fundamental_solver.cpp
11.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#ifdef HAVE_EIGEN
#include <Eigen/Eigen>
#endif
namespace cv { namespace usac {
// Fundamental Matrix Solver:
class FundamentalMinimalSolver7ptsImpl: public FundamentalMinimalSolver7pts {
private:
const Mat * points_mat;
const float * const points;
public:
explicit FundamentalMinimalSolver7ptsImpl (const Mat &points_) :
points_mat (&points_), points ((float *) points_.data) {}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int m = 7, n = 9; // rows, cols
std::vector<double> a(63); // m*n
auto * a_ = &a[0];
for (int i = 0; i < m; i++ ) {
const int smpl = 4*sample[i];
const auto x1 = points[smpl ], y1 = points[smpl+1],
x2 = points[smpl+2], y2 = points[smpl+3];
(*a_++) = x2*x1;
(*a_++) = x2*y1;
(*a_++) = x2;
(*a_++) = y2*x1;
(*a_++) = y2*y1;
(*a_++) = y2;
(*a_++) = x1;
(*a_++) = y1;
(*a_++) = 1;
}
if (!Math::eliminateUpperTriangular(a, m, n))
return 0;
/*
[a11 a12 a13 a14 a15 a16 a17 a18 a19]
[ 0 a22 a23 a24 a25 a26 a27 a28 a29]
[ 0 0 a33 a34 a35 a36 a37 a38 a39]
[ 0 0 0 a44 a45 a46 a47 a48 a49]
[ 0 0 0 0 a55 a56 a57 a58 a59]
[ 0 0 0 0 0 a66 a67 a68 a69]
[ 0 0 0 0 0 0 a77 a78 a79]
f9 = 1
*/
double f1[9], f2[9];
f1[8] = 1.;
f1[7] = 0.;
f1[6] = -a[6*n+8] / a[6*n+6];
f2[8] = 1.;
f2[7] = -a[6*n+8] / a[6*n+7];
f2[6] = 0.;
// start from the last row
for (int i = m-2; i >= 0; i--) {
const int row_i = i*n;
double acc1 = 0, acc2 = 0;
for (int j = i+1; j < n; j++) {
acc1 -= a[row_i + j] * f1[j];
acc2 -= a[row_i + j] * f2[j];
}
f1[i] = acc1 / a[row_i + i];
f2[i] = acc2 / a[row_i + i];
// due to numerical errors return 0 solutions
if (std::isnan(f1[i]) || std::isnan(f2[i]))
return 0;
}
// OpenCV:
double c[4] = { 0 }, r[3] = { 0 };
double t0 = 0, t1 = 0, t2 = 0;
Mat_<double> coeffs (1, 4, c);
Mat_<double> roots (1, 3, r);
for (int i = 0; i < 9; i++)
f1[i] -= f2[i];
t0 = f2[4]*f2[8] - f2[5]*f2[7];
t1 = f2[3]*f2[8] - f2[5]*f2[6];
t2 = f2[3]*f2[7] - f2[4]*f2[6];
c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2;
c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 -
f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) +
f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) -
f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) +
f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) -
f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) +
f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]);
t0 = f1[4]*f1[8] - f1[5]*f1[7];
t1 = f1[3]*f1[8] - f1[5]*f1[6];
t2 = f1[3]*f1[7] - f1[4]*f1[6];
c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 -
f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) +
f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) -
f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) +
f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) -
f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) +
f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]);
c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2;
// solve the cubic equation; there can be 1 to 3 roots ...
int nroots = solveCubic (coeffs, roots);
if (nroots < 1) return 0;
models = std::vector<Mat>(nroots);
for (int k = 0; k < nroots; k++) {
models[k] = Mat_<double>(3,3);
auto * F_ptr = (double *) models[k].data;
// for each root form the fundamental matrix
double lambda = r[k], mu = 1;
double s = f1[8]*lambda + f2[8];
// normalize each matrix, so that F(3,3) (~F[8]) == 1
if (fabs(s) > FLT_EPSILON) {
mu = 1/s;
lambda *= mu;
F_ptr[8] = 1;
} else
F_ptr[8] = 0;
for (int i = 0; i < 8; i++)
F_ptr[i] = f1[i] * lambda + f2[i] * mu;
}
return nroots;
}
int getMaxNumberOfSolutions () const override { return 3; }
int getSampleSize() const override { return 7; }
Ptr<MinimalSolver> clone () const override {
return makePtr<FundamentalMinimalSolver7ptsImpl>(*points_mat);
}
};
Ptr<FundamentalMinimalSolver7pts> FundamentalMinimalSolver7pts::create(const Mat &points_) {
return makePtr<FundamentalMinimalSolver7ptsImpl>(points_);
}
class FundamentalMinimalSolver8ptsImpl : public FundamentalMinimalSolver8pts {
private:
const Mat * points_mat;
const float * const points;
public:
explicit FundamentalMinimalSolver8ptsImpl (const Mat &points_) :
points_mat (&points_), points ((float*) points_.data)
{
CV_DbgAssert(points);
}
int estimate (const std::vector<int> &sample, std::vector<Mat> &models) const override {
const int m = 8, n = 9; // rows, cols
std::vector<double> a(72); // m*n
auto * a_ = &a[0];
for (int i = 0; i < m; i++ ) {
const int smpl = 4*sample[i];
const auto x1 = points[smpl ], y1 = points[smpl+1],
x2 = points[smpl+2], y2 = points[smpl+3];
(*a_++) = x2*x1;
(*a_++) = x2*y1;
(*a_++) = x2;
(*a_++) = y2*x1;
(*a_++) = y2*y1;
(*a_++) = y2;
(*a_++) = x1;
(*a_++) = y1;
(*a_++) = 1;
}
if (!Math::eliminateUpperTriangular(a, m, n))
return 0;
/*
[a11 a12 a13 a14 a15 a16 a17 a18 a19]
[ 0 a22 a23 a24 a25 a26 a27 a28 a29]
[ 0 0 a33 a34 a35 a36 a37 a38 a39]
[ 0 0 0 a44 a45 a46 a47 a48 a49]
[ 0 0 0 0 a55 a56 a57 a58 a59]
[ 0 0 0 0 0 a66 a67 a68 a69]
[ 0 0 0 0 0 0 a77 a78 a79]
[ 0 0 0 0 0 0 0 a88 a89]
f9 = 1
f8 = (-a89*f9) / a88
f7 = (-a79*f9 - a78*f8) / a77
f6 = (-a69*f9 - a68*f8 - a69*f9) / a66
...
*/
models = std::vector<Mat>{ Mat_<double>(3,3) };
auto * f = (double *) models[0].data;
f[8] = 1.;
// start from the last row
for (int i = m-1; i >= 0; i--) {
double acc = 0;
for (int j = i+1; j < n; j++)
acc -= a[i*n+j]*f[j];
f[i] = acc / a[i*n+i];
// due to numerical errors return 0 solutions
if (std::isnan(f[i]))
return 0;
}
return 1;
}
int getMaxNumberOfSolutions () const override { return 1; }
int getSampleSize() const override { return 8; }
Ptr<MinimalSolver> clone () const override {
return makePtr<FundamentalMinimalSolver8ptsImpl>(*points_mat);
}
};
Ptr<FundamentalMinimalSolver8pts> FundamentalMinimalSolver8pts::create(const Mat &points_) {
return makePtr<FundamentalMinimalSolver8ptsImpl>(points_);
}
class FundamentalNonMinimalSolverImpl : public FundamentalNonMinimalSolver {
private:
const Mat * points_mat;
const Ptr<NormTransform> normTr;
public:
explicit FundamentalNonMinimalSolverImpl (const Mat &points_) :
points_mat(&points_), normTr (NormTransform::create(points_)) {}
int estimate (const std::vector<int> &sample, int sample_size, std::vector<Mat>
&models, const std::vector<double> &weights) const override {
if (sample_size < getMinimumRequiredSampleSize())
return 0;
Matx33d T1, T2;
Mat norm_points;
normTr->getNormTransformation(norm_points, sample, sample_size, T1, T2);
const auto * const norm_pts = (float *) norm_points.data;
// ------- 8 points algorithm with Eigen and covariance matrix --------------
double a[9] = {0, 0, 0, 0, 0, 0, 0, 0, 1};
double AtA[81] = {0}; // 9x9
if (weights.empty()) {
for (int i = 0; i < sample_size; i++) {
const int norm_points_idx = 4*i;
const double x1 = norm_pts[norm_points_idx ], y1 = norm_pts[norm_points_idx+1],
x2 = norm_pts[norm_points_idx+2], y2 = norm_pts[norm_points_idx+3];
a[0] = x2*x1;
a[1] = x2*y1;
a[2] = x2;
a[3] = y2*x1;
a[4] = y2*y1;
a[5] = y2;
a[6] = x1;
a[7] = y1;
// calculate covariance for eigen
for (int row = 0; row < 9; row++)
for (int col = row; col < 9; col++)
AtA[row*9+col] += a[row]*a[col];
}
} else {
for (int i = 0; i < sample_size; i++) {
const int smpl = 4*i;
const double weight = weights[i];
const double x1 = norm_pts[smpl ], y1 = norm_pts[smpl+1],
x2 = norm_pts[smpl+2], y2 = norm_pts[smpl+3];
const double weight_times_x2 = weight * x2,
weight_times_y2 = weight * y2;
a[0] = weight_times_x2 * x1;
a[1] = weight_times_x2 * y1;
a[2] = weight_times_x2;
a[3] = weight_times_y2 * x1;
a[4] = weight_times_y2 * y1;
a[5] = weight_times_y2;
a[6] = weight * x1;
a[7] = weight * y1;
a[8] = weight;
// calculate covariance for eigen
for (int row = 0; row < 9; row++)
for (int col = row; col < 9; col++)
AtA[row*9+col] += a[row]*a[col];
}
}
// copy symmetric part of covariance matrix
for (int j = 1; j < 9; j++)
for (int z = 0; z < j; z++)
AtA[j*9+z] = AtA[z*9+j];
#ifdef HAVE_EIGEN
models = std::vector<Mat>{ Mat_<double>(3,3) };
const Eigen::JacobiSVD<Eigen::Matrix<double, 9, 9>> svd((Eigen::Matrix<double, 9, 9>(AtA)),
Eigen::ComputeFullV);
// extract the last nullspace
Eigen::Map<Eigen::Matrix<double, 9, 1>>((double *)models[0].data) = svd.matrixV().col(8);
#else
Matx<double, 9, 9> AtA_(AtA), U, Vt;
Vec<double, 9> W;
SVD::compute(AtA_, W, U, Vt, SVD::FULL_UV + SVD::MODIFY_A);
models = std::vector<Mat> { Mat_<double>(3, 3, Vt.val + 72 /*=8*9*/) };
#endif
FundamentalDegeneracy::recoverRank(models[0], true/*F*/);
// Transpose T2 (in T2 the lower diagonal is zero)
T2(2, 0) = T2(0, 2); T2(2, 1) = T2(1, 2);
T2(0, 2) = 0; T2(1, 2) = 0;
models[0] = T2 * models[0] * T1;
return 1;
}
int getMinimumRequiredSampleSize() const override { return 8; }
int getMaxNumberOfSolutions () const override { return 1; }
Ptr<NonMinimalSolver> clone () const override {
return makePtr<FundamentalNonMinimalSolverImpl>(*points_mat);
}
};
Ptr<FundamentalNonMinimalSolver> FundamentalNonMinimalSolver::create(const Mat &points_) {
return makePtr<FundamentalNonMinimalSolverImpl>(points_);
}
}}