cabac-a.asm 20.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
;*****************************************************************************
;* cabac-a.asm: x86 cabac
;*****************************************************************************
;* Copyright (C) 2008-2024 x264 project
;*
;* Authors: Loren Merritt <lorenm@u.washington.edu>
;*          Fiona Glaser <fiona@x264.com>
;*          Holger Lubitz <holger@lubitz.org>
;*
;* This program is free software; you can redistribute it and/or modify
;* it under the terms of the GNU General Public License as published by
;* the Free Software Foundation; either version 2 of the License, or
;* (at your option) any later version.
;*
;* This program is distributed in the hope that it will be useful,
;* but WITHOUT ANY WARRANTY; without even the implied warranty of
;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;* GNU General Public License for more details.
;*
;* You should have received a copy of the GNU General Public License
;* along with this program; if not, write to the Free Software
;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
;*
;* This program is also available under a commercial proprietary license.
;* For more information, contact us at licensing@x264.com.
;*****************************************************************************

%include "x86inc.asm"
%include "x86util.asm"

SECTION_RODATA 64

%if ARCH_X86_64
%macro COEFF_LAST_TABLE 4-18 16, 15, 16, 4, 15, 64, 16, 15, 16, 64, 16, 15, 16, 64
    %xdefine %%funccpu1 %2 ; last4
    %xdefine %%funccpu2 %3 ; last64
    %xdefine %%funccpu3 %4 ; last15/last16
    coeff_last_%1:
    %xdefine %%base coeff_last_%1
    %rep 14
        %ifidn %5, 4
            dd mangle(private_prefix %+ _coeff_last%5_ %+ %%funccpu1) - %%base
        %elifidn %5, 64
            dd mangle(private_prefix %+ _coeff_last%5_ %+ %%funccpu2) - %%base
        %else
            dd mangle(private_prefix %+ _coeff_last%5_ %+ %%funccpu3) - %%base
        %endif
        %rotate 1
    %endrep
    dd 0, 0 ; 64-byte alignment padding
%endmacro

cextern coeff_last4_mmx2
cextern coeff_last4_lzcnt
%if HIGH_BIT_DEPTH
cextern coeff_last4_avx512
%endif
cextern coeff_last15_sse2
cextern coeff_last15_lzcnt
cextern coeff_last15_avx512
cextern coeff_last16_sse2
cextern coeff_last16_lzcnt
cextern coeff_last16_avx512
cextern coeff_last64_sse2
cextern coeff_last64_lzcnt
cextern coeff_last64_avx2
cextern coeff_last64_avx512

COEFF_LAST_TABLE sse2,   mmx2,   sse2,   sse2
COEFF_LAST_TABLE lzcnt,  lzcnt,  lzcnt,  lzcnt
COEFF_LAST_TABLE avx2,   lzcnt,  avx2,   lzcnt
%if HIGH_BIT_DEPTH
COEFF_LAST_TABLE avx512, avx512, avx512, avx512
%else
COEFF_LAST_TABLE avx512, lzcnt,  avx512, avx512
%endif
%endif

coeff_abs_level1_ctx:       db 1, 2, 3, 4, 0, 0, 0, 0
coeff_abs_levelgt1_ctx:     db 5, 5, 5, 5, 6, 7, 8, 9
coeff_abs_level_transition: db 1, 2, 3, 3, 4, 5, 6, 7
                            db 4, 4, 4, 4, 5, 6, 7, 7

SECTION .text

cextern_common cabac_range_lps
cextern_common cabac_transition
cextern_common cabac_renorm_shift
cextern_common cabac_entropy
cextern cabac_size_unary
cextern cabac_transition_unary
cextern_common significant_coeff_flag_offset
cextern_common significant_coeff_flag_offset_8x8
cextern_common last_coeff_flag_offset
cextern_common last_coeff_flag_offset_8x8
cextern_common coeff_abs_level_m1_offset
cextern_common count_cat_m1
cextern cabac_encode_ue_bypass

%if ARCH_X86_64
    %define pointer resq
%else
    %define pointer resd
%endif

struc cb
    .low: resd 1
    .range: resd 1
    .queue: resd 1
    .bytes_outstanding: resd 1
    .start: pointer 1
    .p: pointer 1
    .end: pointer 1
    align 64, resb 1
    .bits_encoded: resd 1
    .state: resb 1024
endstruc

%macro LOAD_GLOBAL 3-5 0 ; dst, base, off1, off2, tmp
%if ARCH_X86_64 == 0
    movzx %1, byte [%2+%3+%4]
%elifidn %4, 0
    movzx %1, byte [%2+%3+r7-$$]
%else
    lea   %5, [r7+%4]
    movzx %1, byte [%2+%3+%5-$$]
%endif
%endmacro

%macro CABAC 1
; t3 must be ecx, since it's used for shift.
%if WIN64
    DECLARE_REG_TMP 3,1,2,0,5,6,4,4
%elif ARCH_X86_64
    DECLARE_REG_TMP 0,1,2,3,4,5,6,6
%else
    DECLARE_REG_TMP 0,4,2,1,3,5,6,2
%endif

cglobal cabac_encode_decision_%1, 1,7
    movifnidn t1d, r1m
    mov   t5d, [r0+cb.range]
    movzx t6d, byte [r0+cb.state+t1]
    movifnidn t0,  r0 ; WIN64
    mov   t4d, ~1
    mov   t3d, t5d
    and   t4d, t6d
    shr   t5d, 6
    movifnidn t2d, r2m
%if WIN64
    PUSH   r7
%endif
%if ARCH_X86_64
    lea    r7, [$$]
%endif
    LOAD_GLOBAL t5d, cabac_range_lps-4, t5, t4*2, t4
    LOAD_GLOBAL t4d, cabac_transition, t2, t6*2, t4
    and   t6d, 1
    sub   t3d, t5d
    cmp   t6d, t2d
    mov   t6d, [t0+cb.low]
    lea    t2, [t6+t3]
    cmovne t3d, t5d
    cmovne t6d, t2d
    mov   [t0+cb.state+t1], t4b
;cabac_encode_renorm
    mov   t4d, t3d
%ifidn %1, bmi2
    lzcnt t3d, t3d
    sub   t3d, 23
    shlx  t4d, t4d, t3d
    shlx  t6d, t6d, t3d
%else
    shr   t3d, 3
    LOAD_GLOBAL t3d, cabac_renorm_shift, t3
    shl   t4d, t3b
    shl   t6d, t3b
%endif
%if WIN64
    POP    r7
%endif
    mov   [t0+cb.range], t4d
    add   t3d, [t0+cb.queue]
    jge cabac_putbyte_%1
.update_queue_low:
    mov   [t0+cb.low], t6d
    mov   [t0+cb.queue], t3d
    RET

cglobal cabac_encode_bypass_%1, 2,3
    mov       t7d, [r0+cb.low]
    and       r1d, [r0+cb.range]
    lea       t7d, [t7*2+r1]
    movifnidn  t0, r0 ; WIN64
    mov       t3d, [r0+cb.queue]
    inc       t3d
%if ARCH_X86_64 ; .putbyte compiles to nothing but a jmp
    jge cabac_putbyte_%1
%else
    jge .putbyte
%endif
    mov   [t0+cb.low], t7d
    mov   [t0+cb.queue], t3d
    RET
%if ARCH_X86_64 == 0
.putbyte:
    PROLOGUE 0,7
    movifnidn t6d, t7d
    jmp cabac_putbyte_%1
%endif

%ifnidn %1,bmi2
cglobal cabac_encode_terminal_%1, 1,3
    sub  dword [r0+cb.range], 2
; shortcut: the renormalization shift in terminal
; can only be 0 or 1 and is zero over 99% of the time.
    test dword [r0+cb.range], 0x100
    je .renorm
    RET
.renorm:
    shl  dword [r0+cb.low], 1
    shl  dword [r0+cb.range], 1
    inc  dword [r0+cb.queue]
    jge .putbyte
    RET
.putbyte:
    PROLOGUE 0,7
    movifnidn t0, r0 ; WIN64
    mov t3d, [r0+cb.queue]
    mov t6d, [t0+cb.low]
%endif

cabac_putbyte_%1:
    ; alive: t0=cb t3=queue t6=low
%if WIN64
    DECLARE_REG_TMP 3,6,1,0,2,5,4
%endif
%ifidn %1, bmi2
    add   t3d, 10
    shrx  t2d, t6d, t3d
    bzhi  t6d, t6d, t3d
    sub   t3d, 18
%else
    mov   t1d, -1
    add   t3d, 10
    mov   t2d, t6d
    shl   t1d, t3b
    shr   t2d, t3b ; out
    not   t1d
    sub   t3d, 18
    and   t6d, t1d
%endif
    mov   t5d, [t0+cb.bytes_outstanding]
    cmp   t2b, 0xff ; FIXME is a 32bit op faster?
    jz    .postpone
    mov    t1, [t0+cb.p]
    add   [t1-1], t2h
    dec   t2h
.loop_outstanding:
    mov   [t1], t2h
    inc   t1
    dec   t5d
    jge .loop_outstanding
    mov   [t1-1], t2b
    mov   [t0+cb.p], t1
.postpone:
    inc   t5d
    mov   [t0+cb.bytes_outstanding], t5d
    jmp mangle(private_prefix %+ _cabac_encode_decision_%1.update_queue_low)
%endmacro

CABAC asm
CABAC bmi2

%if ARCH_X86_64
; %1 = label name
; %2 = node_ctx init?
%macro COEFF_ABS_LEVEL_GT1 2
%if %2
    %define ctx 1
%else
    movzx  r11d, byte [coeff_abs_level1_ctx+r2 GLOBAL]
    %define ctx r11
%endif
    movzx   r9d, byte [r8+ctx]
; if( coeff_abs > 1 )
    cmp     r1d, 1
    jg .%1_gt1
; x264_cabac_encode_decision( cb, ctx_level+ctx, 0 )
    movzx  r10d, byte [cabac_transition+r9*2 GLOBAL]
    movzx   r9d, word [cabac_entropy+r9*2 GLOBAL]
    lea     r0d, [r0+r9+256]
    mov [r8+ctx], r10b
%if %2
    mov     r2d, 1
%else
    movzx   r2d, byte [coeff_abs_level_transition+r2 GLOBAL]
%endif
    jmp .%1_end

.%1_gt1:
; x264_cabac_encode_decision( cb, ctx_level+ctx, 1 )
    movzx  r10d, byte [cabac_transition+r9*2+1 GLOBAL]
    xor     r9d, 1
    movzx   r9d, word [cabac_entropy+r9*2 GLOBAL]
    mov [r8+ctx], r10b
    add     r0d, r9d
%if %2
    %define ctx 5
%else
    movzx  r11d, byte [coeff_abs_levelgt1_ctx+r2 GLOBAL]
    %define ctx r11
%endif
; if( coeff_abs < 15 )
    cmp     r1d, 15
    jge .%1_escape
    shl     r1d, 7
; x264_cabac_transition_unary[coeff_abs-1][cb->state[ctx_level+ctx]]
    movzx   r9d, byte [r8+ctx]
    add     r9d, r1d
    movzx  r10d, byte [cabac_transition_unary-128+r9 GLOBAL]
; x264_cabac_size_unary[coeff_abs-1][cb->state[ctx_level+ctx]]
    movzx   r9d, word [cabac_size_unary-256+r9*2 GLOBAL]
    mov [r8+ctx], r10b
    add     r0d, r9d
    jmp .%1_gt1_end

.%1_escape:
; x264_cabac_transition_unary[14][cb->state[ctx_level+ctx]]
    movzx   r9d, byte [r8+ctx]
    movzx  r10d, byte [cabac_transition_unary+128*14+r9 GLOBAL]
; x264_cabac_size_unary[14][cb->state[ctx_level+ctx]]
    movzx   r9d, word [cabac_size_unary+256*14+r9*2 GLOBAL]
    add     r0d, r9d
    mov [r8+ctx], r10b
    sub     r1d, 14
%if cpuflag(lzcnt)
    lzcnt   r9d, r1d
    xor     r9d, 0x1f
%else
    bsr     r9d, r1d
%endif
; bs_size_ue_big(coeff_abs-15)<<8
    shl     r9d, 9
; (ilog2(coeff_abs-14)+1) << 8
    lea     r0d, [r0+r9+256]
.%1_gt1_end:
%if %2
    mov     r2d, 4
%else
    movzx   r2d, byte [coeff_abs_level_transition+8+r2 GLOBAL]
%endif
.%1_end:
%endmacro

%macro LOAD_DCTCOEF 1
%if HIGH_BIT_DEPTH
    mov     %1, [dct+r6*4]
%else
    movzx   %1, word [dct+r6*2]
%endif
%endmacro

%macro ABS_DCTCOEFS 2
%if HIGH_BIT_DEPTH
    %define %%abs ABSD
%else
    %define %%abs ABSW
%endif
%if mmsize == %2*SIZEOF_DCTCOEF
    %%abs   m0, [%1], m1
    mova [rsp], m0
%elif mmsize == %2*SIZEOF_DCTCOEF/2
    %%abs   m0, [%1+0*mmsize], m2
    %%abs   m1, [%1+1*mmsize], m3
    mova [rsp+0*mmsize], m0
    mova [rsp+1*mmsize], m1
%else
%assign i 0
%rep %2*SIZEOF_DCTCOEF/(4*mmsize)
    %%abs  m0, [%1+(4*i+0)*mmsize], m4
    %%abs  m1, [%1+(4*i+1)*mmsize], m5
    %%abs  m2, [%1+(4*i+2)*mmsize], m4
    %%abs  m3, [%1+(4*i+3)*mmsize], m5
    mova [rsp+(4*i+0)*mmsize], m0
    mova [rsp+(4*i+1)*mmsize], m1
    mova [rsp+(4*i+2)*mmsize], m2
    mova [rsp+(4*i+3)*mmsize], m3
%assign i i+1
%endrep
%endif
%endmacro

%macro SIG_OFFSET 1
%if %1
    movzx  r11d, byte [r4+r6]
%endif
%endmacro

%macro LAST_OFFSET 1
%if %1
    movzx  r11d, byte [last_coeff_flag_offset_8x8+r6 GLOBAL]
%endif
%endmacro

%macro COEFF_LAST 2 ; table, ctx_block_cat
    lea    r1, [%1 GLOBAL]
    movsxd r6, [r1+4*%2]
    add    r6, r1
    call   r6
%endmacro

;-----------------------------------------------------------------------------
; void x264_cabac_block_residual_rd_internal_sse2 ( dctcoef *l, int b_interlaced,
;                                                   int ctx_block_cat, x264_cabac_t *cb );
;-----------------------------------------------------------------------------

;%1 = 8x8 mode
%macro CABAC_RESIDUAL_RD 2
%if %1
    %define func cabac_block_residual_8x8_rd_internal
    %define maxcoeffs 64
    %define dct rsp
%else
    %define func cabac_block_residual_rd_internal
    %define maxcoeffs 16
    %define dct r4
%endif

cglobal func, 4,13,6,-maxcoeffs*SIZEOF_DCTCOEF
    lea     r12, [$$]
    %define GLOBAL +r12-$$
    shl     r1d, 4                                            ; MB_INTERLACED*16
%if %1
    lea      r4, [significant_coeff_flag_offset_8x8+r1*4 GLOBAL]     ; r12 = sig offset 8x8
%endif
    add     r1d, r2d
    movzx   r5d, word [significant_coeff_flag_offset+r1*2 GLOBAL]    ; r5 = ctx_sig
    movzx   r7d, word [last_coeff_flag_offset+r1*2 GLOBAL]           ; r7 = ctx_last
    movzx   r8d, word [coeff_abs_level_m1_offset+r2*2 GLOBAL]        ; r8 = ctx_level

; abs() all the coefficients; copy them to the stack to avoid
; changing the originals.
; overreading is okay; it's all valid aligned data anyways.
%if %1
    ABS_DCTCOEFS r0, 64
%else
    mov      r4, r0                                           ; r4 = dct
    and      r4, ~SIZEOF_DCTCOEF                              ; handle AC coefficient case
    ABS_DCTCOEFS r4, 16
    xor      r4, r0                                           ; calculate our new dct pointer
    add      r4, rsp                                          ; restore AC coefficient offset
%endif
; for improved OOE performance, run coeff_last on the original coefficients.
    COEFF_LAST %2, r2                                         ; coeff_last[ctx_block_cat]( dct )
; we know on 64-bit that the SSE2 versions of this function only
; overwrite r0, r1, and rax (r6). last64 overwrites r2 too, but we
; don't need r2 in 8x8 mode.
    mov     r0d, [r3+cb.bits_encoded]                         ; r0 = cabac.f8_bits_encoded
; pre-add some values to simplify addressing
    add      r3, cb.state
    add      r5, r3
    add      r7, r3
    add      r8, r3                                           ; precalculate cabac state pointers

; if( last != count_cat_m1[ctx_block_cat] )
%if %1
    cmp     r6b, 63
%else
    cmp     r6b, [count_cat_m1+r2 GLOBAL]
%endif
    je .skip_last_sigmap

; in 8x8 mode we have to do a bit of extra calculation for ctx_sig/last,
; so we'll use r11 for this.
%if %1
    %define siglast_ctx r11
%else
    %define siglast_ctx r6
%endif

; x264_cabac_encode_decision( cb, ctx_sig + last, 1 )
; x264_cabac_encode_decision( cb, ctx_last + last, 1 )
    SIG_OFFSET %1
    movzx   r1d, byte [r5+siglast_ctx]
    movzx   r9d, byte [cabac_transition+1+r1*2 GLOBAL]
    xor     r1d, 1
    movzx   r1d, word [cabac_entropy+r1*2 GLOBAL]
    mov [r5+siglast_ctx], r9b
    add     r0d, r1d

    LAST_OFFSET %1
    movzx   r1d, byte [r7+siglast_ctx]
    movzx   r9d, byte [cabac_transition+1+r1*2 GLOBAL]
    xor     r1d, 1
    movzx   r1d, word [cabac_entropy+r1*2 GLOBAL]
    mov [r7+siglast_ctx], r9b
    add     r0d, r1d
.skip_last_sigmap:
    LOAD_DCTCOEF r1d
    COEFF_ABS_LEVEL_GT1 last, 1
; for( int i = last-1 ; i >= 0; i-- )
    dec     r6d
    jl .end
.coeff_loop:
    LOAD_DCTCOEF r1d
; if( l[i] )
    SIG_OFFSET %1
    movzx   r9d, byte [r5+siglast_ctx]
    test    r1d, r1d
    jnz .coeff_nonzero
; x264_cabac_encode_decision( cb, ctx_sig + i, 0 )
    movzx  r10d, byte [cabac_transition+r9*2 GLOBAL]
    movzx   r9d, word [cabac_entropy+r9*2 GLOBAL]
    mov [r5+siglast_ctx], r10b
    add     r0d, r9d
    dec     r6d
    jge .coeff_loop
    jmp .end
.coeff_nonzero:
; x264_cabac_encode_decision( cb, ctx_sig + i, 1 )
    movzx  r10d, byte [cabac_transition+r9*2+1 GLOBAL]
    xor     r9d, 1
    movzx   r9d, word [cabac_entropy+r9*2 GLOBAL]
    mov [r5+siglast_ctx], r10b
    add     r0d, r9d
; x264_cabac_encode_decision( cb, ctx_last + i, 0 );
    LAST_OFFSET %1
    movzx   r9d, byte [r7+siglast_ctx]
    movzx  r10d, byte [cabac_transition+r9*2 GLOBAL]
    movzx   r9d, word [cabac_entropy+r9*2 GLOBAL]
    mov [r7+siglast_ctx], r10b
    add     r0d, r9d
    COEFF_ABS_LEVEL_GT1 coeff, 0
    dec     r6d
    jge .coeff_loop
.end:
    mov [r3+cb.bits_encoded-cb.state], r0d
    RET
%endmacro

INIT_XMM sse2
CABAC_RESIDUAL_RD 0, coeff_last_sse2
CABAC_RESIDUAL_RD 1, coeff_last_sse2
INIT_XMM lzcnt
CABAC_RESIDUAL_RD 0, coeff_last_lzcnt
CABAC_RESIDUAL_RD 1, coeff_last_lzcnt
INIT_XMM ssse3
CABAC_RESIDUAL_RD 0, coeff_last_sse2
CABAC_RESIDUAL_RD 1, coeff_last_sse2
INIT_XMM ssse3,lzcnt
CABAC_RESIDUAL_RD 0, coeff_last_lzcnt
CABAC_RESIDUAL_RD 1, coeff_last_lzcnt
%if HIGH_BIT_DEPTH
INIT_ZMM avx512
%else
INIT_YMM avx512
%endif
CABAC_RESIDUAL_RD 0, coeff_last_avx512
INIT_ZMM avx512
CABAC_RESIDUAL_RD 1, coeff_last_avx512

;-----------------------------------------------------------------------------
; void x264_cabac_block_residual_internal_sse2 ( dctcoef *l, int b_interlaced,
;                                                int ctx_block_cat, x264_cabac_t *cb );
;-----------------------------------------------------------------------------

%macro CALL_CABAC 0
%if cpuflag(bmi2)
    call cabac_encode_decision_bmi2
%else
    call cabac_encode_decision_asm
%endif
%if WIN64 ; move cabac back
    mov r0, r3
%endif
%endmacro

; %1 = 8x8 mode
; %2 = dct register
; %3 = countcat
; %4 = name
%macro SIGMAP_LOOP 3-4
.sigmap_%4loop:
%if HIGH_BIT_DEPTH
    mov      %2, [dct+r10*4]
%else
    movsx    %2, word [dct+r10*2]
%endif
%if %1
    movzx   r1d, byte [sigoff_8x8 + r10]
    add     r1d, sigoffd
%else
    lea     r1d, [sigoffd + r10d]
%endif
    test     %2, %2
    jz .sigmap_%4zero               ; if( l[i] )
    inc coeffidxd
    mov [coeffs+coeffidxq*4], %2    ; coeffs[++coeff_idx] = l[i];
    mov     r2d, 1
    CALL_CABAC                      ; x264_cabac_encode_decision( cb, ctx_sig + sig_off, 1 );
%if %1
    movzx   r1d, byte [last_coeff_flag_offset_8x8 + r10 GLOBAL]
    add     r1d, lastoffd
%else
    lea     r1d, [lastoffd + r10d]
%endif
    cmp    r10d, lastm              ; if( i == last )
    je .sigmap_%4last
    xor     r2d, r2d
    CALL_CABAC                      ; x264_cabac_encode_decision( cb, ctx_last + last_off, 0 );
    jmp .sigmap_%4loop_endcheck
.sigmap_%4zero:
    xor     r2d, r2d
    CALL_CABAC                      ; x264_cabac_encode_decision( cb, ctx_sig + sig_off, 0 );
.sigmap_%4loop_endcheck:
    inc    r10d
    cmp    r10d, %3
    jne .sigmap_%4loop              ; if( ++i == count_m1 )
%if HIGH_BIT_DEPTH
    mov      %2, [dct+r10*4]
%else
    movsx    %2, word [dct+r10*2]
%endif
    inc coeffidxd
    mov [coeffs+coeffidxq*4], %2    ; coeffs[++coeff_idx] = l[i]
    jmp .sigmap_%4end
.sigmap_%4last:                     ; x264_cabac_encode_decision( cb, ctx_last + last_off, 1 );
    mov     r2d, 1
    CALL_CABAC
.sigmap_%4end:
%if %1==0
    jmp .level_loop_start
%endif
%endmacro

%macro CABAC_RESIDUAL 1
cglobal cabac_block_residual_internal, 4,15,0,-4*64
; if we use the same r7 as in cabac_encode_decision, we can cheat and save a register.
    lea     r7, [$$]
    %define lastm [rsp+4*1]
    %define GLOBAL +r7-$$
    shl     r1d, 4

    %define sigoffq r8
    %define sigoffd r8d
    %define lastoffq r9
    %define lastoffd r9d
    %define leveloffq r10
    %define leveloffd r10d
    %define leveloffm [rsp+4*0]
    %define countcatd r11d
    %define sigoff_8x8 r12
    %define coeffidxq r13
    %define coeffidxd r13d
    %define dct r14
    %define coeffs rsp+4*2

    lea sigoff_8x8, [significant_coeff_flag_offset_8x8+r1*4 GLOBAL]
    add     r1d, r2d
    movzx sigoffd, word [significant_coeff_flag_offset+r1*2 GLOBAL]
    movzx lastoffd, word [last_coeff_flag_offset+r1*2 GLOBAL]
    movzx leveloffd, word [coeff_abs_level_m1_offset+r2*2 GLOBAL]
    movzx countcatd, byte [count_cat_m1+r2 GLOBAL]
    mov coeffidxd, -1
    mov     dct, r0
    mov leveloffm, leveloffd

    COEFF_LAST %1, r2
    mov   lastm, eax
; put cabac in r0; needed for cabac_encode_decision
    mov      r0, r3

    xor    r10d, r10d
    cmp countcatd, 63
    je .sigmap_8x8
    SIGMAP_LOOP 0, r12d, countcatd
.sigmap_8x8:
    SIGMAP_LOOP 1, r11d, 63, _8x8
.level_loop_start:
; we now have r8, r9, r11, r12, and r7/r14(dct) free for the main loop.
    %define nodectxq r8
    %define nodectxd r8d
    mov leveloffd, leveloffm
    xor nodectxd, nodectxd
.level_loop:
    mov     r9d, [coeffs+coeffidxq*4]
    mov    r11d, r9d
    sar    r11d, 31
    add     r9d, r11d
    movzx   r1d, byte [coeff_abs_level1_ctx+nodectxq GLOBAL]
    xor     r9d, r11d
    add     r1d, leveloffd
    cmp     r9d, 1
    jg .level_gt1
    xor     r2d, r2d
    CALL_CABAC
    movzx nodectxd, byte [coeff_abs_level_transition+nodectxq GLOBAL]
    jmp .level_sign
.level_gt1:
    mov     r2d, 1
    CALL_CABAC
    movzx  r14d, byte [coeff_abs_levelgt1_ctx+nodectxq GLOBAL]
    add    r14d, leveloffd
    cmp     r9d, 15
    mov    r12d, 15
    cmovl  r12d, r9d
    sub    r12d, 2
    jz .level_eq2
.level_gt1_loop:
    mov     r1d, r14d
    mov     r2d, 1
    CALL_CABAC
    dec    r12d
    jg .level_gt1_loop
    cmp     r9d, 15
    jge .level_bypass
.level_eq2:
    mov     r1d, r14d
    xor     r2d, r2d
    CALL_CABAC
    jmp .level_gt1_end
.level_bypass:
    lea     r2d, [r9d-15]
    xor     r1d, r1d
    push     r0
; we could avoid this if we implemented it in asm, but I don't feel like that
; right now.
%if UNIX64
    push     r7
    push     r8
%else
    sub      rsp, 40 ; shadow space and alignment
%endif
    call cabac_encode_ue_bypass
%if UNIX64
    pop      r8
    pop      r7
%else
    add      rsp, 40
%endif
    pop      r0
.level_gt1_end:
    movzx nodectxd, byte [coeff_abs_level_transition+8+nodectxq GLOBAL]
.level_sign:
    mov     r1d, r11d
%if cpuflag(bmi2)
    call cabac_encode_bypass_bmi2
%else
    call cabac_encode_bypass_asm
%endif
%if WIN64
    mov      r0, r3
%endif
    dec coeffidxd
    jge .level_loop
    RET
%endmacro

INIT_XMM sse2
CABAC_RESIDUAL coeff_last_sse2
INIT_XMM lzcnt
CABAC_RESIDUAL coeff_last_lzcnt
INIT_XMM avx2
CABAC_RESIDUAL coeff_last_avx2
INIT_XMM avx512
CABAC_RESIDUAL coeff_last_avx512
%endif