gnnparsers.cpp
9.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#include "gnnparsers.hpp"
namespace cv
{
namespace gapi
{
namespace nn
{
class YoloParser
{
public:
YoloParser(const float* out, const int side, const int lcoords, const int lclasses)
: m_out(out), m_side(side), m_lcoords(lcoords), m_lclasses(lclasses)
{}
float scale(const int i, const int b)
{
int obj_index = index(i, b, m_lcoords);
return m_out[obj_index];
}
double x(const int i, const int b)
{
int box_index = index(i, b, 0);
int col = i % m_side;
return (col + m_out[box_index]) / m_side;
}
double y(const int i, const int b)
{
int box_index = index(i, b, 0);
int row = i / m_side;
return (row + m_out[box_index + m_side * m_side]) / m_side;
}
double width(const int i, const int b, const float anchor)
{
int box_index = index(i, b, 0);
return std::exp(m_out[box_index + 2 * m_side * m_side]) * anchor / m_side;
}
double height(const int i, const int b, const float anchor)
{
int box_index = index(i, b, 0);
return std::exp(m_out[box_index + 3 * m_side * m_side]) * anchor / m_side;
}
float classConf(const int i, const int b, const int label)
{
int class_index = index(i, b, m_lcoords + 1 + label);
return m_out[class_index];
}
cv::Rect toBox(const double x, const double y, const double h, const double w, const cv::Size& in_sz)
{
auto h_scale = in_sz.height;
auto w_scale = in_sz.width;
cv::Rect r;
r.x = static_cast<int>((x - w / 2) * w_scale);
r.y = static_cast<int>((y - h / 2) * h_scale);
r.width = static_cast<int>(w * w_scale);
r.height = static_cast<int>(h * h_scale);
return r;
}
private:
const float* m_out = nullptr;
int m_side = 0, m_lcoords = 0, m_lclasses = 0;
int index(const int i, const int b, const int entry)
{
return b * m_side * m_side * (m_lcoords + m_lclasses + 1) + entry * m_side * m_side + i;
}
};
struct YoloParams
{
int num = 5;
int coords = 4;
};
struct Detection
{
Detection(const cv::Rect& in_rect, const float in_conf, const int in_label)
: rect(in_rect), conf(in_conf), label(in_label)
{}
cv::Rect rect;
float conf = 0.0f;
int label = 0;
};
class SSDParser
{
public:
SSDParser(const cv::MatSize& in_ssd_dims, const cv::Size& in_size, const float* data)
: m_dims(in_ssd_dims), m_maxProp(in_ssd_dims[2]), m_objSize(in_ssd_dims[3]),
m_data(data), m_surface(cv::Rect({0,0}, in_size)), m_size(in_size)
{
GAPI_Assert(in_ssd_dims.dims() == 4u); // Fixed output layout
GAPI_Assert(m_objSize == 7); // Fixed SSD object size
}
void adjustBoundingBox(cv::Rect& boundingBox)
{
auto w = boundingBox.width;
auto h = boundingBox.height;
boundingBox.x -= static_cast<int>(0.067 * w);
boundingBox.y -= static_cast<int>(0.028 * h);
boundingBox.width += static_cast<int>(0.15 * w);
boundingBox.height += static_cast<int>(0.13 * h);
if (boundingBox.width < boundingBox.height)
{
auto dx = (boundingBox.height - boundingBox.width);
boundingBox.x -= dx / 2;
boundingBox.width += dx;
}
else
{
auto dy = (boundingBox.width - boundingBox.height);
boundingBox.y -= dy / 2;
boundingBox.height += dy;
}
}
std::tuple<cv::Rect, float, float, int> extract(const size_t step)
{
const float* it = m_data + step * m_objSize;
float image_id = it[0];
int label = static_cast<int>(it[1]);
float confidence = it[2];
float rc_left = it[3];
float rc_top = it[4];
float rc_right = it[5];
float rc_bottom = it[6];
cv::Rect rc; // Map relative coordinates to the original image scale
rc.x = static_cast<int>(rc_left * m_size.width);
rc.y = static_cast<int>(rc_top * m_size.height);
rc.width = static_cast<int>(rc_right * m_size.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * m_size.height) - rc.y;
return std::make_tuple(rc, image_id, confidence, label);
}
int getMaxProposals()
{
return m_maxProp;
}
cv::Rect getSurface()
{
return m_surface;
}
private:
const cv::MatSize m_dims;
int m_maxProp = 0, m_objSize = 0;
const float* m_data = nullptr;
const cv::Rect m_surface;
const cv::Size m_size;
};
} // namespace nn
} // namespace gapi
void ParseSSD(const cv::Mat& in_ssd_result,
const cv::Size& in_size,
const float confidence_threshold,
const int filter_label,
const bool alignment_to_square,
const bool filter_out_of_bounds,
std::vector<cv::Rect>& out_boxes,
std::vector<int>& out_labels)
{
cv::gapi::nn::SSDParser parser(in_ssd_result.size, in_size, in_ssd_result.ptr<float>());
out_boxes.clear();
out_labels.clear();
cv::Rect rc;
float image_id, confidence;
int label;
const size_t range = parser.getMaxProposals();
for (size_t i = 0; i < range; ++i)
{
std::tie(rc, image_id, confidence, label) = parser.extract(i);
if (image_id < 0.f)
{
break; // marks end-of-detections
}
if (confidence < confidence_threshold)
{
continue; // skip objects with low confidence
}
if((filter_label != -1) && (label != filter_label))
{
continue; // filter out object classes if filter is specified
}
if (alignment_to_square)
{
parser.adjustBoundingBox(rc);
}
const auto clipped_rc = rc & parser.getSurface();
if (filter_out_of_bounds)
{
if (clipped_rc.area() != rc.area())
{
continue;
}
}
out_boxes.emplace_back(clipped_rc);
out_labels.emplace_back(label);
}
}
static void checkYoloDims(const MatSize& dims) {
const auto d = dims.dims();
// Accept 1x13x13xN and 13x13xN
GAPI_Assert(d >= 2);
if (d >= 3) {
if (dims[d-2] == 13) {
GAPI_Assert(dims[d-1]%5 == 0);
GAPI_Assert(dims[d-2] == 13);
GAPI_Assert(dims[d-3] == 13);
for (int i = 0; i < d-3; i++) {
GAPI_Assert(dims[i] == 1);
}
return;
}
}
// Accept 1x1x1xN, 1x1xN, 1xN
GAPI_Assert(dims[d-1]%(5*13*13) == 0);
for (int i = 0; i < d-1; i++) {
GAPI_Assert(dims[i] == 1);
}
}
void parseYolo(const cv::Mat& in_yolo_result,
const cv::Size& in_size,
const float confidence_threshold,
const float nms_threshold,
const std::vector<float>& anchors,
std::vector<cv::Rect>& out_boxes,
std::vector<int>& out_labels)
{
const auto& dims = in_yolo_result.size;
checkYoloDims(dims);
int acc = 1;
for (int i = 0; i < dims.dims(); i++) {
acc *= dims[i];
}
const auto num_classes = acc/(5*13*13)-5;
GAPI_Assert(num_classes > 0);
GAPI_Assert(0 < nms_threshold && nms_threshold <= 1);
out_boxes.clear();
out_labels.clear();
gapi::nn::YoloParams params;
constexpr auto side = 13;
constexpr auto side_square = side * side;
const auto output = in_yolo_result.ptr<float>();
gapi::nn::YoloParser parser(output, side, params.coords, num_classes);
std::vector<gapi::nn::Detection> detections;
for (int i = 0; i < side_square; ++i)
{
for (int b = 0; b < params.num; ++b)
{
float scale = parser.scale(i, b);
if (scale < confidence_threshold)
{
continue;
}
double x = parser.x(i, b);
double y = parser.y(i, b);
double height = parser.height(i, b, anchors[2 * b + 1]);
double width = parser.width(i, b, anchors[2 * b]);
for (int label = 0; label < num_classes; ++label)
{
float prob = scale * parser.classConf(i,b,label);
if (prob < confidence_threshold)
{
continue;
}
auto box = parser.toBox(x, y, height, width, in_size);
detections.emplace_back(gapi::nn::Detection(box, prob, label));
}
}
}
std::stable_sort(std::begin(detections), std::end(detections),
[](const gapi::nn::Detection& a, const gapi::nn::Detection& b)
{
return a.conf > b.conf;
});
if (nms_threshold < 1.0f)
{
for (const auto& d : detections)
{
// Reject boxes which overlap with previously pushed ones
// (They are sorted by confidence, so rejected box
// always has a smaller confidence
if (std::end(out_boxes) ==
std::find_if(std::begin(out_boxes), std::end(out_boxes),
[&d, nms_threshold](const cv::Rect& r)
{
float rectOverlap = 1.f - static_cast<float>(jaccardDistance(r, d.rect));
return rectOverlap > nms_threshold;
}))
{
out_boxes. emplace_back(d.rect);
out_labels.emplace_back(d.label);
}
}
}
else
{
for (const auto& d: detections)
{
out_boxes. emplace_back(d.rect);
out_labels.emplace_back(d.label);
}
}
}
} // namespace cv