rdo.c
47.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
/*****************************************************************************
* rdo.c: rate-distortion optimization
*****************************************************************************
* Copyright (C) 2005-2024 x264 project
*
* Authors: Loren Merritt <lorenm@u.washington.edu>
* Fiona Glaser <fiona@x264.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at licensing@x264.com.
*****************************************************************************/
/* duplicate all the writer functions, just calculating bit cost
* instead of writing the bitstream.
* TODO: use these for fast 1st pass too. */
#define RDO_SKIP_BS 1
/* Transition and size tables for abs<9 MVD and residual coding */
/* Consist of i_prefix-2 1s, one zero, and a bypass sign bit */
#define x264_cabac_transition_unary x264_template(cabac_transition_unary)
uint8_t x264_cabac_transition_unary[15][128];
#define x264_cabac_size_unary x264_template(cabac_size_unary)
uint16_t x264_cabac_size_unary[15][128];
/* Transition and size tables for abs>9 MVD */
/* Consist of 5 1s and a bypass sign bit */
static uint8_t cabac_transition_5ones[128];
static uint16_t cabac_size_5ones[128];
/* CAVLC: produces exactly the same bit count as a normal encode */
/* this probably still leaves some unnecessary computations */
#define bs_write1(s,v) ((s)->i_bits_encoded += 1)
#define bs_write(s,n,v) ((s)->i_bits_encoded += (n))
#define bs_write_ue(s,v) ((s)->i_bits_encoded += bs_size_ue(v))
#define bs_write_se(s,v) ((s)->i_bits_encoded += bs_size_se(v))
#define bs_write_te(s,v,l) ((s)->i_bits_encoded += bs_size_te(v,l))
#undef x264_macroblock_write_cavlc
#define x264_macroblock_write_cavlc static macroblock_size_cavlc
#include "cavlc.c"
/* CABAC: not exactly the same. x264_cabac_size_decision() keeps track of
* fractional bits, but only finite precision. */
#undef x264_cabac_encode_decision
#undef x264_cabac_encode_decision_noup
#undef x264_cabac_encode_bypass
#undef x264_cabac_encode_terminal
#undef x264_cabac_encode_ue_bypass
#define x264_cabac_encode_decision(c,x,v) x264_cabac_size_decision(c,x,v)
#define x264_cabac_encode_decision_noup(c,x,v) x264_cabac_size_decision_noup(c,x,v)
#define x264_cabac_encode_terminal(c) ((c)->f8_bits_encoded += 7)
#define x264_cabac_encode_bypass(c,v) ((c)->f8_bits_encoded += 256)
#define x264_cabac_encode_ue_bypass(c,e,v) ((c)->f8_bits_encoded += (bs_size_ue_big(v+(1<<e)-1)-e)<<8)
#undef x264_macroblock_write_cabac
#define x264_macroblock_write_cabac static macroblock_size_cabac
#include "cabac.c"
#define COPY_CABAC h->mc.memcpy_aligned( &cabac_tmp.f8_bits_encoded, &h->cabac.f8_bits_encoded, \
sizeof(int) + (CHROMA444 ? 1024+12 : 460) )
#define COPY_CABAC_PART( pos, size ) memcpy( &cb->state[pos], &h->cabac.state[pos], size )
static ALWAYS_INLINE uint64_t cached_hadamard( x264_t *h, int size, int x, int y )
{
static const uint8_t hadamard_shift_x[4] = {4, 4, 3, 3};
static const uint8_t hadamard_shift_y[4] = {4-0, 3-0, 4-1, 3-1};
static const uint8_t hadamard_offset[4] = {0, 1, 3, 5};
int cache_index = (x >> hadamard_shift_x[size]) + (y >> hadamard_shift_y[size])
+ hadamard_offset[size];
uint64_t res = h->mb.pic.fenc_hadamard_cache[cache_index];
if( res )
return res - 1;
else
{
pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
res = h->pixf.hadamard_ac[size]( fenc, FENC_STRIDE );
h->mb.pic.fenc_hadamard_cache[cache_index] = res + 1;
return res;
}
}
static ALWAYS_INLINE int cached_satd( x264_t *h, int size, int x, int y )
{
static const uint8_t satd_shift_x[3] = {3, 2, 2};
static const uint8_t satd_shift_y[3] = {2-1, 3-2, 2-2};
static const uint8_t satd_offset[3] = {0, 8, 16};
int cache_index = (x >> satd_shift_x[size - PIXEL_8x4]) + (y >> satd_shift_y[size - PIXEL_8x4])
+ satd_offset[size - PIXEL_8x4];
int res = h->mb.pic.fenc_satd_cache[cache_index];
if( res )
return res - 1;
else
{
pixel *fenc = h->mb.pic.p_fenc[0] + x + y*FENC_STRIDE;
int dc = h->pixf.sad[size]( fenc, FENC_STRIDE, (pixel*)x264_zero, 0 ) >> 1;
res = h->pixf.satd[size]( fenc, FENC_STRIDE, (pixel*)x264_zero, 0 ) - dc;
h->mb.pic.fenc_satd_cache[cache_index] = res + 1;
return res;
}
}
/* Psy RD distortion metric: SSD plus "Absolute Difference of Complexities" */
/* SATD and SA8D are used to measure block complexity. */
/* The difference between SATD and SA8D scores are both used to avoid bias from the DCT size. Using SATD */
/* only, for example, results in overusage of 8x8dct, while the opposite occurs when using SA8D. */
/* FIXME: Is there a better metric than averaged SATD/SA8D difference for complexity difference? */
/* Hadamard transform is recursive, so a SATD+SA8D can be done faster by taking advantage of this fact. */
/* This optimization can also be used in non-RD transform decision. */
static inline int ssd_plane( x264_t *h, int size, int p, int x, int y )
{
int satd = 0;
pixel *fdec = h->mb.pic.p_fdec[p] + x + y*FDEC_STRIDE;
pixel *fenc = h->mb.pic.p_fenc[p] + x + y*FENC_STRIDE;
if( p == 0 && h->mb.i_psy_rd )
{
/* If the plane is smaller than 8x8, we can't do an SA8D; this probably isn't a big problem. */
if( size <= PIXEL_8x8 )
{
uint64_t fdec_acs = h->pixf.hadamard_ac[size]( fdec, FDEC_STRIDE );
uint64_t fenc_acs = cached_hadamard( h, size, x, y );
satd = abs((int32_t)fdec_acs - (int32_t)fenc_acs)
+ abs((int32_t)(fdec_acs>>32) - (int32_t)(fenc_acs>>32));
satd >>= 1;
}
else
{
int dc = h->pixf.sad[size]( fdec, FDEC_STRIDE, (pixel*)x264_zero, 0 ) >> 1;
satd = abs(h->pixf.satd[size]( fdec, FDEC_STRIDE, (pixel*)x264_zero, 0 ) - dc - cached_satd( h, size, x, y ));
}
int64_t tmp = ((int64_t)satd * h->mb.i_psy_rd * h->mb.i_psy_rd_lambda + 128) >> 8;
satd = X264_MIN( tmp, COST_MAX );
}
return h->pixf.ssd[size](fenc, FENC_STRIDE, fdec, FDEC_STRIDE) + satd;
}
static inline int ssd_mb( x264_t *h )
{
int i_ssd = ssd_plane( h, PIXEL_16x16, 0, 0, 0 );
if( CHROMA_FORMAT )
{
int chroma_size = h->luma2chroma_pixel[PIXEL_16x16];
int chroma_ssd = ssd_plane( h, chroma_size, 1, 0, 0 ) + ssd_plane( h, chroma_size, 2, 0, 0 );
i_ssd += ((uint64_t)chroma_ssd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
}
return i_ssd;
}
static int rd_cost_mb( x264_t *h, int i_lambda2 )
{
int b_transform_bak = h->mb.b_transform_8x8;
int i_ssd;
int i_bits;
int type_bak = h->mb.i_type;
x264_macroblock_encode( h );
if( h->mb.b_deblock_rdo )
x264_macroblock_deblock( h );
i_ssd = ssd_mb( h );
if( IS_SKIP( h->mb.i_type ) )
{
i_bits = (1 * i_lambda2 + 128) >> 8;
}
else if( h->param.b_cabac )
{
x264_cabac_t cabac_tmp;
COPY_CABAC;
macroblock_size_cabac( h, &cabac_tmp );
i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 32768 ) >> 16;
}
else
{
macroblock_size_cavlc( h );
i_bits = ( (uint64_t)h->out.bs.i_bits_encoded * i_lambda2 + 128 ) >> 8;
}
h->mb.b_transform_8x8 = b_transform_bak;
h->mb.i_type = type_bak;
return X264_MIN( i_ssd + i_bits, COST_MAX );
}
/* partition RD functions use 8 bits more precision to avoid large rounding errors at low QPs */
static uint64_t rd_cost_subpart( x264_t *h, int i_lambda2, int i4, int i_pixel )
{
uint64_t i_ssd, i_bits;
x264_macroblock_encode_p4x4( h, i4 );
if( i_pixel == PIXEL_8x4 )
x264_macroblock_encode_p4x4( h, i4+1 );
if( i_pixel == PIXEL_4x8 )
x264_macroblock_encode_p4x4( h, i4+2 );
i_ssd = ssd_plane( h, i_pixel, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
if( CHROMA444 )
{
int chromassd = ssd_plane( h, i_pixel, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
+ ssd_plane( h, i_pixel, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
i_ssd += chromassd;
}
if( h->param.b_cabac )
{
x264_cabac_t cabac_tmp;
COPY_CABAC;
subpartition_size_cabac( h, &cabac_tmp, i4, i_pixel );
i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
}
else
i_bits = subpartition_size_cavlc( h, i4, i_pixel );
return (i_ssd<<8) + i_bits;
}
uint64_t x264_rd_cost_part( x264_t *h, int i_lambda2, int i4, int i_pixel )
{
uint64_t i_ssd, i_bits;
int i8 = i4 >> 2;
if( i_pixel == PIXEL_16x16 )
{
int i_cost = rd_cost_mb( h, i_lambda2 );
return i_cost;
}
if( i_pixel > PIXEL_8x8 )
return rd_cost_subpart( h, i_lambda2, i4, i_pixel );
h->mb.i_cbp_luma = 0;
x264_macroblock_encode_p8x8( h, i8 );
if( i_pixel == PIXEL_16x8 )
x264_macroblock_encode_p8x8( h, i8+1 );
if( i_pixel == PIXEL_8x16 )
x264_macroblock_encode_p8x8( h, i8+2 );
int ssd_x = 8*(i8&1);
int ssd_y = 8*(i8>>1);
i_ssd = ssd_plane( h, i_pixel, 0, ssd_x, ssd_y );
if( CHROMA_FORMAT )
{
int chroma_size = h->luma2chroma_pixel[i_pixel];
int chroma_ssd = ssd_plane( h, chroma_size, 1, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT )
+ ssd_plane( h, chroma_size, 2, ssd_x>>CHROMA_H_SHIFT, ssd_y>>CHROMA_V_SHIFT );
i_ssd += ((uint64_t)chroma_ssd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
}
if( h->param.b_cabac )
{
x264_cabac_t cabac_tmp;
COPY_CABAC;
partition_size_cabac( h, &cabac_tmp, i8, i_pixel );
i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
}
else
i_bits = (uint64_t)partition_size_cavlc( h, i8, i_pixel ) * i_lambda2;
return (i_ssd<<8) + i_bits;
}
static uint64_t rd_cost_i8x8( x264_t *h, int i_lambda2, int i8, int i_mode, pixel edge[4][32] )
{
uint64_t i_ssd, i_bits;
int plane_count = CHROMA444 ? 3 : 1;
int i_qp = h->mb.i_qp;
h->mb.i_cbp_luma &= ~(1<<i8);
h->mb.b_transform_8x8 = 1;
for( int p = 0; p < plane_count; p++ )
{
x264_mb_encode_i8x8( h, p, i8, i_qp, i_mode, edge[p], 1 );
i_qp = h->mb.i_chroma_qp;
}
i_ssd = ssd_plane( h, PIXEL_8x8, 0, (i8&1)*8, (i8>>1)*8 );
if( CHROMA444 )
{
int chromassd = ssd_plane( h, PIXEL_8x8, 1, (i8&1)*8, (i8>>1)*8 )
+ ssd_plane( h, PIXEL_8x8, 2, (i8&1)*8, (i8>>1)*8 );
chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
i_ssd += chromassd;
}
if( h->param.b_cabac )
{
x264_cabac_t cabac_tmp;
COPY_CABAC;
partition_i8x8_size_cabac( h, &cabac_tmp, i8, i_mode );
i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
}
else
i_bits = (uint64_t)partition_i8x8_size_cavlc( h, i8, i_mode ) * i_lambda2;
return (i_ssd<<8) + i_bits;
}
static uint64_t rd_cost_i4x4( x264_t *h, int i_lambda2, int i4, int i_mode )
{
uint64_t i_ssd, i_bits;
int plane_count = CHROMA444 ? 3 : 1;
int i_qp = h->mb.i_qp;
for( int p = 0; p < plane_count; p++ )
{
x264_mb_encode_i4x4( h, p, i4, i_qp, i_mode, 1 );
i_qp = h->mb.i_chroma_qp;
}
i_ssd = ssd_plane( h, PIXEL_4x4, 0, block_idx_x[i4]*4, block_idx_y[i4]*4 );
if( CHROMA444 )
{
int chromassd = ssd_plane( h, PIXEL_4x4, 1, block_idx_x[i4]*4, block_idx_y[i4]*4 )
+ ssd_plane( h, PIXEL_4x4, 2, block_idx_x[i4]*4, block_idx_y[i4]*4 );
chromassd = ((uint64_t)chromassd * h->mb.i_chroma_lambda2_offset + 128) >> 8;
i_ssd += chromassd;
}
if( h->param.b_cabac )
{
x264_cabac_t cabac_tmp;
COPY_CABAC;
partition_i4x4_size_cabac( h, &cabac_tmp, i4, i_mode );
i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
}
else
i_bits = (uint64_t)partition_i4x4_size_cavlc( h, i4, i_mode ) * i_lambda2;
return (i_ssd<<8) + i_bits;
}
static uint64_t rd_cost_chroma( x264_t *h, int i_lambda2, int i_mode, int b_dct )
{
uint64_t i_ssd, i_bits;
if( b_dct )
x264_mb_encode_chroma( h, 0, h->mb.i_chroma_qp );
int chromapix = h->luma2chroma_pixel[PIXEL_16x16];
i_ssd = ssd_plane( h, chromapix, 1, 0, 0 )
+ ssd_plane( h, chromapix, 2, 0, 0 );
h->mb.i_chroma_pred_mode = i_mode;
if( h->param.b_cabac )
{
x264_cabac_t cabac_tmp;
COPY_CABAC;
chroma_size_cabac( h, &cabac_tmp );
i_bits = ( (uint64_t)cabac_tmp.f8_bits_encoded * i_lambda2 + 128 ) >> 8;
}
else
i_bits = (uint64_t)chroma_size_cavlc( h ) * i_lambda2;
return (i_ssd<<8) + i_bits;
}
/****************************************************************************
* Trellis RD quantization
****************************************************************************/
#define TRELLIS_SCORE_MAX (~0ULL) // marks the node as invalid
#define TRELLIS_SCORE_BIAS (1ULL<<60) // bias so that all valid scores are positive, even after negative contributions from psy
#define CABAC_SIZE_BITS 8
#define LAMBDA_BITS 4
/* precalculate the cost of coding various combinations of bits in a single context */
void x264_rdo_init( void )
{
for( int i_prefix = 0; i_prefix < 15; i_prefix++ )
{
for( int i_ctx = 0; i_ctx < 128; i_ctx++ )
{
int f8_bits = 0;
uint8_t ctx = i_ctx;
for( int i = 1; i < i_prefix; i++ )
f8_bits += x264_cabac_size_decision2( &ctx, 1 );
if( i_prefix > 0 && i_prefix < 14 )
f8_bits += x264_cabac_size_decision2( &ctx, 0 );
f8_bits += 1 << CABAC_SIZE_BITS; //sign
x264_cabac_size_unary[i_prefix][i_ctx] = f8_bits;
x264_cabac_transition_unary[i_prefix][i_ctx] = ctx;
}
}
for( int i_ctx = 0; i_ctx < 128; i_ctx++ )
{
int f8_bits = 0;
uint8_t ctx = i_ctx;
for( int i = 0; i < 5; i++ )
f8_bits += x264_cabac_size_decision2( &ctx, 1 );
f8_bits += 1 << CABAC_SIZE_BITS; //sign
cabac_size_5ones[i_ctx] = f8_bits;
cabac_transition_5ones[i_ctx] = ctx;
}
}
typedef struct
{
uint64_t score;
int level_idx; // index into level_tree[]
uint8_t cabac_state[4]; // just contexts 0,4,8,9 of the 10 relevant to coding abs_level_m1
} trellis_node_t;
typedef struct
{
uint16_t next;
uint16_t abs_level;
} trellis_level_t;
// TODO:
// save cabac state between blocks?
// use trellis' RD score instead of x264_mb_decimate_score?
// code 8x8 sig/last flags forwards with deadzone and save the contexts at
// each position?
// change weights when using CQMs?
// possible optimizations:
// make scores fit in 32bit
// save quantized coefs during rd, to avoid a duplicate trellis in the final encode
// if trellissing all MBRD modes, finish SSD calculation so we can skip all of
// the normal dequant/idct/ssd/cabac
// the unquant_mf here is not the same as dequant_mf:
// in normal operation (dct->quant->dequant->idct) the dct and idct are not
// normalized. quant/dequant absorb those scaling factors.
// in this function, we just do (quant->unquant) and want the output to be
// comparable to the input. so unquant is the direct inverse of quant,
// and uses the dct scaling factors, not the idct ones.
#define SIGN(x,y) ((x^(y >> 31))-(y >> 31))
#define SET_LEVEL(ndst, nsrc, l) {\
if( sizeof(trellis_level_t) == sizeof(uint32_t) )\
M32( &level_tree[levels_used] ) = pack16to32( nsrc.level_idx, l );\
else\
level_tree[levels_used] = (trellis_level_t){ nsrc.level_idx, l };\
ndst.level_idx = levels_used;\
levels_used++;\
}
// encode all values of the dc coef in a block which is known to have no ac
static NOINLINE
int trellis_dc_shortcut( int sign_coef, int quant_coef, int unquant_mf, int coef_weight, int lambda2, uint8_t *cabac_state, int cost_sig )
{
uint64_t bscore = TRELLIS_SCORE_MAX;
int ret = 0;
int q = abs( quant_coef );
for( int abs_level = q-1; abs_level <= q; abs_level++ )
{
int unquant_abs_level = (unquant_mf * abs_level + 128) >> 8;
/* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */
int d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);
uint64_t score = (int64_t)d*d * coef_weight;
/* code the proposed level, and count how much entropy it would take */
if( abs_level )
{
unsigned f8_bits = cost_sig;
int prefix = X264_MIN( abs_level - 1, 14 );
f8_bits += x264_cabac_size_decision_noup2( cabac_state+1, prefix > 0 );
f8_bits += x264_cabac_size_unary[prefix][cabac_state[5]];
if( abs_level >= 15 )
f8_bits += bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS;
score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );
}
COPY2_IF_LT( bscore, score, ret, abs_level );
}
return SIGN(ret, sign_coef);
}
// encode one value of one coef in one context
static ALWAYS_INLINE
int trellis_coef( int j, int const_level, int abs_level, int prefix, int suffix_cost,
int node_ctx, int level1_ctx, int levelgt1_ctx, uint64_t ssd, int cost_siglast[3],
trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
trellis_level_t *level_tree, int levels_used, int lambda2, uint8_t *level_state )
{
uint64_t score = nodes_prev[j].score + ssd;
/* code the proposed level, and count how much entropy it would take */
unsigned f8_bits = cost_siglast[ j ? 1 : 2 ];
uint8_t level1_state = (j >= 3) ? nodes_prev[j].cabac_state[level1_ctx>>2] : level_state[level1_ctx];
f8_bits += x264_cabac_entropy[level1_state ^ (const_level > 1)];
uint8_t levelgt1_state;
if( const_level > 1 )
{
levelgt1_state = j >= 6 ? nodes_prev[j].cabac_state[levelgt1_ctx-6] : level_state[levelgt1_ctx];
f8_bits += x264_cabac_size_unary[prefix][levelgt1_state] + suffix_cost;
}
else
f8_bits += 1 << CABAC_SIZE_BITS;
score += (uint64_t)f8_bits * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );
/* save the node if it's better than any existing node with the same cabac ctx */
if( score < nodes_cur[node_ctx].score )
{
nodes_cur[node_ctx].score = score;
if( j == 2 || (j <= 3 && node_ctx == 4) ) // init from input state
M32(nodes_cur[node_ctx].cabac_state) = M32(level_state+12);
else if( j >= 3 )
M32(nodes_cur[node_ctx].cabac_state) = M32(nodes_prev[j].cabac_state);
if( j >= 3 ) // skip the transition if we're not going to reuse the context
nodes_cur[node_ctx].cabac_state[level1_ctx>>2] = x264_cabac_transition[level1_state][const_level > 1];
if( const_level > 1 && node_ctx == 7 )
nodes_cur[node_ctx].cabac_state[levelgt1_ctx-6] = x264_cabac_transition_unary[prefix][levelgt1_state];
nodes_cur[node_ctx].level_idx = nodes_prev[j].level_idx;
SET_LEVEL( nodes_cur[node_ctx], nodes_prev[j], abs_level );
}
return levels_used;
}
// encode one value of one coef in all contexts, templated by which value that is.
// in ctx_lo, the set of live nodes is contiguous and starts at ctx0, so return as soon as we've seen one failure.
// in ctx_hi, they're contiguous within each block of 4 ctxs, but not necessarily starting at the beginning,
// so exploiting that would be more complicated.
static NOINLINE
int trellis_coef0_0( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
trellis_level_t *level_tree, int levels_used )
{
nodes_cur[0].score = nodes_prev[0].score + ssd0;
nodes_cur[0].level_idx = nodes_prev[0].level_idx;
for( int j = 1; j < 4 && (int64_t)nodes_prev[j].score >= 0; j++ )
{
nodes_cur[j].score = nodes_prev[j].score;
if( j >= 3 )
M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
}
return levels_used;
}
static NOINLINE
int trellis_coef0_1( uint64_t ssd0, trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
trellis_level_t *level_tree, int levels_used )
{
for( int j = 1; j < 8; j++ )
// this branch only affects speed, not function; there's nothing wrong with updating invalid nodes in coef0.
if( (int64_t)nodes_prev[j].score >= 0 )
{
nodes_cur[j].score = nodes_prev[j].score;
if( j >= 3 )
M32(nodes_cur[j].cabac_state) = M32(nodes_prev[j].cabac_state);
SET_LEVEL( nodes_cur[j], nodes_prev[j], 0 );
}
return levels_used;
}
#define COEF(const_level, ctx_hi, j, ...)\
if( !j || (int64_t)nodes_prev[j].score >= 0 )\
levels_used = trellis_coef( j, const_level, abs_level, prefix, suffix_cost, __VA_ARGS__,\
j?ssd1:ssd0, cost_siglast, nodes_cur, nodes_prev,\
level_tree, levels_used, lambda2, level_state );\
else if( !ctx_hi )\
return levels_used;
static NOINLINE
int trellis_coef1_0( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
trellis_level_t *level_tree, int levels_used, int lambda2,
uint8_t *level_state )
{
int abs_level = 1, prefix = 1, suffix_cost = 0;
COEF( 1, 0, 0, 1, 1, 0 );
COEF( 1, 0, 1, 2, 2, 0 );
COEF( 1, 0, 2, 3, 3, 0 );
COEF( 1, 0, 3, 3, 4, 0 );
return levels_used;
}
static NOINLINE
int trellis_coef1_1( uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
trellis_level_t *level_tree, int levels_used, int lambda2,
uint8_t *level_state )
{
int abs_level = 1, prefix = 1, suffix_cost = 0;
COEF( 1, 1, 1, 2, 2, 0 );
COEF( 1, 1, 2, 3, 3, 0 );
COEF( 1, 1, 3, 3, 4, 0 );
COEF( 1, 1, 4, 4, 0, 0 );
COEF( 1, 1, 5, 5, 0, 0 );
COEF( 1, 1, 6, 6, 0, 0 );
COEF( 1, 1, 7, 7, 0, 0 );
return levels_used;
}
static NOINLINE
int trellis_coefn_0( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
trellis_level_t *level_tree, int levels_used, int lambda2,
uint8_t *level_state, int levelgt1_ctx )
{
int prefix = X264_MIN( abs_level-1, 14 );
int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
COEF( 2, 0, 0, 4, 1, 5 );
COEF( 2, 0, 1, 4, 2, 5 );
COEF( 2, 0, 2, 4, 3, 5 );
COEF( 2, 0, 3, 4, 4, 5 );
return levels_used;
}
static NOINLINE
int trellis_coefn_1( int abs_level, uint64_t ssd0, uint64_t ssd1, int cost_siglast[3],
trellis_node_t *nodes_cur, trellis_node_t *nodes_prev,
trellis_level_t *level_tree, int levels_used, int lambda2,
uint8_t *level_state, int levelgt1_ctx )
{
int prefix = X264_MIN( abs_level-1, 14 );
int suffix_cost = abs_level >= 15 ? bs_size_ue_big( abs_level - 15 ) << CABAC_SIZE_BITS : 0;
COEF( 2, 1, 1, 4, 2, 5 );
COEF( 2, 1, 2, 4, 3, 5 );
COEF( 2, 1, 3, 4, 4, 5 );
COEF( 2, 1, 4, 5, 0, 6 );
COEF( 2, 1, 5, 6, 0, 7 );
COEF( 2, 1, 6, 7, 0, 8 );
COEF( 2, 1, 7, 7, 0, levelgt1_ctx );
return levels_used;
}
static ALWAYS_INLINE
int quant_trellis_cabac( x264_t *h, dctcoef *dct,
udctcoef *quant_mf, udctcoef *quant_bias, const int *unquant_mf,
const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
int b_chroma, int dc, int num_coefs, int idx )
{
ALIGNED_ARRAY_64( dctcoef, orig_coefs, [64] );
ALIGNED_ARRAY_64( dctcoef, quant_coefs, [64] );
const uint32_t *coef_weight1 = num_coefs == 64 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
const uint32_t *coef_weight2 = num_coefs == 64 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
const int b_interlaced = MB_INTERLACED;
uint8_t *cabac_state_sig = &h->cabac.state[ x264_significant_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
uint8_t *cabac_state_last = &h->cabac.state[ x264_last_coeff_flag_offset[b_interlaced][ctx_block_cat] ];
int levelgt1_ctx = b_chroma && dc ? 8 : 9;
if( dc )
{
if( num_coefs == 16 )
{
memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
if( !h->quantf.quant_4x4_dc( dct, quant_mf[0] >> 1, quant_bias[0] << 1 ) )
return 0;
h->zigzagf.scan_4x4( quant_coefs, dct );
}
else
{
memcpy( orig_coefs, dct, sizeof(dctcoef)*num_coefs );
int nz = h->quantf.quant_2x2_dc( &dct[0], quant_mf[0] >> 1, quant_bias[0] << 1 );
if( num_coefs == 8 )
nz |= h->quantf.quant_2x2_dc( &dct[4], quant_mf[0] >> 1, quant_bias[0] << 1 );
if( !nz )
return 0;
for( int i = 0; i < num_coefs; i++ )
quant_coefs[i] = dct[zigzag[i]];
}
}
else
{
if( num_coefs == 64 )
{
h->mc.memcpy_aligned( orig_coefs, dct, sizeof(dctcoef)*64 );
if( !h->quantf.quant_8x8( dct, quant_mf, quant_bias ) )
return 0;
h->zigzagf.scan_8x8( quant_coefs, dct );
}
else //if( num_coefs == 16 )
{
memcpy( orig_coefs, dct, sizeof(dctcoef)*16 );
if( !h->quantf.quant_4x4( dct, quant_mf, quant_bias ) )
return 0;
h->zigzagf.scan_4x4( quant_coefs, dct );
}
}
int last_nnz = h->quantf.coeff_last[ctx_block_cat]( quant_coefs+b_ac )+b_ac;
uint8_t *cabac_state = &h->cabac.state[ x264_coeff_abs_level_m1_offset[ctx_block_cat] ];
/* shortcut for dc-only blocks.
* this doesn't affect the output, but saves some unnecessary computation. */
if( last_nnz == 0 && !dc )
{
int cost_sig = x264_cabac_size_decision_noup2( &cabac_state_sig[0], 1 )
+ x264_cabac_size_decision_noup2( &cabac_state_last[0], 1 );
dct[0] = trellis_dc_shortcut( orig_coefs[0], quant_coefs[0], unquant_mf[0], coef_weight2[0], lambda2, cabac_state, cost_sig );
return !!dct[0];
}
#if HAVE_MMX && ARCH_X86_64
uint64_t level_state0;
memcpy( &level_state0, cabac_state, sizeof(uint64_t) );
uint16_t level_state1;
memcpy( &level_state1, cabac_state+8, sizeof(uint16_t) );
#define TRELLIS_ARGS unquant_mf, zigzag, lambda2, last_nnz, orig_coefs, quant_coefs, dct,\
cabac_state_sig, cabac_state_last, level_state0, level_state1
if( num_coefs == 16 && !dc )
if( b_chroma || !h->mb.i_psy_trellis )
return h->quantf.trellis_cabac_4x4( TRELLIS_ARGS, b_ac );
else
return h->quantf.trellis_cabac_4x4_psy( TRELLIS_ARGS, b_ac, h->mb.pic.fenc_dct4[idx&15], h->mb.i_psy_trellis );
else if( num_coefs == 64 && !dc )
if( b_chroma || !h->mb.i_psy_trellis )
return h->quantf.trellis_cabac_8x8( TRELLIS_ARGS, b_interlaced );
else
return h->quantf.trellis_cabac_8x8_psy( TRELLIS_ARGS, b_interlaced, h->mb.pic.fenc_dct8[idx&3], h->mb.i_psy_trellis);
else if( num_coefs == 8 && dc )
return h->quantf.trellis_cabac_chroma_422_dc( TRELLIS_ARGS );
else if( dc )
return h->quantf.trellis_cabac_dc( TRELLIS_ARGS, num_coefs-1 );
#endif
// (# of coefs) * (# of ctx) * (# of levels tried) = 1024
// we don't need to keep all of those: (# of coefs) * (# of ctx) would be enough,
// but it takes more time to remove dead states than you gain in reduced memory.
trellis_level_t level_tree[64*8*2];
int levels_used = 1;
/* init trellis */
trellis_node_t nodes[2][8] = {0};
trellis_node_t *nodes_cur = nodes[0];
trellis_node_t *nodes_prev = nodes[1];
trellis_node_t *bnode;
for( int j = 1; j < 8; j++ )
nodes_cur[j].score = TRELLIS_SCORE_MAX;
nodes_cur[0].score = TRELLIS_SCORE_BIAS;
nodes_cur[0].level_idx = 0;
level_tree[0].abs_level = 0;
level_tree[0].next = 0;
ALIGNED_4( uint8_t level_state[16] );
memcpy( level_state, cabac_state, 10 );
level_state[12] = cabac_state[0]; // packed subset for copying into trellis_node_t
level_state[13] = cabac_state[4];
level_state[14] = cabac_state[8];
level_state[15] = cabac_state[9];
idx &= num_coefs == 64 ? 3 : 15;
// coefs are processed in reverse order, because that's how the abs value is coded.
// last_coef and significant_coef flags are normally coded in forward order, but
// we have to reverse them to match the levels.
// in 4x4 blocks, last_coef and significant_coef use a separate context for each
// position, so the order doesn't matter, and we don't even have to update their contexts.
// in 8x8 blocks, some positions share contexts, so we'll just have to hope that
// cabac isn't too sensitive.
int i = last_nnz;
#define TRELLIS_LOOP(ctx_hi)\
for( ; i >= b_ac; i-- )\
{\
/* skip 0s: this doesn't affect the output, but saves some unnecessary computation. */\
if( !quant_coefs[i] )\
{\
/* no need to calculate ssd of 0s: it's the same in all nodes.\
* no need to modify level_tree for ctx=0: it starts with an infinite loop of 0s.\
* subtracting from one score is equivalent to adding to the rest. */\
if( !ctx_hi )\
{\
int sigindex = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
uint64_t cost_sig0 = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 )\
* (uint64_t)lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
nodes_cur[0].score -= cost_sig0;\
}\
for( int j = 1; j < (ctx_hi?8:4); j++ )\
SET_LEVEL( nodes_cur[j], nodes_cur[j], 0 );\
continue;\
}\
\
int sign_coef = orig_coefs[zigzag[i]];\
int abs_coef = abs( sign_coef );\
int q = abs( quant_coefs[i] );\
int cost_siglast[3]; /* { zero, nonzero, nonzero-and-last } */\
XCHG( trellis_node_t*, nodes_cur, nodes_prev );\
for( int j = ctx_hi; j < 8; j++ )\
nodes_cur[j].score = TRELLIS_SCORE_MAX;\
\
if( i < num_coefs-1 || ctx_hi )\
{\
int sigindex = !dc && num_coefs == 64 ? x264_significant_coeff_flag_offset_8x8[b_interlaced][i] :\
b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
int lastindex = !dc && num_coefs == 64 ? x264_last_coeff_flag_offset_8x8[i] :\
b_chroma && dc && num_coefs == 8 ? x264_coeff_flag_offset_chroma_422_dc[i] : i;\
cost_siglast[0] = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 0 );\
int cost_sig1 = x264_cabac_size_decision_noup2( &cabac_state_sig[sigindex], 1 );\
cost_siglast[1] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 0 ) + cost_sig1;\
if( !ctx_hi )\
cost_siglast[2] = x264_cabac_size_decision_noup2( &cabac_state_last[lastindex], 1 ) + cost_sig1;\
}\
else\
{\
cost_siglast[0] = cost_siglast[1] = cost_siglast[2] = 0;\
}\
\
/* there are a few cases where increasing the coeff magnitude helps,\
* but it's only around .003 dB, and skipping them ~doubles the speed of trellis.\
* could also try q-2: that sometimes helps, but also sometimes decimates blocks\
* that are better left coded, especially at QP > 40. */\
uint64_t ssd0[2], ssd1[2];\
for( int k = 0; k < 2; k++ )\
{\
int abs_level = q-1+k;\
int unquant_abs_level = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[i]]) * abs_level + 128) >> 8);\
int d = abs_coef - unquant_abs_level;\
/* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */\
if( h->mb.i_psy_trellis && i && !dc && !b_chroma )\
{\
int orig_coef = (num_coefs == 64) ? h->mb.pic.fenc_dct8[idx][zigzag[i]] : h->mb.pic.fenc_dct4[idx][zigzag[i]];\
int predicted_coef = orig_coef - sign_coef;\
int psy_value = abs(unquant_abs_level + SIGN(predicted_coef, sign_coef));\
int psy_weight = coef_weight1[zigzag[i]] * h->mb.i_psy_trellis;\
int64_t tmp = (int64_t)d*d * coef_weight2[zigzag[i]] - (int64_t)psy_weight * psy_value;\
ssd1[k] = (uint64_t)tmp;\
}\
else\
/* FIXME: for i16x16 dc is this weight optimal? */\
ssd1[k] = (int64_t)d*d * (dc?256:coef_weight2[zigzag[i]]);\
ssd0[k] = ssd1[k];\
if( !i && !dc && !ctx_hi )\
{\
/* Optimize rounding for DC coefficients in DC-only luma 4x4/8x8 blocks. */\
d = sign_coef - ((SIGN(unquant_abs_level, sign_coef) + 8)&~15);\
ssd0[k] = (int64_t)d*d * coef_weight2[zigzag[i]];\
}\
}\
\
/* argument passing imposes some significant overhead here. gcc's interprocedural register allocation isn't up to it. */\
switch( q )\
{\
case 1:\
ssd1[0] += (uint64_t)cost_siglast[0] * lambda2 >> ( CABAC_SIZE_BITS - LAMBDA_BITS );\
levels_used = trellis_coef0_##ctx_hi( ssd0[0]-ssd1[0], nodes_cur, nodes_prev, level_tree, levels_used );\
levels_used = trellis_coef1_##ctx_hi( ssd0[1]-ssd1[0], ssd1[1]-ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
goto next##ctx_hi;\
case 2:\
levels_used = trellis_coef1_##ctx_hi( ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state );\
levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
goto next1;\
default:\
levels_used = trellis_coefn_##ctx_hi( q-1, ssd0[0], ssd1[0], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
levels_used = trellis_coefn_##ctx_hi( q, ssd0[1], ssd1[1], cost_siglast, nodes_cur, nodes_prev, level_tree, levels_used, lambda2, level_state, levelgt1_ctx );\
goto next1;\
}\
next##ctx_hi:;\
}\
/* output levels from the best path through the trellis */\
bnode = &nodes_cur[ctx_hi];\
for( int j = ctx_hi+1; j < (ctx_hi?8:4); j++ )\
if( nodes_cur[j].score < bnode->score )\
bnode = &nodes_cur[j];
// keep 2 versions of the main quantization loop, depending on which subsets of the node_ctxs are live
// node_ctx 0..3, i.e. having not yet encountered any coefs that might be quantized to >1
TRELLIS_LOOP(0);
if( bnode == &nodes_cur[0] )
{
/* We only need to zero an empty 4x4 block. 8x8 can be
implicitly emptied via zero nnz, as can dc. */
if( num_coefs == 16 && !dc )
memset( dct, 0, 16 * sizeof(dctcoef) );
return 0;
}
if( 0 ) // accessible only by goto, not fallthrough
{
// node_ctx 1..7 (ctx0 ruled out because we never try both level0 and level2+ on the same coef)
TRELLIS_LOOP(1);
}
int level = bnode->level_idx;
for( i = b_ac; i <= last_nnz; i++ )
{
dct[zigzag[i]] = SIGN(level_tree[level].abs_level, dct[zigzag[i]]);
level = level_tree[level].next;
}
return 1;
}
/* FIXME: This is a gigantic hack. See below.
*
* CAVLC is much more difficult to trellis than CABAC.
*
* CABAC has only three states to track: significance map, last, and the
* level state machine.
* CAVLC, by comparison, has five: coeff_token (trailing + total),
* total_zeroes, zero_run, and the level state machine.
*
* I know of no paper that has managed to design a close-to-optimal trellis
* that covers all five of these and isn't exponential-time. As a result, this
* "trellis" isn't: it's just a QNS search. Patches welcome for something better.
* It's actually surprisingly fast, albeit not quite optimal. It's pretty close
* though; since CAVLC only has 2^16 possible rounding modes (assuming only two
* roundings as options), a bruteforce search is feasible. Testing shows
* that this QNS is reasonably close to optimal in terms of compression.
*
* TODO:
* Don't bother changing large coefficients when it wouldn't affect bit cost
* (e.g. only affecting bypassed suffix bits).
* Don't re-run all parts of CAVLC bit cost calculation when not necessary.
* e.g. when changing a coefficient from one non-zero value to another in
* such a way that trailing ones and suffix length isn't affected. */
static ALWAYS_INLINE
int quant_trellis_cavlc( x264_t *h, dctcoef *dct,
const udctcoef *quant_mf, const int *unquant_mf,
const uint8_t *zigzag, int ctx_block_cat, int lambda2, int b_ac,
int b_chroma, int dc, int num_coefs, int idx, int b_8x8 )
{
ALIGNED_ARRAY_16( dctcoef, quant_coefs,[2],[16] );
ALIGNED_ARRAY_16( dctcoef, coefs,[16] );
const uint32_t *coef_weight1 = b_8x8 ? x264_dct8_weight_tab : x264_dct4_weight_tab;
const uint32_t *coef_weight2 = b_8x8 ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
int64_t delta_distortion[16];
int64_t score = 1ULL<<62;
int i, j;
const int f = 1<<15;
int nC = b_chroma && dc ? 3 + (num_coefs>>2)
: ct_index[x264_mb_predict_non_zero_code( h, !b_chroma && dc ? (idx - LUMA_DC)*16 : idx )];
for( i = 0; i < 16; i += 16/sizeof(*coefs) )
M128( &coefs[i] ) = M128_ZERO;
/* Code for handling 8x8dct -> 4x4dct CAVLC munging. Input/output use a different
* step/start/end than internal processing. */
int step = 1;
int start = b_ac;
int end = num_coefs - 1;
if( b_8x8 )
{
start = idx&3;
end = 60 + start;
step = 4;
}
idx &= 15;
lambda2 <<= LAMBDA_BITS;
/* Find last non-zero coefficient. */
for( i = end; i >= start; i -= step )
if( abs(dct[zigzag[i]]) * (dc?quant_mf[0]>>1:quant_mf[zigzag[i]]) >= f )
break;
if( i < start )
goto zeroblock;
/* Prepare for QNS search: calculate distortion caused by each DCT coefficient
* rounding to be searched.
*
* We only search two roundings (nearest and nearest-1) like in CABAC trellis,
* so we just store the difference in distortion between them. */
int last_nnz = b_8x8 ? i >> 2 : i;
int coef_mask = 0;
int round_mask = 0;
for( i = b_ac, j = start; i <= last_nnz; i++, j += step )
{
int coef = dct[zigzag[j]];
int abs_coef = abs(coef);
int sign = coef < 0 ? -1 : 1;
int nearest_quant = ( f + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
quant_coefs[1][i] = quant_coefs[0][i] = sign * nearest_quant;
coefs[i] = quant_coefs[1][i];
if( nearest_quant )
{
/* We initialize the trellis with a deadzone halfway between nearest rounding
* and always-round-down. This gives much better results than initializing to either
* extreme.
* FIXME: should we initialize to the deadzones used by deadzone quant? */
int deadzone_quant = ( f/2 + abs_coef * (dc?quant_mf[0]>>1:quant_mf[zigzag[j]]) ) >> 16;
int unquant1 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-0) + 128) >> 8);
int unquant0 = (((dc?unquant_mf[0]<<1:unquant_mf[zigzag[j]]) * (nearest_quant-1) + 128) >> 8);
int d1 = abs_coef - unquant1;
int d0 = abs_coef - unquant0;
delta_distortion[i] = (int64_t)(d0*d0 - d1*d1) * (dc?256:coef_weight2[zigzag[j]]);
/* Psy trellis: bias in favor of higher AC coefficients in the reconstructed frame. */
if( h->mb.i_psy_trellis && j && !dc && !b_chroma )
{
int orig_coef = b_8x8 ? h->mb.pic.fenc_dct8[idx>>2][zigzag[j]] : h->mb.pic.fenc_dct4[idx][zigzag[j]];
int predicted_coef = orig_coef - coef;
int psy_weight = coef_weight1[zigzag[j]];
int psy_value0 = h->mb.i_psy_trellis * abs(predicted_coef + unquant0 * sign);
int psy_value1 = h->mb.i_psy_trellis * abs(predicted_coef + unquant1 * sign);
delta_distortion[i] += (psy_value0 - psy_value1) * psy_weight;
}
quant_coefs[0][i] = sign * (nearest_quant-1);
if( deadzone_quant != nearest_quant )
coefs[i] = quant_coefs[0][i];
else
round_mask |= 1 << i;
}
else
delta_distortion[i] = 0;
coef_mask |= (!!coefs[i]) << i;
}
/* Calculate the cost of the starting state. */
h->out.bs.i_bits_encoded = 0;
if( !coef_mask )
bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
else
cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
score = (int64_t)h->out.bs.i_bits_encoded * lambda2;
/* QNS loop: pick the change that improves RD the most, apply it, repeat.
* coef_mask and round_mask are used to simplify tracking of nonzeroness
* and rounding modes chosen. */
while( 1 )
{
int64_t iter_score = score;
int64_t iter_distortion_delta = 0;
int iter_coef = -1;
int iter_mask = coef_mask;
int iter_round = round_mask;
for( i = b_ac; i <= last_nnz; i++ )
{
if( !delta_distortion[i] )
continue;
/* Set up all the variables for this iteration. */
int cur_round = round_mask ^ (1 << i);
int round_change = (cur_round >> i)&1;
int old_coef = coefs[i];
int new_coef = quant_coefs[round_change][i];
int cur_mask = (coef_mask&~(1 << i))|(!!new_coef << i);
int64_t cur_distortion_delta = delta_distortion[i] * (round_change ? -1 : 1);
int64_t cur_score = cur_distortion_delta;
coefs[i] = new_coef;
/* Count up bits. */
h->out.bs.i_bits_encoded = 0;
if( !cur_mask )
bs_write_vlc( &h->out.bs, x264_coeff0_token[nC] );
else
cavlc_block_residual_internal( h, ctx_block_cat, coefs + b_ac, nC );
cur_score += (int64_t)h->out.bs.i_bits_encoded * lambda2;
coefs[i] = old_coef;
if( cur_score < iter_score )
{
iter_score = cur_score;
iter_coef = i;
iter_mask = cur_mask;
iter_round = cur_round;
iter_distortion_delta = cur_distortion_delta;
}
}
if( iter_coef >= 0 )
{
score = iter_score - iter_distortion_delta;
coef_mask = iter_mask;
round_mask = iter_round;
coefs[iter_coef] = quant_coefs[((round_mask >> iter_coef)&1)][iter_coef];
/* Don't try adjusting coefficients we've already adjusted.
* Testing suggests this doesn't hurt results -- and sometimes actually helps. */
delta_distortion[iter_coef] = 0;
}
else
break;
}
if( coef_mask )
{
for( i = b_ac, j = start; i < num_coefs; i++, j += step )
dct[zigzag[j]] = coefs[i];
return 1;
}
zeroblock:
if( !dc )
{
if( b_8x8 )
for( i = start; i <= end; i+=step )
dct[zigzag[i]] = 0;
else
memset( dct, 0, 16*sizeof(dctcoef) );
}
return 0;
}
int x264_quant_luma_dc_trellis( x264_t *h, dctcoef *dct, int i_quant_cat, int i_qp, int ctx_block_cat, int b_intra, int idx )
{
if( h->param.b_cabac )
return quant_trellis_cabac( h, dct,
h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
ctx_block_cat, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx );
return quant_trellis_cavlc( h, dct,
h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
DCT_LUMA_DC, h->mb.i_trellis_lambda2[0][b_intra], 0, 0, 1, 16, idx, 0 );
}
static const uint8_t zigzag_scan2x2[4] = { 0, 1, 2, 3 };
static const uint8_t zigzag_scan2x4[8] = { 0, 2, 1, 4, 6, 3, 5, 7 };
int x264_quant_chroma_dc_trellis( x264_t *h, dctcoef *dct, int i_qp, int b_intra, int idx )
{
const uint8_t *zigzag;
int num_coefs;
int quant_cat = CQM_4IC+1 - b_intra;
if( CHROMA_FORMAT == CHROMA_422 )
{
zigzag = zigzag_scan2x4;
num_coefs = 8;
}
else
{
zigzag = zigzag_scan2x2;
num_coefs = 4;
}
if( h->param.b_cabac )
return quant_trellis_cabac( h, dct,
h->quant4_mf[quant_cat][i_qp], h->quant4_bias0[quant_cat][i_qp],
h->unquant4_mf[quant_cat][i_qp], zigzag,
DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx );
return quant_trellis_cavlc( h, dct,
h->quant4_mf[quant_cat][i_qp], h->unquant4_mf[quant_cat][i_qp], zigzag,
DCT_CHROMA_DC, h->mb.i_trellis_lambda2[1][b_intra], 0, 1, 1, num_coefs, idx, 0 );
}
int x264_quant_4x4_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
{
static const uint8_t ctx_ac[14] = {0,1,0,0,1,0,0,1,0,0,0,1,0,0};
int b_ac = ctx_ac[ctx_block_cat];
if( h->param.b_cabac )
return quant_trellis_cabac( h, dct,
h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias0[i_quant_cat][i_qp],
h->unquant4_mf[i_quant_cat][i_qp], x264_zigzag_scan4[MB_INTERLACED],
ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx );
return quant_trellis_cavlc( h, dct,
h->quant4_mf[i_quant_cat][i_qp], h->unquant4_mf[i_quant_cat][i_qp],
x264_zigzag_scan4[MB_INTERLACED],
ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], b_ac, b_chroma, 0, 16, idx, 0 );
}
int x264_quant_8x8_trellis( x264_t *h, dctcoef *dct, int i_quant_cat,
int i_qp, int ctx_block_cat, int b_intra, int b_chroma, int idx )
{
if( h->param.b_cabac )
{
return quant_trellis_cabac( h, dct,
h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias0[i_quant_cat][i_qp],
h->unquant8_mf[i_quant_cat][i_qp], x264_zigzag_scan8[MB_INTERLACED],
ctx_block_cat, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 64, idx );
}
/* 8x8 CAVLC is split into 4 4x4 blocks */
int nzaccum = 0;
for( int i = 0; i < 4; i++ )
{
int nz = quant_trellis_cavlc( h, dct,
h->quant8_mf[i_quant_cat][i_qp], h->unquant8_mf[i_quant_cat][i_qp],
x264_zigzag_scan8[MB_INTERLACED],
DCT_LUMA_4x4, h->mb.i_trellis_lambda2[b_chroma][b_intra], 0, b_chroma, 0, 16, idx*4+i, 1 );
/* Set up nonzero count for future calls */
h->mb.cache.non_zero_count[x264_scan8[idx*4+i]] = nz;
nzaccum |= nz;
}
STORE_8x8_NNZ( 0, idx, 0 );
return nzaccum;
}