sampler.cpp
23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
namespace cv { namespace usac {
/*
* Uniform Sampler:
* Choose uniformly m (sample size) points from N (points size).
* Uses Fisher-Yates shuffle.
*/
class UniformSamplerImpl : public UniformSampler {
private:
std::vector<int> points_random_pool;
int sample_size, points_size = 0;
RNG rng;
public:
UniformSamplerImpl (int state, int sample_size_, int points_size_)
: rng(state)
{
sample_size = sample_size_;
setPointsSize (points_size_);
}
void setNewPointsSize (int points_size_) override {
setPointsSize(points_size_);
}
void generateSample (std::vector<int> &sample) override {
int random_pool_size = points_size; // random points of entire range
for (int i = 0; i < sample_size; i++) {
// get random point index
const int array_random_index = rng.uniform(0, random_pool_size);
// get point by random index
// store sample
sample[i] = points_random_pool[array_random_index];
// swap random point with the end of random pool
std::swap(points_random_pool[array_random_index],
points_random_pool[--random_pool_size]);
}
}
Ptr<Sampler> clone (int state) const override {
return makePtr<UniformSamplerImpl>(state, sample_size, points_size);
}
private:
void setPointsSize (int points_size_) {
CV_Assert (sample_size <= points_size_);
if (points_size_ > points_size)
points_random_pool = std::vector<int>(points_size_);
if (points_size != points_size_) {
points_size = points_size_;
for (int i = 0; i < points_size; i++)
points_random_pool[i] = i;
}
}
};
Ptr<UniformSampler> UniformSampler::create(int state, int sample_size_, int points_size_) {
return makePtr<UniformSamplerImpl>(state, sample_size_, points_size_);
}
/////////////////////////////////// PROSAC (SIMPLE) SAMPLER ///////////////////////////////////////
/*
* PROSAC (simple) sampler does not use array of precalculated T_n (n is subset size) samples, but computes T_n for
* specific n directy in generateSample() function.
* Also, the stopping length (or maximum subset size n*) by default is set to points_size (N) and does not updating
* during computation.
*/
class ProsacSimpleSamplerImpl : public ProsacSimpleSampler {
protected:
int points_size, subset_size, t_n_prime, kth_sample_number,
max_prosac_samples_count, largest_sample_size, sample_size;
double t_n;
Ptr<UniformRandomGenerator> random_gen;
public:
ProsacSimpleSamplerImpl (int state, int points_size_, int sample_size_,
int max_prosac_samples_count_) : random_gen(UniformRandomGenerator::create(state)) {
CV_Assert(sample_size_ <= points_size_);
sample_size = sample_size_;
points_size = points_size_;
max_prosac_samples_count = max_prosac_samples_count_;
initialize ();
}
void generateSample (std::vector<int> &sample) override {
if (kth_sample_number > max_prosac_samples_count) {
// do uniform sampling, if prosac has not found solution
random_gen->generateUniqueRandomSet(sample, sample_size, points_size);
return;
}
kth_sample_number++; // t := t + 1
// Choice of the hypothesis generation set
if (kth_sample_number >= t_n_prime && subset_size < largest_sample_size) {
// do not use array of growth sample, calculate it directly
double t_n_plus1 = (subset_size + 1) * t_n / (subset_size + 1 - sample_size);
t_n_prime += static_cast<int>(ceil(t_n_plus1 - t_n));
t_n = t_n_plus1;
subset_size++;
}
// Semi-random sample Mt of size m
if (t_n_prime < kth_sample_number) {
random_gen->generateUniqueRandomSet(sample, sample_size, subset_size);
} else {
random_gen->generateUniqueRandomSet(sample, sample_size-1, subset_size-1);
sample[sample_size-1] = subset_size-1; // Make the last point from the nth position.
}
}
// Set the sample such that you are sampling the kth prosac sample (Eq. 6).
void setSampleNumber (int k) {
kth_sample_number = k;
// If the method should act exactly like RANSAC
if (kth_sample_number > max_prosac_samples_count)
return;
else { // Increment the size of the sampling pool while required
t_n = max_prosac_samples_count;
t_n_prime = 1; // reset growth function
subset_size = sample_size; // reset subset size as from the beginning
for (int i = 0; i < sample_size; i++)
t_n *= static_cast<double>(subset_size - i) / (points_size - i);
while (kth_sample_number > t_n_prime) { // t_n_prime == growth_function
double t_n_plus1 = static_cast<double>(subset_size + 1) * t_n / (subset_size + 1 - sample_size);
t_n_prime += static_cast<int>(ceil(t_n_plus1 - t_n));
t_n = t_n_plus1;
subset_size++;
}
if (subset_size > points_size)
subset_size = points_size;
}
}
void setNewPointsSize (int points_size_) override {
CV_Assert(sample_size <= points_size_);
points_size = points_size_;
initialize ();
}
Ptr<Sampler> clone (int state) const override {
return makePtr<ProsacSimpleSamplerImpl>(state, points_size, sample_size,
max_prosac_samples_count);
}
private:
void initialize () {
largest_sample_size = points_size; // termination length, n*
subset_size = sample_size; // n
t_n = max_prosac_samples_count;
t_n_prime = 1;
// From Equations leading up to Eq 3 in Chum et al.
// t_n samples containing only data points from U_n and
// t_n+1 samples containing only data points from U_n+1
for (int i = 0; i < sample_size; i++)
t_n *= static_cast<double>(subset_size - i) / (points_size - i);
kth_sample_number = 0;
}
};
Ptr<ProsacSimpleSampler> ProsacSimpleSampler::create(int state, int points_size_, int sample_size_,
int max_prosac_samples_count_) {
return makePtr<ProsacSimpleSamplerImpl>(state, points_size_, sample_size_,
max_prosac_samples_count_);
}
////////////////////////////////////// PROSAC SAMPLER ////////////////////////////////////////////
class ProsacSamplerImpl : public ProsacSampler {
protected:
std::vector<int> growth_function;
// subset_size = size of sampling range (subset of good sorted points)
// termination_length = n*, maximum sampling range (largest subset size)
int points_size, sample_size, subset_size, termination_length;
// it is T_N
// Imagine standard RANSAC drawing T_N samples of size m out of N data points
// In our experiments, the parameter was set to T_N = 200000
int growth_max_samples;
// how many time PROSAC generateSample() was called
int kth_sample_number;
Ptr<UniformRandomGenerator> random_gen;
public:
void setTerminationLength (int termination_length_) override {
termination_length = termination_length_;
}
// return constant reference to prosac termination criteria
int getKthSample () const override {
return kth_sample_number;
}
// return constant points of growth function to prosac termination criteria
const std::vector<int> & getGrowthFunction () const override {
return growth_function;
}
ProsacSamplerImpl (int state, int points_size_, int sample_size_,
int growth_max_samples_) : random_gen(UniformRandomGenerator::create(state)) {
CV_Assert(sample_size_ <= points_size_);
sample_size = sample_size_;
points_size = points_size_;
growth_max_samples = growth_max_samples_;
growth_function = std::vector<int>(points_size);
kth_sample_number = 0;
// The data points in U_N are sorted in descending order w.r.t. the quality function q.
// Let {Mi}i = 1...T_N denote the sequence of samples Mi c U_N that are uniformly drawn by Ransac.
// Let T_n be an average number of samples from {Mi}i=1...T_N that contain data points from U_n only.
// compute initial value for T_n
// n - i
// T_n = T_N * Product i = 0...m-1 -------, n >= sample size, N = points size
// N - i
double T_n = growth_max_samples;
for (int i = 0; i < sample_size; i++)
T_n *= static_cast<double> (sample_size-i) / (points_size-i);
int T_n_prime = 1;
// fill growth function with T'_n until sample_size
for (int n = 0; n < sample_size; n++)
growth_function[n] = T_n_prime;
// compute values using recurrent relation
// n + 1
// T(n+1) = --------- T(n), m is sample size.
// n + 1 - m
// growth function is defined as
// g(t) = min {n, T'_(n) >= t}
// T'_(n+1) = T'_(n) + (T_(n+1) - T_(n))
// T'_m = 1
for (int n = sample_size; n < points_size; n++) {
double Tn_plus1 = static_cast<double>(n + 1) * T_n / (n + 1 - sample_size);
growth_function[n] = T_n_prime + (int) ceil(Tn_plus1 - T_n); // T'_{n+1}
// update
T_n = Tn_plus1;
T_n_prime = growth_function[n]; // T'_{n+1}
}
// other initializations
termination_length = points_size; // n* = N, largest set sampled in PROSAC (termination length)
subset_size = sample_size; // n, size of the current sampling pool
kth_sample_number = 0; // t (iteration)
}
void generateSample (std::vector<int> &sample) override {
if (kth_sample_number > growth_max_samples) {
// if PROSAC has not converged to solution then do uniform sampling.
random_gen->generateUniqueRandomSet(sample, sample_size, points_size);
return;
}
kth_sample_number++; // t := t + 1
// Choice of the hypothesis generation set
// if (t = T'_n) & (n < n*) then n = n + 1 (eqn. 4)
if (kth_sample_number == growth_function[subset_size-1] && subset_size < termination_length)
subset_size++;
// Semi-random sample M_t of size m
// if T'n < t then
if (growth_function[subset_size-1] < kth_sample_number) {
// The sample contains m-1 points selected from U_(n-1) at random and u_n
random_gen->generateUniqueRandomSet(sample, sample_size-1, subset_size-1);
sample[sample_size-1] = subset_size-1;
} else {
// Select m points from U_n at random.
random_gen->generateUniqueRandomSet(sample, sample_size, subset_size);
}
}
// Set the sample such that you are sampling the kth prosac sample (Eq. 6).
void setSampleNumber (int k) {
kth_sample_number = k;
// If the method should act exactly like RANSAC
if (kth_sample_number > growth_max_samples)
return;
else { // Increment the size of the sampling pool while required
subset_size = sample_size; // reset subset size as from the beginning
while (kth_sample_number > growth_function[subset_size-1]) {
subset_size++;
if (subset_size >= points_size){
subset_size = points_size;
break;
}
}
if (termination_length < subset_size)
termination_length = subset_size;
}
}
void setNewPointsSize (int /*points_size_*/) override {
CV_Error(cv::Error::StsError, "Changing points size in PROSAC requires to change also "
"termination criteria! Use PROSAC simpler version");
}
Ptr<Sampler> clone (int state) const override {
return makePtr<ProsacSamplerImpl>(state, points_size, sample_size,
growth_max_samples);
}
};
Ptr<ProsacSampler> ProsacSampler::create(int state, int points_size_, int sample_size_,
int growth_max_samples_) {
return makePtr<ProsacSamplerImpl>(state, points_size_, sample_size_, growth_max_samples_);
}
////////////////////////////////////// P-NAPSAC SAMPLER ////////////////////////////////////////////
class ProgressiveNapsacImpl : public ProgressiveNapsac {
private:
int max_progressive_napsac_iterations, points_size;
// how many times generateSample() was called.
int kth_sample_number, grid_layers_number, sample_size, sampler_length;
const Ptr<UniformRandomGenerator> random_generator;
ProsacSamplerImpl one_point_prosac, prosac_sampler;
// The overlapping neighborhood layers
const std::vector<Ptr<NeighborhoodGraph>> * layers;
std::vector<int> growth_function;
std::vector<int> hits_per_point; // number of iterations, t
std::vector<int> subset_size_per_point; // k
std::vector<int> current_layer_per_point; // layer of grid neighborhood graph
public:
// points must be sorted
ProgressiveNapsacImpl (int state,int points_size_, int sample_size_,
const std::vector<Ptr<NeighborhoodGraph>> &layers_, int sampler_length_) :
// initialize one-point prosac sampler and global prosac sampler
random_generator (UniformRandomGenerator::create(state)),
one_point_prosac (random_generator->getRandomNumber(INT_MAX), points_size_,
1 /* sample_size*/,points_size_),
prosac_sampler (random_generator->getRandomNumber(INT_MAX), points_size_,
sample_size_, 200000), layers(&layers_) {
CV_Assert(sample_size_ <= points_size_);
sample_size = sample_size_;
points_size = points_size_;
sampler_length = sampler_length_;
grid_layers_number = static_cast<int>(layers_.size());
// Create growth function for P-NAPSAC
growth_function = std::vector<int>(points_size);
// 20 is sampler_length = The length of fully blending to global sampling
max_progressive_napsac_iterations = sampler_length * points_size;
const int local_sample_size = sample_size - 1; // not including initial point
double T_n = max_progressive_napsac_iterations;
for (int i = 0; i < local_sample_size; i++)
T_n *= static_cast<double> (local_sample_size - i) / (points_size - i);
// calculate growth function by recurrent relation (see PROSAC)
int T_n_prime = 1;
for (int n = 0; n < points_size; n++) {
if (n + 1 <= local_sample_size) {
growth_function[n] = T_n_prime;
continue;
}
double Tn_plus1 = (n+1) * T_n / (n + 1 - local_sample_size);
growth_function[n] = T_n_prime + static_cast<int>(ceil(Tn_plus1 - T_n));
T_n = Tn_plus1;
T_n_prime = growth_function[n];
}
subset_size_per_point = std::vector<int>(points_size, sample_size); // subset size
hits_per_point = std::vector<int>(points_size, 0); // 0 hits
current_layer_per_point = std::vector<int>(points_size, 0); // 0-th layer
kth_sample_number = 0; // iteration
}
void generateSample (std::vector<int> &sample) override {
// Do completely global sampling (PROSAC is used now), instead of Progressive NAPSAC,
// if the maximum iterations has been done without finding the sought model.
if (kth_sample_number > max_progressive_napsac_iterations) {
prosac_sampler.generateSample(sample);
return;
}
kth_sample_number++;
// get PROSAC one-point sample (initial point)
one_point_prosac.generateSample(sample);
const int initial_point = sample[0];
// get hits number and subset size (i.e., the size of the neighborhood sphere)
// of initial point (note, get by reference)
int &iters_of_init_pt = ++hits_per_point[initial_point]; // t := t + 1, increase iteration
int &subset_size_of_init_pt = subset_size_per_point[initial_point];
while (iters_of_init_pt > growth_function[subset_size_of_init_pt - 1] && subset_size_of_init_pt < points_size)
subset_size_of_init_pt++;
// Get layer of initial point (note, get by reference)
int ¤t_layer = current_layer_per_point[initial_point];
bool is_last_layer = false;
do {// Try to find the grid which contains enough points
// In the case when the grid with a single cell is used,
// apply PROSAC.
if (current_layer >= grid_layers_number) {
is_last_layer = true;
break;
}
// If there are not enough points in the cell, start using a
// less fine grid.
if ((int)layers->at(current_layer)->getNeighbors(initial_point).size() < subset_size_of_init_pt) {
++current_layer; // Jump to the next layer with bigger cells.
continue;
}
// If the procedure got to this point, there is no reason to choose a different layer of grids
// since the current one has enough points.
break;
} while (true);
// If not the last layer has been chosen, sample from the neighbors of the initially selected point.
if (!is_last_layer) {
// The indices of the points which are in the same cell as the
// initially selected one.
const std::vector<int> &neighbors = layers->at(current_layer)->getNeighbors(initial_point);
// Put the selected point to the end of the sample array to avoid
// being overwritten when sampling the remaining points.
sample[sample_size - 1] = initial_point;
// The next point should be the farthest one from the initial point. Note that the points in the grid cell are
// not ordered w.r.t. to their distances from the initial point. However, they are ordered as in PROSAC.
sample[sample_size - 2] = neighbors[subset_size_of_init_pt - 1];
// Select n - 2 points randomly
random_generator->generateUniqueRandomSet(sample, sample_size - 2, subset_size_of_init_pt - 1);
for (int i = 0; i < sample_size - 2; i++) {
sample[i] = neighbors[sample[i]]; // Replace the neighbor index by the index of the point
++hits_per_point[sample[i]]; // Increase the hit number of each selected point
}
++hits_per_point[sample[sample_size - 2]]; // Increase the hit number of each selected point
}
// If the last layer (i.e., the layer with a single cell) has been chosen, do global sampling
// by PROSAC sampler.
else {
// last layer, all points are neighbors
// If local sampling
prosac_sampler.setSampleNumber(kth_sample_number);
prosac_sampler.generateSample (sample);
sample[sample_size - 1] = initial_point;
}
}
void setNewPointsSize (int /*points_size_*/) override {
CV_Error(cv::Error::StsError, "Changing points size requires changing neighborhood graph! "
"You must reinitialize P-NAPSAC!");
}
Ptr<Sampler> clone (int state) const override {
return makePtr<ProgressiveNapsacImpl>(state, points_size, sample_size, *layers,
sampler_length);
}
};
Ptr<ProgressiveNapsac> ProgressiveNapsac::create(int state, int points_size_, int sample_size_,
const std::vector<Ptr<NeighborhoodGraph>> &layers, int sampler_length_) {
return makePtr<ProgressiveNapsacImpl>(state, points_size_, sample_size_,
layers, sampler_length_);
}
////////////////////// N adjacent points sample consensus (NAPSAC) SAMPLER ////////////////////////
class NapsacSamplerImpl : public NapsacSampler {
private:
const Ptr<NeighborhoodGraph> neighborhood_graph;
const Ptr<UniformRandomGenerator> random_generator;
bool do_uniform = false;
std::vector<int> points_large_neighborhood;
int points_large_neighborhood_size, points_size, sample_size;
public:
NapsacSamplerImpl (int state, int points_size_, int sample_size_,
const Ptr<NeighborhoodGraph> &neighborhood_graph_) :
neighborhood_graph (neighborhood_graph_),
random_generator(UniformRandomGenerator::create(state, points_size_, sample_size_)) {
CV_Assert(points_size_ >= sample_size_);
points_size = points_size_;
sample_size = sample_size_;
points_large_neighborhood = std::vector<int>(points_size);
points_large_neighborhood_size = 0;
// find indicies of points that have sufficient neighborhood (at least sample_size-1)
for (int pt_idx = 0; pt_idx < points_size; pt_idx++)
if ((int)neighborhood_graph->getNeighbors(pt_idx).size() >= sample_size-1)
points_large_neighborhood[points_large_neighborhood_size++] = pt_idx;
// if no points with sufficient neighborhood then do only uniform sampling
if (points_large_neighborhood_size == 0)
do_uniform = true;
// set random generator to generate random points of sample_size-1
random_generator->setSubsetSize(sample_size-1);
}
void generateSample (std::vector<int> &sample) override {
if (do_uniform)
// uniform sampling
random_generator->generateUniqueRandomSet(sample, points_size);
else {
// Take uniformly one initial point from points with sufficient neighborhood
int initial_point = points_large_neighborhood
[random_generator->getRandomNumber(points_large_neighborhood_size)];
const std::vector<int> &neighbors = neighborhood_graph->getNeighbors(initial_point);
// select random neighbors of initial point
random_generator->generateUniqueRandomSet(sample, (int)neighbors.size());
for (int i = 0; i < sample_size-1; i++)
sample[i] = neighbors[sample[i]];
// sample includes initial point too.
sample[sample_size-1] = initial_point;
}
}
void setNewPointsSize (int /*points_size_*/) override {
CV_Error(cv::Error::StsError, "Changing points size requires changing neighborhood graph!"
" You must reinitialize NAPSAC!");
}
Ptr<Sampler> clone (int state) const override {
return makePtr<NapsacSamplerImpl>(state, points_size, sample_size, neighborhood_graph);
}
};
Ptr<NapsacSampler> NapsacSampler::create(int state, int points_size_, int sample_size_,
const Ptr<NeighborhoodGraph> &neighborhood_graph_) {
return makePtr<NapsacSamplerImpl>(state, points_size_, sample_size_, neighborhood_graph_);
}
}}