
        {
            memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
            if( !h->quantf.quant_4x4_dc( dct, quant_mf[0] >> 1, quant_bias[0] << 1 ) )
                return 0;
            h->zigzagf.scan_4x4( quant_coefs, dct );
        }
        else
        {
            memcpy( orig_coefs, dct, sizeof(dctcoef)*num_coefs );
            int nz = h->quantf.quant_2x2_dc( &dct[0], quant_mf[0] >> 1, quant_bias[0] << 1 );
            if( num_coefs == 8 )
                nz |= h->quantf.quant_2x2_dc( &dct[4], quant_mf[0] >> 1, quant_bias[0] << 1 );
            if( !nz )
                return 0;
            for( int i = 0; i < num_coefs; i++ )
                quant_coefs[i] = dct[zigzag[i]];
        }
    }
    else
    {
        if( num_coefs == 64 )
        {
            h->mc.memcpy_aligned( orig_coefs, dct, sizeof(dctcoef)*64 );
            if( !h->quantf.quant_8x8( dct, quant_mf, quant_bias ) )
                return 0;
            h->zigzagf.scan_8x8( quant_coefs, dct );
        }
        else //if( num_coefs == 16 )
        {
            memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
            if( !h->quantf.quant_4x4( dct, quant_mf, quant_bias ) )
                return 0;
            h->zigzagf.scan_4x4( quant_coefs, dct );
        }
    }

    int last_nnz = h->quantf.coeff_last[ctx_block_cat]( quant_coefs+b_ac )+b_ac;
    uint8_t *cabac_state = &h->cabac.state[ x264_coeff_abs_level_m1_offset[ctx_block_cat] ];

    /* shortcut for dc-only blocks.
     * this doesn't affect the output, but saves some unnecessary computation. */
    if( last_nnz == 0 && !dc )
    {
        int cost_sig = x264_cabac_size_decision_noup2( &cabac_state_sig[0], 1 )
                     + x264_cabac_size_decision_noup2( &cabac_state_last[0], 1 );
        dct[0] = trellis_dc_shortcut( orig_coefs[0], quant_coefs[0], unquant_mf[0], coef_weight2[0], lambda2, cabac_state, cost_sig );
        return !!dct[0];
    }

#if HAVE_MMX && ARCH_X86_64
    uint64_t level_state0;
    memcpy( &level_state0, cabac_state, sizeof(uint64_t) );
    uint16_t level_state1;
    memcpy( &level_state1, cabac_state+8, sizeof(uint16_t) );
#define TRELLIS_ARGS unquant_mf, zigzag, lambda2, last_nnz, orig_coefs, quant_coefs, dct,\
                     cabac_state_sig, cabac_state_last, level_state0, level_state1
    if( num_coefs == 16 && !dc )
        if( b_chroma || !h->mb.i_psy_trellis )
            return h->quantf.trellis_cabac_4x4( TRELLIS_ARGS, b_ac );
        else
            return h->quantf.trellis_cabac_4x4_psy( TRELLIS_ARGS, b_ac, h->mb.pic.fenc_dct4[idx&15], h->mb.i_psy_trellis );
    else if( num_coefs == 64 && !dc )
        if( b_chroma || !h->mb.i_psy_trellis )
            return h->quantf.trellis_cabac_8x8( TRELLIS_ARGS, b_interlaced );
        else
            return h->quantf.trellis_cabac_8x8_psy( TRELLIS_ARGS, b_interlaced, h->mb.pic.fenc_dct8[idx&3], h->mb.i_psy_trellis);
    else if( num_coefs == 8 && dc )
        return h->quantf.trellis_cabac_chroma_422_dc( TRELLIS_ARGS );
    else if( dc )
        return h->quantf.trellis_cabac_dc( TRELLIS_ARGS, num_coefs-1 );
#endif

    // (# of coefs) * (# of ctx) * (# of levels tried) = 1024
    // we don't need to keep all of those: (# of coefs) * (# of ctx) would be enough,
    // but it takes more time to remove dead states than you gain in reduced memory.
    trellis_level_t level_tree[64*8*2];
    int levels_used = 1;
    /* init trellis */
    trellis_node_t nodes[2][8] = {0};
    trellis_node_t *nodes_cur = nodes[0];
    trellis_node_t *nodes_prev = nodes[1];
    trellis_node_t *bnode;
    for( int j = 1; j < 8; j++ )
        nodes_cur[j].score = TRELLIS_SCORE_MAX;
    nodes_cur[0].score = TRELLIS_SCORE_BIAS;
    nodes_cur[0].level_idx = 0;
    level_tree[0].abs_level = 0;
    level_tree[0].next = 0;
    ALIGNED_4( uint8_t level_state[16] );
    memcpy( level_state, cabac_state, 10 );
    level_state[12] = cabac_state[0]; // packed subset for copying into trellis_node_t
    level_state[13] = cabac_state[4];
    level_state[14] = cabac_state[8];
    level_state[15] = cabac_state[9];

    idx &= num_coefs == 64 ? 3 : 15;

    // coefs are processed in reverse order, because that's how the abs value is coded.
    // last_coef and significant_coef flags are normally coded in forward order, but
    // we have to reverse them to match the levels.
    // in 4x4 blocks, last_coef and significant_coef use a separate context for each
    // position, so the order doesn't matter, and we don't even have to update their contexts.
    // in 8x8 blocks, some positions share contexts, so we'll just have to hope that
    // cabac isn't too sensitive.
    int i = last_nnz;
#define TRELLIS_LOOP(ctx_hi)\
    for( ; i >= b_ac; i-- )\
    {\
        /* skip 0s: this doesn't affect the output, but saves some unnecessary computation. */\
        if( !quant_coefs[i] )\
        {\
            /* no need to calculate ssd of 0s: it's the same in all nodes.\
             * no need to modify level_tree for ctx=0: it starts with an infinite loop of 0s.\
             * subtracting from one score is equivalent to adding to the rest. */\
            if( !ctx_hi )\
            {\
                int sigindex = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
                               b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
                uint64_t cost_sig0 = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 )\
                                   * (uint64_t)lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
                nodes_cur[0].score -= cost_sig0;\
            }\
            for( int j = 1; j < (ctx_hi?8:4); j++ )\
                SET_LEVEL( nodes_cur[j], nodes_cur[j], 0 );\
            continue;\
        }\
\
        int sign_coef = orig_coefs[zigzag[i]];\
        int abs_coef = abs( sign_coef );\
        int q = abs( quant_coefs[i] );\
        int cost_siglast[3]; /* { zero, nonzero, nonzero-and-last } */\
        XCHG( trellis_node_t*, nodes_cur, nodes_prev );\
        for( int j = ctx_hi; j < 8; j++ )\
            nodes_cur[j].score = TRELLIS_SCORE_MAX;\
\
        if( i < num_coefs-1 || ctx_hi )\
        {\
            int sigindex  = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
                            b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
            int lastindex = !dc && num_coefs == 64 ? x264_last_coeff_flag_offset_8x8[i] :\
                            b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
            cost_siglast[0] = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 );\
            int cost_sig1   = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 1 );\
            cost_siglast[1] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 0 ) + cost_sig1;\
            if( !ctx_hi )\
                cost_siglast[2] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 1 ) + cost_sig1;\
        }\
        else\
        {\
            cost_siglast[0] = cost_siglast[1] = cost_siglast[2] = 0;\
        }\
\
        /* there are a few cases where increasing the coeff magnitude helps,\
         * but it's only around .003 dB, and skipping them ~doubles the speed of trellis.\
         * could also try q-2: that sometimes helps, but also sometimes decimates blocks\
         * that are better left coded, especially at QP > 40. */\
        uint64_t ssd0[2], ssd1[2];\
        for( int k = 0; k < 2; k++ )\
        {\
            int abs_level = q-1+k;\
            int unquant_abs_level = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[i]]) * abs_level + 128) >> 8);\
            int d = abs_coef - unquant_abs_level;\
            /* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */\
            if( h->mb.i_psy_trellis && i && !dc && !b_chroma )\
            {\
                int orig_coef = (num_coefs == 64) ? h->mb.pic.fenc_dct8[idx][zigzag[i]] : h->mb.pic.fenc_dct4[idx][zigzag[i]];\
                int predicted_coef = orig_coef - sign_coef;\
                int psy_value = abs(unquant_abs_level + SIGN(predicted_coef, sign_coef));\
                int psy_weight = coef_weight1[zigzag[i]] * h->mb.i_psy_trellis;\
                int64_t tmp = (int64_t)d*d * coef_weight2[zigzag[i]] - (int64_t)psy_weight * psy_value;\
                ssd1[k] = (uint64_t)tmp;\
            }\
            else\
            /* FIXME: for i16x16 dc is this weight optimal? */\
                ssd1[k] = (int64_t)d*d * (dc?256:coef_weight2[zigzag[i]]);\
            ssd0[k] = ssd1[k];\
            if( !i && !dc && !ctx_hi )\
            {\
                /* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */\
                d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);\
                ssd0[k] = (int64_t)d*d * coef_weight2[zigzag[i]];\
            }\
        }\
\
        /* argument passing imposes some significant overhead here. gcc's interprocedural register allocation isn't up to it. */\
        switch( q )\
        {\
        case 1:\
            ssd1[0] += (uint64_t)cost_siglast[0] * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
            levels_used = trellis_coef0_##ctx_hi( ssd0[0]-ssd1[0], nodes_cur, nodes_prev, level_tree, levels_used );\
            levels_used = trellis_coef1_##ctx_hi( ssd0[1]-ssd1[0], ssd1[1]-ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
            goto next##ctx_hi;\
        case 2:\
            levels_used = trellis_coef1_##ctx_hi( ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
            levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
            goto next1;\
        default:\
            levels_used = trellis_coefn_##ctx_hi( q-1, ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
            levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
            goto next1;\
        }\
        next##ctx_hi:;\
    }\
    /* output levels from the best path through the trellis */\
    bnode = &nodes_cur[ctx_hi];\
    for( int j = ctx_hi+1; j < (ctx_hi?8:4); j++ )\
        if( nodes_cur[j].score < bnode->score )\
            bnode = &nodes_cur[j];

    // keep 2 versions of the main quantization loop, depending on which subsets of the node_ctxs are live
    // node_ctx 0..3, i.e. having not yet encountered any coefs that might be quantized to >1
    TRELLIS_LOOP(0);

    if( bnode == &nodes_cur[0] )
    {
        /* We only need to zero an empty 4x4 block. 8x8 can be
           implicitly emptied via zero nnz, as can dc. */
        if( num_coefs == 16 && !dc )
            memset( dct, 0, 16 * sizeof(dctcoef) );
        return 0;
    }

    if( 0 ) // accessible only by goto, not fallthrough
    {
        // node_ctx 1..7 (ctx0 ruled out because we never try both level0 and level2+ on the same coef)
        TRELLIS_LOOP(1);
    }

    int level = bnode->level_idx;
    for( i = b_ac; i <= last_nnz; i++ )
    {
        dct[zigzag[i]] = SIGN(level_tree[level].abs_level, dct[zigzag[i]]);
        level = level_tree[level].next;
    }

    return 1;
}

/* FIXME: This is a gigantic hack.  See below.
 *
 * CAVLC is much more difficult to trellis than CABAC.
 *
 * CABAC has only three states to track: significance map, last, and the
 * level state machine.
 * CAVLC, by comparison, has five: coeff_token (trailing + total),
 * total_zeroes, zero_run, and the level state machine.
 *
 * I know of no paper that has managed to design a close-to-optimal trellis
 * that covers all five of these and isn't exponential-time.  As a result, this
 * "trellis" isn't: it's just a QNS search.  Patches welcome for something better.
 * It's actually surprisingly fast, albeit not quite optimal.  It's pretty close
 * though; since CAVLC only has 2^16 possible rounding modes (assuming only two
 * roundings as options), a bruteforce search is feasible.  Testing shows
 * that this QNS is reasonably close to optimal in terms of compression.
 *
 * TODO:
 *  Don't bother changing large coefficients when it wouldn't affect bit cost
 *  (e.g. only affecting bypassed suffix bits).
 *  Don't re-run all parts of CAVLC bit cost calculation when not necessary.
 *  e.g. when changing a coefficient from one non-zero value to another in
 *  such a way that trailing ones and suffix length isn't affected. */
static ALWAYS_INLINE
int quant_trellis_cavlc( x264_t *h, dctcoef *dct,
                         const udctcoef *quant_mf, const int *unquant_mf,
                         const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
                         int b_chroma, int dc, int num_coefs, int idx, int b_8x8 )
{
    ALIGNED_ARRAY_16( dctcoef, quant_coefs,[2],[16] );
    ALIGNED_ARRAY_16( dctcoef, coefs,[16] );
    const uint32_t *coef_weight1 = b_8x8 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
    const uint32_t *coef_weight2 = b_8x8 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
    int64_t delta_distortion[16];
    int64_t score = 1ULL<<62;
    int i, j;
    const int f = 1<<15;
    int nC = b_chroma && dc ? 3 + (num_coefs>>2)
                            : ct_index[x264_mb_predict_non_zero_code( h, !b_chroma && dc ? (idx - LUMA_DC)*16 : idx )];

    for( i = 0; i < 16; i += 16/sizeof(*coefs) )
        M128( &coefs[i] ) = M128_ZERO;

    /* Code for handling 8x8dct -> 4x4dct CAVLC munging.  Input/output use a different
     * step/start/end than internal processing. */
    int step = 1;
    int start = b_ac;
    int end = num_coefs - 1;
    if( b_8x8 )
    {
        start = idx&3;
        end = 60 + start;
        step = 4;
    }
    idx &= 15;

    lambda2 <<= LAMBDA_BITS;

    /* Find last non-zero coefficient. */
    for( i = end; i >= start; i -= step )
        if( abs(dct[zigzag[i]]) * (dc?quant_mf[0]>>1:quant_mf[zigzag[i]]) >= f )
            break;

    if( i < start )
        goto zeroblock;

    /* Prepare for QNS search: calculate distortion caused by each DCT coefficient
     * rounding to be searched.
     *
     * We only search two roundings (nearest and nearest-1) like in CABAC trellis,
     * so we just store the difference in distortion between them. */
    int last_nnz = b_8x8 ? i >> 2 : i;
    int coef_mask = 0;
    int round_mask = 0;
    for( i = b_ac, j = start; i <= last_nnz; i++, j += step )
    {
        int coef = dct[zigzag[j]];
        int abs_coef = abs(coef);
        int sign = coef < 0 ? -1 : 1;
        int nearest_quant = ( f + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
        quant_coefs[1][i] = quant_coefs[0][i] = sign * nearest_quant;
        coefs[i] = quant_coefs[1][i];
        if( nearest_quant )
        {
            /* We initialize the trellis with a deadzone halfway between nearest rounding
             * and always-round-down.  This gives much better results than initializing to either
             * extreme.
             * FIXME: should we initialize to the deadzones used by deadzone quant? */
            int deadzone_quant = ( f/2 + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
            int unquant1 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-0) + 128) >> 8);
            int unquant0 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-1) + 128) >> 8);
            int d1 = abs_coef - unquant1;
            int d0 = abs_coef - unquant0;
            delta_distortion[i] = (int64_t)(d0*d0 - d1*d1) * (dc?256:coef_weight2[zigzag[j]]);

            /* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */
            if( h->mb.i_psy_trellis && j && !dc && !b_chroma )
            {
                int orig_coef = b_8x8 ? h->mb.pic.fenc_dct8[idx>>2][zigzag[j]] : h->mb.pic.fenc_dct4[idx][zigzag[j]];
                int predicted_coef = orig_coef - coef;
                int psy_weight = coef_weight1[zigzag[j]];
                int psy_value0 = h->mb.i_psy_trellis * abs(predicted_coef + unquant0 * sign);
                int psy_value1 = h->mb.i_psy_trellis * abs(predicted_coef + unquant1 * sign);
                delta_distortion[i] += (psy_value0 - psy_value1) * psy_weight;
            }

            quant_coefs[0][i] = sign * (nearest_quant-1);
            if( deadzone_quant != nearest_quant )
                coefs[i] = quant_coefs[0][i];
            else
                round_mask |= 1 << i;
        }
        else
            delta_distortion[i] = 0;
        coef_mask |= (!!coefs[i]) << i;
    }

    /* Calculate the cost of the starting state. */
    h->out.bs.i_bits_encoded = 0;
    if( !coef_mask )
        bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
    else
        cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
    score = (int64_t)h->out.bs.i_bits_encoded * lambda2;

    /* QNS loop: pick the change that improves RD the most, apply it, repeat.
     * coef_mask and round_mask are used to simplify tracking of nonzeroness
     * and rounding modes chosen. */
    while( 1 )
    {
        int64_t iter_score = score;
        int64_t iter_distortion_delta = 0;
        int iter_coef = -1;
        int iter_mask = coef_mask;
        int iter_round = round_mask;
        for( i = b_ac; i <= last_nnz; i++ )
        {
            if( !delta_distortion[i] )
                continue;

            /* Set up all the variables for this iteration. */
            int cur_round = round_mask ^ (1 << i);
            int round_change = (cur_round >> i)&1;
            int old_coef = coefs[i];
            int new_coef = quant_coefs[round_change][i];
            int cur_mask = (coef_mask&~(1 << i))|(!!new_coef << i);
            int64_t cur_distortion_delta = delta_distortion[i] * (round_change ? -1 : 1);
            int64_t cur_score = cur_distortion_delta;
            coefs[i] = new_coef;

            /* Count up bits. */
            h->out.bs.i_bits_encoded = 0;
            if( !cur_mask )
                bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
            else
                cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
            cur_score += (int64_t)h->out.bs.i_bits_encoded * lambda2;

            coefs[i] = old_coef;
            if( cur_score < iter_score )
            {
                iter_score = cur_score;
                iter_coef = i;
                iter_mask = cur_mask;
                iter_round = cur_round;
                iter_distortion_delta = cur_distortion_delta;
            }
        }
        if( iter_coef >= 0 )
        {
            score = iter_score - iter_distortion_delta;
            coef_mask = iter_mask;
            round_mask = iter_round;
            coefs[iter_coef] = quant_coefs[((round_mask >> iter_coef)&1)][iter_coef];
            /* Don't try adjusting coefficients we've already adjusted.
             * Testing suggests this doesn't hurt results -- and sometimes actually helps. */
            delta_distortion[iter_coef] = 0;
        }
        else
            break;
    }

    if( coef_mask )
    {
        for( i = b_ac, j = start; i < num_coefs; i++, j += step )
            dct[zigzag[j]] = coefs[i];
        return 1;
    }

zeroblock:
    if( !dc )
    {
        if( b_8x8 )
            for( i = start; i <= end; i+=step )
                dct[zigzag[i]] = 0;
        else
            memset( dct, 0, 16*sizeof(dctcoef) );
    }
    return 0;
}

int x264_quant_luma_dc_trellis( x264_t *h, dctcoef *dct, int i_quant_cat, int i_qp, int ctx_block_cat, int b_intra, int idx )
{
    if( h->param.b_cabac )
        return quant_trellis_cabac( h, dct,
            h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
            h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
            ctx_block_cat, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx );

    return quant_trellis_cavlc( h, dct,
        h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
        DCT_LUMA_DC, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx, 0 );
}

static const uint8_t zigzag_scan2x2[4] = { 0, 1, 2, 3 };
static const uint8_t zigzag_scan2x4[8] = { 0, 2, 1, 4, 6, 3, 5, 7 };

int x264_quant_chroma_dc_trellis( x264_t *h, dctcoef *dct, int i_qp, int b_intra, int idx )
{
    const uint8_t *zigzag;
    int num_coefs;
    int quant_cat = CQM_4IC+1 - b_intra;

    if( CHROMA_FORMAT == CHROMA_422 )
    {
        zigzag = zigzag_scan2x4;
        num_coefs = 8;
    }
    else
    {
        zigzag = zigzag_scan2x2;
        num_coefs = 4;
    }

    if( h->param.b_cabac )
        return quant_trellis_cabac( h, dct,
            h->quant4_mf[quant_cat][i_qp], h->quant4_bias0[quant_cat][i_qp],
            h->unquant4_mf[quant_cat][i_qp], zigzag,
            DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx );

    return quant_trellis_cavlc( h, dct,
        h->quant4_mf[quant_cat][i_qp], h->unquant4_mf[quant_cat][i_qp], zigzag,
        DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx, 0 );
}

int x264_quant_4x4_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
                            int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
{
    static const uint8_t ctx_ac[14] = {0,1,0,0,1,0,0,1,0,0,0,1,0,0};
    int b_ac = ctx_ac[ctx_block_cat];
    if( h->param.b_cabac )
        return quant_trellis_cabac( h, dct,
            h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
            h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
            ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx );

    return quant_trellis_cavlc( h, dct,
            h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp],
            x264_zigzag_scan4[MB_INTERLACED],
            ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx, 0 );
}

int x264_quant_8x8_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
                            int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
{
    if( h->param.b_cabac )
    {
        return quant_trellis_cabac( h, dct,
            h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias0[i_quant_cat][i_qp],
            h->unquant8_mf[i_quant_cat][i_qp], x264_zigzag_scan8[MB_INTERLACED],
            ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 64, idx );
    }

    /* 8x8 CAVLC is split into 4 4x4 blocks */
    int nzaccum = 0;
    for( int i = 0; i < 4; i++ )
    {
        int nz = quant_trellis_cavlc( h, dct,
            h->quant8_mf[i_quant_cat][i_qp], h->unquant8_mf[i_quant_cat][i_qp],
            x264_zigzag_scan8[MB_INTERLACED],
            DCT_LUMA_4x4, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 16, idx*4+i, 1 );
        /* Set up nonzero count for future calls */
        h->mb.cache.non_zero_count[x264_scan8[idx*4+i]] = nz;
        nzaccum |= nz;
    }
    STORE_8x8_NNZ( 0, idx, 0 );
    return nzaccum;
}