#include #include "./traffic_light_process.h" #include #include "../decoder/interface/DeviceMemory.hpp" #include "../common/logger.hpp" #include "../ai_platform/mvpt_process_assist.h" #if 0 #include "opencv2/opencv.hpp" #include "opencv2/imgcodecs/legacy/constants_c.h" #endif namespace ai_engine_module { namespace traffic_light_process { static std::set algor_type_list_ = { algorithm_type_t::PERSON_RUNNING_REDLIGHTS, algorithm_type_t::NONMOTOR_RUNNING_REDLIGHTS, }; inline bool is_valid_label(const label_t &label) { return ((label == label_t::red)); } std::set task_id_to_algorithm_type_seq(const task_id_t &task_id, task_param_manager *const task_param) { std::set seq; auto &&algor_map = task_param->get_task_other_param(task_id); if (algor_map) { // LOG_TRACE("task id is {} size algor type {}", task_id, algor_map->size()); for (auto iter = algor_map->begin(); iter != algor_map->end(); ++iter) { if (algor_type_list_.count(iter->first) > 0) seq.emplace(iter->first); } } return seq; // N(RVO) } bool is_valid_box(const int top, const int left, const int right, const int bottom, const float score, const algorithm_type_t &algor_type, const task_param_manager::algo_param_type_t_ *params_ptr = nullptr) { if (!params_ptr) return false; if (!snapshot_legal_inarea(params_ptr->basic_param->algor_valid_rect, left, top, right, bottom)) return false; if (params_ptr->algor_param == nullptr) return false; const unsigned width = right - left; const unsigned height = bottom - top; if (width == 0 || height == 0) return false; //! TODO: use switch to replace. using data_t = algor_config_param_manned_incident; data_t *algor_params_ptr = (data_t *) (params_ptr->algor_param); if ((width < algor_params_ptr->obj_min_width || height < algor_params_ptr->obj_min_height || score < algor_params_ptr->obj_confidence_threshold)) return false; return true; } vector Mbuild_area(vector args) { vector result; int points_check = args.size(); //需x y作为一组,是偶数 if (points_check % 2 == 1) { LOG_ERROR("points need x and y, but only get one"); exit(0); } for (int i = 0; i < points_check; i++) { if (i % 2 == 0) { tr_point tmp_point; tmp_point.x = args[i]; result.push_back(tmp_point); } else { result[result.size() - 1].y = args[i]; } } return result; } bool McheckPointPolygon(vector tr_boxes, tr_point pCur) { //任意四边形有4个顶点 int nCount = tr_boxes.size(); tr_point RectPoints[MAX_LANE_NUM]; // std::cout << "ponits: "; for (int i = 0; i < nCount; i++) { RectPoints[i] = tr_boxes[i]; // std::cout << tr_boxes[i].x << " " << tr_boxes[i].y << " "; } // std::cout << std::endl; int nCross = 0; pCur.y += 0.1; for (int i = 0; i < nCount; i++) { //依次取相邻的两个点 tr_point pStart = RectPoints[i]; tr_point pEnd = RectPoints[(i + 1) % nCount]; //相邻的两个点是平行于x轴的,肯定不相交,忽略 if (pStart.y == pEnd.y) continue; //交点在pStart,pEnd的延长线上,pCur肯定不会与pStart.pEnd相交,忽略 if (pCur.y < min(pStart.y, pEnd.y) || pCur.y > max(pStart.y, pEnd.y)) continue; //求当前点和x轴的平行线与pStart,pEnd直线的交点的x坐标 double x = (double)(pCur.y - pStart.y) * (double)(pEnd.x - pStart.x) / (double)(pEnd.y - pStart.y) + pStart.x; //若x坐标大于当前点的坐标,则有交点 if (x > pCur.x) nCross++; } // 单边交点为偶数,点在多边形之外 return (nCross % 2 == 1); } #if 0 void CvtYuvToBgr(sy_img src, sy_img dst) { const int uvStart = src.w_ * src.h_; for (int h = 0; h < dst.h_; h++) { for (int w = 0; w < dst.w_; w++) { int uvIndex = h / 2 * src.w_ + w - w % 2; unsigned char y = *(src.data_ + w + h * src.w_); unsigned char u = *(src.data_ + uvStart + uvIndex); unsigned char v = *(src.data_ + uvStart + uvIndex + 1); int r = (int)(y + 1.402 * (v - 128)); int g = (int)(y - 0.34414 * (u - 128) - 0.71414 * (v - 128)); int b = (int)(y + 1.772 * (u -128)); if (r > 255) r = 255; if (g > 255) g = 255; if (b > 255) b = 255; if (r < 0) r = 0; if (g < 0) g = 0; if (b < 0) b = 0; *(dst.data_ + h * dst.w_ * 3 + w * 3) = b; *(dst.data_ + h * dst.w_ * 3 + w * 3 + 1) = g; *(dst.data_ + h * dst.w_ * 3 + w * 3 + 2) = r; } } } #endif TrafficLightProcess::TrafficLightProcess() : task_param_manager_(nullptr) { } TrafficLightProcess::~TrafficLightProcess() { if (tools_) { traffic_light_release(&tools_); tools_ = nullptr; } if (m_algorthim_ctx) { aclrtDestroyContext(m_algorthim_ctx); } } bool TrafficLightProcess::init(int gpu_id, string models_dir) { init_ = false; string model_path = models_dir + "/models/village/trlight_det_310p.om" ; LOG_INFO("traffic_light 版本:{} 模型路径:{}", traffic_light_getversion(), model_path); traffic_light_param param; char modelNames[100]; strcpy(modelNames, model_path.c_str()); param.modelNames = modelNames; param.thresld = 0.25; param.devId = gpu_id; m_devId = param.devId; ACL_CALL(aclrtSetDevice(m_devId), ACL_SUCCESS, -1); ACL_CALL(aclrtCreateContext(&m_algorthim_ctx, m_devId), ACL_SUCCESS, -1); int status; if (!(init_ = (0 == (status = traffic_light_init(&tools_, param))))) LOG_ERROR("Init TrafficLightProcessSdk failed error code is {}", status); else if (!task_param_manager_) task_param_manager_ = task_param_manager::getInstance(); return init_; } bool TrafficLightProcess::check_initied() { if (!init_) LOG_ERROR("[%s:%d] call init function please.", __FILE__, __LINE__); return init_; } void TrafficLightProcess::force_release_result(const task_id_t& task_id) { for (auto iter = id_to_result_.begin(); iter != id_to_result_.end();) { const auto& key = iter->first; if (key.task_id == task_id) { auto& value = iter->second; if (value.origin_img_desc != nullptr) { VPCUtil::vpc_pic_desc_release(value.origin_img_desc); } if (value.roi_img_desc != nullptr) { VPCUtil::vpc_pic_desc_release(value.roi_img_desc); } iter = id_to_result_.erase(iter); } else { ++iter; } } } std::shared_ptr TrafficLightProcess::get_result_by_objectid(const id_t& id, bool do_erase) { auto it = id_to_result_.find(id); if (it == id_to_result_.end()) return std::shared_ptr(nullptr); std::shared_ptr res = std::make_shared(it->second); if (do_erase) id_to_result_.erase(id); return res; } bool TrafficLightProcess::update_mstreams(const std::vector& taskIds, vector src_interest_imgs, vector vec_det_input_images, const std::vector &det_results) { if (!check_initied()) return false; if (det_results.empty()) { LOG_DEBUG("detection result is empty."); return false; } struct stream_idx_and_algor_seq_t { unsigned stream_idx; std::set algors; }; int n_images = det_results.size(); // or n_stream unsigned flattened_idx = 0; std::map flattened_idx_to_batch_idx; //! 记录每个box对应的算法以及流id. std::map flattened_idx_to_algor_seq; /* 1. Crop & keep some interest class. */ auto taskId_iter = taskIds.begin(); std::vector flattened_imgs(0); std::vector flattened_vpc_imgs(0); std::vector flattened_interest_data(0); // VPCUtil* pVpcUtil = VPCUtil::getInstance(); for (int n = 0; n < n_images; ++n) { int n_interest_obj = 0; auto& src_img = vec_det_input_images[n]; int src_img_w = src_img->getWidth(); int src_img_h = src_img->getHeight(); auto& boxes_of_one_image = det_results[n].obj; for (int i = 0; i < det_results[n].obj_count; ++i) { auto& box = boxes_of_one_image[i]; if (static_cast(box.index) == det_class_label_t::MOTOCYCLE || static_cast(box.index) == det_class_label_t::BICYCLE || static_cast(box.index) == det_class_label_t::HUMAN) { auto& taskId = *taskId_iter; input_data_wrap_t data; int top = std::max(int(box.top - (IMAGE_CROP_EXPAND_RATIO * box.top)), 0); int left = std::max(int(box.left - (IMAGE_CROP_EXPAND_RATIO * box.left)), 0); int right = std::min(int(box.right + (IMAGE_CROP_EXPAND_RATIO * box.right)), src_img_w); int bottom = std::min(int(box.bottom + (IMAGE_CROP_EXPAND_RATIO * box.bottom)), src_img_h); //! loop per algor from set. stream_idx_and_algor_seq_t stream_idx_and_algor_seq{n, {}}; std::set algorithm_type_seq = task_id_to_algorithm_type_seq(taskId, task_param_manager_); // N(RVO). for (auto algor_iter = algorithm_type_seq.begin();algor_iter != algorithm_type_seq.end(); ++algor_iter) { const algorithm_type_t algor_type = *algor_iter; auto &&algor_param_wrap = task_param_manager_->get_task_other_param(taskId, algor_type); if (!algor_param_wrap) { LOG_ERROR("{} is nullptr when get algor param from task_param", taskId.c_str()); continue; } if (!is_valid_box(top, left, right, bottom, box.confidence, algor_type, algor_param_wrap)) continue; //DEBUG增加多边形区域选择及判断================================================================ tr_point curpos; curpos.x = (left + right) * 0.5; curpos.y = bottom; vector args = {1552,435,1756,537,1915,537,1915,499,1725,435}; //区域(泰兴黄桥锦润福府路口) // vector args = {0,0,0,1080,1920,1080,1920,0}; //区域 vector tr_boxes = Mbuild_area(args); int cur_flag = McheckPointPolygon(tr_boxes, curpos); //cur_flag==true表示在区域内 if (!cur_flag) continue; //DEBUG END================================================================================== stream_idx_and_algor_seq.algors.emplace(algor_type); } if (stream_idx_and_algor_seq.algors.empty()) continue; int width = right - left; int height = bottom - top; data.box.top = top; data.box.left = left; data.box.right = right; data.box.bottom = bottom; data.box.score = box.confidence; data.box.cls = box.index; data.taskId = taskId; data.objId = box.id; // 抠图 video_object_info obj; strcpy(obj.task_id, taskId.c_str()); obj.object_id = box.id; obj.left = left; obj.top = top; obj.right = right; obj.bottom = bottom; vpc_img_info img_info = pVpcUtil->crop(src_img, obj); sy_img img; img.w_ = width; img.h_ = height; img.c_ = src_img->getChannel(); if (img_info.pic_desc != nullptr) { void *outputDataDev = acldvppGetPicDescData(img_info.pic_desc); img.data_ = reinterpret_cast(outputDataDev); } else { LOG_ERROR("Crop image NPU failed wh is [{}, {}] ltrb is [{} {} {} {}]", src_img_w, src_img_h, data.box.left, data.box.top, data.box.right, data.box.bottom); continue; } flattened_imgs.emplace_back(std::move(img)); flattened_vpc_imgs.emplace_back(std::move(img_info)); flattened_interest_data.emplace_back(std::move(data)); flattened_idx_to_algor_seq[flattened_idx] = std::move(stream_idx_and_algor_seq); flattened_idx_to_batch_idx[flattened_idx++] = n; } } ++taskId_iter; } int ret = aclrtSetCurrentContext(m_algorthim_ctx); if (ACL_SUCCESS != ret) { return false; } /* 2. collection result. */ int n_input_image = flattened_imgs.size(); int n_input_src_image = src_interest_imgs.size(); traffic_light_result model_results[n_input_src_image]; { int steps = (n_input_src_image + MAX_BATCH - 1) / MAX_BATCH; for (int step = 0; step < steps; ++step) { int offset = step * MAX_BATCH; int batch_size = (step == steps - 1) ? n_input_src_image - offset : MAX_BATCH; traffic_light_process_batch(tools_, src_interest_imgs.data() + offset, batch_size, model_results + offset); } } /* 3. postprocess. */ { for (int n = 0; n < n_input_image; ++n) { auto& det_result = flattened_interest_data[n]; auto& objId = det_result.objId; auto& task_id = det_result.taskId; auto &stream_idx_and_algor_seq = flattened_idx_to_algor_seq[n]; auto &algors = stream_idx_and_algor_seq.algors; // auto &steram_idx = stream_idx_and_algor_seq.stream_idx; const auto& src_img = vec_det_input_images[flattened_idx_to_batch_idx[n]]; auto &model_result = model_results[flattened_idx_to_batch_idx[n]]; int red_cnt = 0; //统计直行红灯个数 for (unsigned i = 0; i < model_result.objcount; ++i) { auto &box = model_result.objinfo[i]; const label_t label = static_cast(box.index); if (!is_valid_label(label)) continue; if (box.left < 1200 || box.top < 159 || box.right > 1307 || box.bottom > 212) continue; // 限制红绿灯的出现位置(泰兴黄桥锦润福府路口) LOG_TRACE("task id is {} obj_id {} label {} index {} score {}", task_id, objId, label, box.index, box.confidence); red_cnt ++; } #if 0 if (red_cnt > 0) { sy_img img = src_interest_imgs[flattened_idx_to_batch_idx[n]]; int dataSize = img.w_ * img.h_ * 3 / 2; uint8_t* buffer = new uint8_t[dataSize]; uint8_t* imgBgr = new uint8_t[dataSize]; aclError aclRet = aclrtMemcpy(buffer, dataSize, img.data_, dataSize, ACL_MEMCPY_DEVICE_TO_HOST); sy_img imgyuv_local, tmpbgr; imgyuv_local.data_ = (unsigned char*)buffer; imgyuv_local.w_ = img.w_; imgyuv_local.h_ = img.h_; tmpbgr.w_ = img.w_; tmpbgr.h_ = img.h_; tmpbgr.data_ = imgBgr; CvtYuvToBgr(imgyuv_local, tmpbgr); cv::Mat cvImg = cv::Mat(tmpbgr.h_, tmpbgr.w_, CV_8UC3, tmpbgr.data_); string jpgSaveName1 = "result/oral/" + task_id + "_" + to_string(objId) + ".jpg"; cv::imwrite(jpgSaveName1, cvImg); for (unsigned i = 0; i < model_result.objcount; ++i) { cv::Point lt(model_result.objinfo[i].left, model_result.objinfo[i].top); cv::Point rb(model_result.objinfo[i].right, model_result.objinfo[i].bottom); cv::rectangle(cvImg, lt, rb, cv::Scalar(0, 0, 255), 3); char buffer[50]; int fontface = cv::FONT_HERSHEY_SIMPLEX; double scale = 0.8; int thickness = 2; int baseline = 0; snprintf(buffer, sizeof(buffer), "%d:%.2f", model_result.objinfo[i].index, model_result.objinfo[i].confidence); cv::Size text = cv::getTextSize(buffer, fontface, scale, thickness, &baseline); cv::putText(cvImg, buffer, lt - cv::Point(0, baseline), fontface, scale, cv::Scalar(0, 0, 255), thickness, 8); } string jpgSaveName2 = "result/draw/" + task_id + "_" + to_string(objId) + ".jpg"; cv::imwrite(jpgSaveName2, cvImg); delete[] buffer; buffer = NULL; delete[] imgBgr; imgBgr = NULL; } #endif for (auto algor_type_iter = algors.begin();algor_type_iter != algors.end(); ++algor_type_iter) { const algorithm_type_t algor_type = *algor_type_iter; auto &&algor_param_wrap = task_param_manager_->get_task_other_param(task_id, algor_type); if (!algor_param_wrap) { LOG_ERROR("{} is nullptr when get algor param from task_param", task_id); continue; } auto algor_param = ((algor_param_type)algor_param_wrap->algor_param); id_t obj_key = obj_key_t{ objId, task_id, algor_type}; if (id_to_result_.find(obj_key) != id_to_result_.end()) continue; // LOG_TRACE("task id is {} algor type is {} obj_id {}", task_id, int(algor_type), objId); if (algor_type == algorithm_type_t::PERSON_RUNNING_REDLIGHTS && static_cast(det_result.box.cls) != det_class_label_t::HUMAN) continue; // if (algor_type == algorithm_type_t::NONMOTOR_RUNNING_REDLIGHTS && (static_cast(det_result.box.cls) != det_class_label_t::MOTOCYCLE || // static_cast(det_result.box.cls) != det_class_label_t::BICYCLE)) // continue; if (algor_type == algorithm_type_t::NONMOTOR_RUNNING_REDLIGHTS && static_cast(det_result.box.cls) == det_class_label_t::HUMAN) continue; auto& e = id_to_mn_[obj_key]; ++e.m_frame; // 数量小于设定阈值不报警 if (red_cnt < algor_param->hs_count_threshold) continue; { if (++e.n_frame == algor_param->n) { results_data_t result; { LOG_TRACE("task id is {} obj_id {} red_cnt {}", task_id, det_result.objId, red_cnt); result.box = det_result.box; result.taskId = det_result.taskId; result.objId = det_result.objId; result.algor_type = algor_type; // 原图 vpc_img_info src_img_info = VPCUtil::vpc_devMem2vpcImg(src_img); result.origin_img_desc = src_img_info.pic_desc; // 抠图--拷贝后赋值 void *outputDataDev = acldvppGetPicDescData(flattened_vpc_imgs[n].pic_desc); int nBufferSize = acldvppGetPicDescSize(flattened_vpc_imgs[n].pic_desc); void *devBuffer = nullptr; auto ret = acldvppMalloc(&devBuffer, nBufferSize); if (ret != ACL_SUCCESS) { LOG_ERROR("acldvppMalloc failed, size = %u, errorCode = %d.", nBufferSize, static_cast(ret)); return false; } aclrtMemcpy(devBuffer, nBufferSize, outputDataDev, nBufferSize, ACL_MEMCPY_DEVICE_TO_DEVICE); acldvppPicDesc *vpcInputDesc_= acldvppCreatePicDesc(); acldvppSetPicDescData(vpcInputDesc_, devBuffer); acldvppSetPicDescFormat(vpcInputDesc_, PIXEL_FORMAT_YUV_SEMIPLANAR_420); acldvppSetPicDescWidth(vpcInputDesc_, acldvppGetPicDescWidth(flattened_vpc_imgs[n].pic_desc)); acldvppSetPicDescHeight(vpcInputDesc_, acldvppGetPicDescHeight(flattened_vpc_imgs[n].pic_desc)); acldvppSetPicDescWidthStride(vpcInputDesc_, acldvppGetPicDescWidthStride(flattened_vpc_imgs[n].pic_desc)); acldvppSetPicDescHeightStride(vpcInputDesc_, acldvppGetPicDescHeightStride(flattened_vpc_imgs[n].pic_desc)); acldvppSetPicDescSize(vpcInputDesc_, nBufferSize); result.roi_img_desc = vpcInputDesc_; //需复制 } id_to_result_.emplace(obj_key, std::move(result)); } } if (e.m_frame == algor_param->m) e.reset(); } VPCUtil::vpc_img_release(flattened_vpc_imgs[n]); //flattened_imgs[n].data_ } } return true; } } // namespace traffic_light_process } // namespace ai_engine_module