fp_conversion.cu
4.12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "grid_stride_range.hpp"
#include "execution.hpp"
#include "vector_traits.hpp"
#include "../cuda4dnn/csl/stream.hpp"
#include "../cuda4dnn/csl/span.hpp"
using namespace cv::dnn::cuda4dnn::csl;
using namespace cv::dnn::cuda4dnn::csl::device;
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
namespace raw {
template <std::size_t N>
__global__ void fp32_to_fp16(Span<__half> output, View<float> input) {
using output_vector_type = get_vector_type_t<__half, N>;
using input_vector_type = get_vector_type_t<float, N>;
auto output_vPtr = output_vector_type::get_pointer(output.data());
auto input_vPtr = input_vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / output_vector_type::size())) {
input_vector_type in_vec;
v_load(in_vec, input_vPtr[i]);
output_vector_type out_vec;
for (int j = 0; j < output_vector_type::size(); j++)
out_vec.data[j] = __float2half(in_vec.data[j]);
v_store(output_vPtr[i], out_vec);
}
}
template <std::size_t N>
__global__ void fp16_to_fp32(Span<float> output, View<__half> input) {
using output_vector_type = get_vector_type_t<float, N>;
using input_vector_type = get_vector_type_t<__half, N>;
auto output_vPtr = output_vector_type::get_pointer(output.data());
auto input_vPtr = input_vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / output_vector_type::size())) {
input_vector_type in_vec;
v_load(in_vec, input_vPtr[i]);
output_vector_type out_vec;
for (int j = 0; j < output_vector_type::size(); j++)
out_vec.data[j] = __half2float(in_vec.data[j]);
v_store(output_vPtr[i], out_vec);
}
}
}
template <std::size_t N> static
void launch_vectorized_fp32_to_fp16(const Stream& stream, Span<__half> output, View<float> input) {
CV_Assert(is_fully_aligned<__half>(output, N));
CV_Assert(is_fully_aligned<float>(input, N));
auto kernel = raw::fp32_to_fp16<N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
void fp32_to_fp16(const Stream& stream, Span<__half> output, View<float> input) {
if (is_fully_aligned<__half>(output, 4) && is_fully_aligned<float>(input, 4)) {
launch_vectorized_fp32_to_fp16<4>(stream, output, input);
} else if (is_fully_aligned<__half>(output, 2) && is_fully_aligned<float>(input, 2)) {
launch_vectorized_fp32_to_fp16<2>(stream, output, input);
} else {
launch_vectorized_fp32_to_fp16<1>(stream, output, input);
}
}
template <std::size_t N> static
void launch_vectorized_fp16_to_fp32(const Stream& stream, Span<float> output, View<__half> input) {
CV_Assert(is_fully_aligned<float>(output, N));
CV_Assert(is_fully_aligned<__half>(input, N));
auto kernel = raw::fp16_to_fp32<N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
void fp16_to_fp32(const Stream& stream, Span<float> output, View<__half> input) {
if (is_fully_aligned<float>(output, 4) && is_fully_aligned<__half>(input, 4)) {
launch_vectorized_fp16_to_fp32<4>(stream, output, input);
} else if (is_fully_aligned<float>(output, 2) && is_fully_aligned<__half>(input, 2)) {
launch_vectorized_fp16_to_fp32<2>(stream, output, input);
} else {
launch_vectorized_fp16_to_fp32<1>(stream, output, input);
}
}
}}}} /* namespace cv::dnn::cuda4dnn::kernels */