VPTTest.cpp--
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#include <vector>
#include <iostream>
#include <fstream>
#include <time.h>
#ifdef _MSC_VER
#include "../VPT/VPT.h"
#include <windows.h>
#include <cv.h>
#include <highgui.h>
#include <opencv2/opencv.hpp>
#else
#include "VPT.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif
//#include "../VPT/header.h"
#ifndef _MSC_VER
#include<time.h>
#include <sys/time.h>
#include <unistd.h>
#define Sleep(a) usleep((a)*1000)
#define MACRO_COUNT_TIME_START(name) struct timeval macro_tv_start_##name;\
struct timeval macro_tv_end_##name;\
gettimeofday(¯o_tv_start_##name,NULL);
#define MACRO_COUNT_TIME_END(name,___total_count___) gettimeofday(¯o_tv_end_##name,NULL);\
printf("%s time cost: %.2f ms \n", #name, ( (double)(macro_tv_end_##name.tv_sec-macro_tv_start_##name.tv_sec)*1000000+(double)(macro_tv_end_##name.tv_usec-macro_tv_start_##name.tv_usec) )/1000/___total_count___);
#endif
using namespace cv;
using namespace std;
//检测种类
const int detectType = 9;
//行人 自行车 摩托车 三轮车 小型车 大车 卡车 拖拉机 中巴
string type[detectType] = { "person", "bike", "motor", "tricycle", "car", "bigbus", "lorry", "tractor", "midibus" };
static int color[detectType][3] = { { 41, 244, 222 }, { 255, 128, 0 }, { 100, 13, 244 }, { 255, 215, 0 }, { 18, 220, 87 }, { 0, 128, 0 }, \
{0, 128, 255}, { 255, 0, 0 }, { 91, 46, 0 } };
//返回快照结果回调函数
void SnapshotInfoCallback(VIDEO_OBJECT_SNAPSHOT *videoObjectSnapshot)
{
cout << videoObjectSnapshot->objectID << " " << videoObjectSnapshot->left << " " << videoObjectSnapshot->right << " " << videoObjectSnapshot->top << " " << videoObjectSnapshot->bottom
<< " " << videoObjectSnapshot->firstPicPath << " " << videoObjectSnapshot->secondPicPath << " " << videoObjectSnapshot->taskFrameCount << " " << videoObjectSnapshot->objectIndex << endl;
}
//显示变量
Mat imgResized;
bool img_show = false;
bool show = true;
#ifdef _MSC_VER
//显示线程
DWORD WINAPI DiaplayThread(LPVOID param)
{
LARGE_INTEGER nFreq, nSaveBeginTime, nSaveEndTime;
QueryPerformanceFrequency(&nFreq);
while (show)
{
if (img_show)
{
cv::imshow("RESULT", imgResized);
cv::waitKey(1);
img_show = false;
}
Sleep(1);
}
return 0;
}
#endif
int testPic(int pic_index)
{
//字体初始化
CvFont font;
cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX, 1.0, 1.0, 0, 1, 3);
int fontFace = CV_FONT_HERSHEY_COMPLEX;
double fontScale = 1;
int thickness = 2;
//其他变量
Mat img;
int frameCount = 0;
const int maxResultCount = 100;
#ifdef _MSC_VER
LARGE_INTEGER nFreq, nBeginTime, nEndTime;
QueryPerformanceFrequency(&nFreq);
#endif
//初始化
//快照保存参数设置
SNAPSHOT_PARAMETER ssparam;
ssparam.selectFromMinbox = true;
ssparam.selectFromMindistance = true;
//1.设置最小检测框,各种类目标小于最小检测框大小时不进行快照的保存
MRECT m_boxsize[DETECTTYPE] = { MRECT(20, 20), MRECT(50, 80), MRECT(50, 80), MRECT(60, 80), MRECT(80, 80), MRECT(90, 90), MRECT(100, 100), MRECT(100, 100), MRECT(100, 100) }; //行人 自行车 摩托车 三轮车 小型车 大车 卡车 拖拉机 中巴
//2.设置目标距离画面边框的最小距离,当目标位置与画面边框小于最小距离时不再更新快照
int m_distance[EDGES] = { 20, 30, 20, 30 }; //left, top, right, bottom
memcpy(ssparam.minBoxsize, m_boxsize, sizeof(MRECT)* DETECTTYPE);
memcpy(ssparam.minDistance, m_distance, sizeof(int)* EDGES);
void * tools = NULL;
VPT_PARAM vparam;
vparam.gpuid = 1;//atoi(argv[2]);
vparam.maxResultCount = maxResultCount; //限制算法内部输出的最大前景个数
vparam.SnaoshotParameter = &ssparam;
// vparam.serialize_file = "./serialize_file/";
#ifdef _MSC_VER
int res = VPT_Init(&tools, vparam, "G:/TestRes", SnapshotInfoCallback);
#else
int res = VPT_Init(&tools, vparam, "./", SnapshotInfoCallback);
#endif
if (res != 0)
{
cout << "VPT Init Failed!" << endl;
system("pause");
return 0;
}
//结果变量
VPT_Result result;
result.obj = new VPT_ObjInfo[maxResultCount]; //设置外部接收结果的最大前景个数
#ifdef _MSC_VER //创建显示线程
DWORD dwThreadID = 0;
HANDLE handle_display = CreateThread(NULL, 0, DiaplayThread, 0, 0, &dwThreadID);
#endif
int start = 0;
double totalTime = 0.0;
//检测
ofstream file("res.txt");
int totalPic = 15;
int i = pic_index;
// for(int i=0; i<totalPic; i++)
{
char filename[256];
sprintf(filename, "data/%d.jpg", i);
img = cv::imread(filename);
printf("read: %s, w:%d h:%d\n", filename, img.cols, img.rows);
start++;
#ifdef _MSC_VER
QueryPerformanceCounter(&nBeginTime);
#else
MACRO_COUNT_TIME_START(vpt_process);
#endif
VPT_Process(tools, img.data, img.cols, img.rows, img.channels(), frameCount, &result, true);
#ifdef _MSC_VER
QueryPerformanceCounter(&nEndTime);
totalTime += (double)(nEndTime.QuadPart - nBeginTime.QuadPart) * 1000 / (double)nFreq.QuadPart;
printf("Total Time: %.2fms \n", (double)(nEndTime.QuadPart - nBeginTime.QuadPart) * 1000 / (double)nFreq.QuadPart);
#else
MACRO_COUNT_TIME_END(vpt_process, 1);
#endif
for (int c = 0; c < result.objCount; c++)
{
char str_i[100];
sprintf(str_i, "%d_%.2f", result.obj[c].id, result.obj[c].confidence);
int colorIndex = result.obj[c].index;
// cout << start << " " << result.obj[c].id << " " << result.obj[c].index << " " << result.obj[c].left << " " <<
// result.obj[c].top << " " << result.obj[c].right << " " << result.obj[c].bottom << endl;
rectangle(img, cvPoint(result.obj[c].left - 5, result.obj[c].top - 15), cvPoint(result.obj[c].right + 5, result.obj[c].bottom + 10), cv::Scalar(color[colorIndex][0], color[colorIndex][1], color[colorIndex][2]), 3, 1);
cv::putText(img, str_i, cv::Point(result.obj[c].left, result.obj[c].top), fontFace, fontScale, cv::Scalar(color[colorIndex][0], color[colorIndex][1], color[colorIndex][2]), thickness, 8);
}
char savefilename[256];
sprintf(savefilename, "res/%d.jpg", i);
cv::imwrite(savefilename, img);
//cv::resize(img, imgResized, cv::Size(1280, 720));
//writer << img;
//img_show = true;
//frameCount++;
}
cout << "AVG TIME: " << totalTime / 5000 << endl;
//释放
show = false;
delete[] result.obj;
VPT_Release(&tools);
#ifdef _MSC_VER
system("pause");
#endif
return 0;
}
int main(int argc, char** argv)
{
for(int i=0; i<15; i++)
testPic(i);
return 0;
/*
VideoWriter writer("ruijin.avi", CV_FOURCC('D', 'I', 'V', 'X'), 25.0, Size(1920, 1080));
int pic_count = 40;
const int pic_iter = 200;
while(pic_count--)
{
int pic_iter = 200;
char filename[1024];
sprintf(filename, "all/%d.jpg", 40-pic_count);
cv::Mat tmp = cv::imread(filename);
while(pic_iter-- )
{
writer << tmp;
}
}
return 1;
*/
//字体初始化
CvFont font;
cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX, 1.0, 1.0, 0, 1, 3);
int fontFace = CV_FONT_HERSHEY_COMPLEX;
double fontScale = 1;
int thickness = 2;
//其他变量
Mat img;
VideoCapture cap;
#ifdef _MSC_VER
cap.open(argv[1]);
#else
//cap.open("duan1.avi");
cap.open(argv[1]);
#endif
cap.read(img);
VideoWriter writer("result.avi", CV_FOURCC('D', 'I', 'V', 'X'), 25.0, Size(img.cols, img.rows));
int frameCount = 0;
const int maxResultCount = 100;
#ifdef _MSC_VER
LARGE_INTEGER nFreq, nBeginTime, nEndTime;
QueryPerformanceFrequency(&nFreq);
#endif
//初始化
//快照保存参数设置
SNAPSHOT_PARAMETER ssparam;
ssparam.selectFromMinbox = true;
ssparam.selectFromMindistance = true;
//1.设置最小检测框,各种类目标小于最小检测框大小时不进行快照的保存
MRECT m_boxsize[DETECTTYPE] = { MRECT(20, 20), MRECT(50, 80), MRECT(50, 80), MRECT(60, 80), MRECT(80, 80), MRECT(90, 90), MRECT(100, 100), MRECT(100, 100), MRECT(100, 100) }; //行人 自行车 摩托车 三轮车 小型车 大车 卡车 拖拉机 中巴
//2.设置目标距离画面边框的最小距离,当目标位置与画面边框小于最小距离时不再更新快照
int m_distance[EDGES] = { 20, 30, 20, 30 }; //left, top, right, bottom
memcpy(ssparam.minBoxsize, m_boxsize, sizeof(MRECT)* DETECTTYPE);
memcpy(ssparam.minDistance, m_distance, sizeof(int)* EDGES);
void * tools = NULL;
VPT_PARAM vparam;
vparam.gpuid = 1;//atoi(argv[2]);
vparam.maxResultCount = maxResultCount; //限制算法内部输出的最大前景个数
vparam.SnaoshotParameter = &ssparam;
#ifdef _MSC_VER
int res = VPT_Init(&tools, vparam, "G:/TestRes", SnapshotInfoCallback);
#else
int res = VPT_Init(&tools, vparam, "./", SnapshotInfoCallback);
#endif
if (res != 0)
{
cout << "VPT Init Failed!" << endl;
system("pause");
return 0;
}
//结果变量
VPT_Result result;
result.obj = new VPT_ObjInfo[maxResultCount]; //设置外部接收结果的最大前景个数
#ifdef _MSC_VER
//创建显示线程
DWORD dwThreadID = 0;
HANDLE handle_display = CreateThread(NULL, 0, DiaplayThread, 0, 0, &dwThreadID);
#endif
int start = 0;
cap.set(CV_CAP_PROP_POS_FRAMES, start);
double totalTime = 0.0;
//检测
ofstream file("res.txt");
while (cap.read(img))
{
start++;
cout << "---------------- " << frameCount << " -----------------" << endl;
#ifdef _MSC_VER
QueryPerformanceCounter(&nBeginTime);
#else
MACRO_COUNT_TIME_START(vpt_process);
#endif
VPT_Process(tools, img.data, img.cols, img.rows, img.channels(), frameCount, &result, true);
#ifdef _MSC_VER
QueryPerformanceCounter(&nEndTime);
totalTime += (double)(nEndTime.QuadPart - nBeginTime.QuadPart) * 1000 / (double)nFreq.QuadPart;
printf("Total Time: %.2fms \n", (double)(nEndTime.QuadPart - nBeginTime.QuadPart) * 1000 / (double)nFreq.QuadPart);
#else
MACRO_COUNT_TIME_END(vpt_process, 1);
#endif
for (int c = 0; c < result.objCount; c++)
{
char str_i[100];
sprintf(str_i, "%d_%.2f", result.obj[c].id, result.obj[c].confidence);
int colorIndex = result.obj[c].index;
cout << start << " " << result.obj[c].id << " " << result.obj[c].index << " " << result.obj[c].left << " " <<
result.obj[c].top << " " << result.obj[c].right << " " << result.obj[c].bottom << endl;
rectangle(img, cvPoint(result.obj[c].left - 5, result.obj[c].top - 15), cvPoint(result.obj[c].right + 5, result.obj[c].bottom + 10), cv::Scalar(color[colorIndex][0], color[colorIndex][1], color[colorIndex][2]), 3, 1);
cv::putText(img, str_i, cv::Point(result.obj[c].left, result.obj[c].top), fontFace, fontScale, cv::Scalar(color[colorIndex][0], color[colorIndex][1], color[colorIndex][2]), thickness, 8);
}
cv::resize(img, imgResized, cv::Size(1280, 720));
writer << img;
img_show = true;
frameCount++;
}
cout << "AVG TIME: " << totalTime / 5000 << endl;
//释放
show = false;
delete[] result.obj;
cap.release();
VPT_Release(&tools);
#ifdef _MSC_VER
system("pause");
#endif
return 0;
}
/*
double euclideanSimilarity(vector<float> &A, vector<float> &B)
{
double total = 0;
for (int i = 0; i < 256; i++)
{
total += pow(A[i] - B[i], 2);
}
return total;
}
vector<float> fea_a;
vector<float> fea_b;
vector<float> fea_c;
vector<float> fea_a1;
vector<float> fea_b1;
vector<float> fea_c1;
for(int idx=0; idx<256; idx++)
{
fea_a.push_back(0.1);
fea_b.push_back(0.3);
fea_c.push_back(0.0);
fea_c1.push_back(0.0);
}
double length_a, length_b, length_c = 0;
for (int j = 0; j < fea_a.size(); j++)
{
length_a += pow(fea_a[j], 2);
length_b += pow(fea_b[j], 2);
length_c += pow(fea_c[j], 2);
if(j<5)
printf("j=%d %f %f\n", length_a,length_b) ;
}
printf("\n");
double ratio_a = sqrt(length_a);
double ratio_b = sqrt(length_b);
double ratio_c = sqrt(length_c);
printf("%f %f %f\n",ratio_a,ratio_b, ratio_c );
for (int j = 0; j < fea_a.size(); j++)
{
fea_a1.push_back(fea_a[j]/ratio_a);
fea_b1.push_back(fea_b[j]/ratio_b);
if(j<5)
printf("j=%d %f %f\n", fea_a[j]/ratio_a, fea_b[j]/ratio_b) ;
}
printf("a-b: %f\n", euclideanSimilarity(fea_a1, fea_b1));
printf("a-c: %f\n", euclideanSimilarity(fea_a1, fea_c1));
return 0;
*/