gexecutor.cpp
14.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#include "precomp.hpp"
#include <ade/util/zip_range.hpp>
#include <opencv2/gapi/opencv_includes.hpp>
#include "api/gproto_priv.hpp" // ptr(GRunArgP)
#include "executor/gexecutor.hpp"
#include "compiler/passes/passes.hpp"
cv::gimpl::GExecutor::GExecutor(std::unique_ptr<ade::Graph> &&g_model)
: m_orig_graph(std::move(g_model))
, m_island_graph(GModel::Graph(*m_orig_graph).metadata()
.get<IslandModel>().model)
, m_gm(*m_orig_graph)
, m_gim(*m_island_graph)
{
// NB: Right now GIslandModel is acyclic, so for a naive execution,
// simple unrolling to a list of triggers is enough
// Naive execution model is similar to current CPU (OpenCV) plugin
// execution model:
// 1. Allocate all internal resources first (NB - CPU plugin doesn't do it)
// 2. Put input/output GComputation arguments to the storage
// 3. For every Island, prepare vectors of input/output parameter descs
// 4. Iterate over a list of operations (sorted in the topological order)
// 5. For every operation, form a list of input/output data objects
// 6. Run GIslandExecutable
// 7. writeBack
auto sorted = m_gim.metadata().get<ade::passes::TopologicalSortData>();
for (auto nh : sorted.nodes())
{
switch (m_gim.metadata(nh).get<NodeKind>().k)
{
case NodeKind::ISLAND:
{
std::vector<RcDesc> input_rcs;
std::vector<RcDesc> output_rcs;
input_rcs.reserve(nh->inNodes().size());
output_rcs.reserve(nh->outNodes().size());
auto xtract = [&](ade::NodeHandle slot_nh, std::vector<RcDesc> &vec) {
const auto orig_data_nh
= m_gim.metadata(slot_nh).get<DataSlot>().original_data_node;
const auto &orig_data_info
= m_gm.metadata(orig_data_nh).get<Data>();
vec.emplace_back(RcDesc{ orig_data_info.rc
, orig_data_info.shape
, orig_data_info.ctor});
};
// (3)
for (auto in_slot_nh : nh->inNodes()) xtract(in_slot_nh, input_rcs);
for (auto out_slot_nh : nh->outNodes()) xtract(out_slot_nh, output_rcs);
m_ops.emplace_back(OpDesc{ std::move(input_rcs)
, std::move(output_rcs)
, m_gim.metadata(nh).get<IslandExec>().object
});
}
break;
case NodeKind::SLOT:
{
const auto orig_data_nh
= m_gim.metadata(nh).get<DataSlot>().original_data_node;
// (1)
initResource(nh, orig_data_nh);
m_slots.emplace_back(DataDesc{nh, orig_data_nh});
}
break;
default:
GAPI_Assert(false);
break;
} // switch(kind)
} // for(gim nodes)
}
namespace cv {
namespace gimpl {
namespace magazine {
namespace {
void bindInArgExec(Mag& mag, const RcDesc &rc, const GRunArg &arg)
{
if (rc.shape != GShape::GMAT)
{
bindInArg(mag, rc, arg);
return;
}
auto& mag_rmat = mag.template slot<cv::RMat>()[rc.id];
switch (arg.index())
{
case GRunArg::index_of<Mat>() :
mag_rmat = make_rmat<RMatAdapter>(util::get<Mat>(arg)); break;
case GRunArg::index_of<cv::RMat>() :
mag_rmat = util::get<cv::RMat>(arg); break;
default: util::throw_error(std::logic_error("content type of the runtime argument does not match to resource description ?"));
}
// FIXME: has to take extra care about meta here for this particuluar
// case, just because this function exists at all
mag.meta<cv::RMat>()[rc.id] = arg.meta;
}
void bindOutArgExec(Mag& mag, const RcDesc &rc, const GRunArgP &arg)
{
if (rc.shape != GShape::GMAT)
{
bindOutArg(mag, rc, arg);
return;
}
auto& mag_rmat = mag.template slot<cv::RMat>()[rc.id];
switch (arg.index())
{
case GRunArgP::index_of<Mat*>() :
mag_rmat = make_rmat<RMatAdapter>(*util::get<Mat*>(arg)); break;
case GRunArgP::index_of<cv::RMat*>() :
mag_rmat = *util::get<cv::RMat*>(arg); break;
default: util::throw_error(std::logic_error("content type of the runtime argument does not match to resource description ?"));
}
}
cv::GRunArgP getObjPtrExec(Mag& mag, const RcDesc &rc)
{
if (rc.shape != GShape::GMAT)
{
return getObjPtr(mag, rc);
}
return GRunArgP(&mag.slot<cv::RMat>()[rc.id]);
}
void writeBackExec(const Mag& mag, const RcDesc &rc, GRunArgP &g_arg)
{
if (rc.shape != GShape::GMAT)
{
writeBack(mag, rc, g_arg);
return;
}
switch (g_arg.index())
{
case GRunArgP::index_of<cv::Mat*>() : {
// If there is a copy intrinsic at the end of the graph
// we need to actualy copy the data to the user buffer
// since output runarg was optimized to simply point
// to the input of the copy kernel
// FIXME:
// Rework, find a better way to check if there should be
// a real copy (add a pass to StreamingBackend?)
// NB: In case RMat adapter not equal to "RMatAdapter" need to
// copy data back to the host as well.
// FIXME: Rename "RMatAdapter" to "OpenCVAdapter".
auto& out_mat = *util::get<cv::Mat*>(g_arg);
const auto& rmat = mag.template slot<cv::RMat>().at(rc.id);
auto* adapter = rmat.get<RMatAdapter>();
if ((adapter != nullptr && out_mat.data != adapter->data()) ||
(adapter == nullptr)) {
auto view = rmat.access(RMat::Access::R);
asMat(view).copyTo(out_mat);
}
break;
}
case GRunArgP::index_of<cv::RMat*>() : /* do nothing */ break;
default: util::throw_error(std::logic_error("content type of the runtime argument does not match to resource description ?"));
}
}
void assignMetaStubExec(Mag& mag, const RcDesc &rc, const cv::GRunArg::Meta &meta) {
switch (rc.shape)
{
case GShape::GARRAY: mag.meta<cv::detail::VectorRef>()[rc.id] = meta; break;
case GShape::GOPAQUE: mag.meta<cv::detail::OpaqueRef>()[rc.id] = meta; break;
case GShape::GSCALAR: mag.meta<cv::Scalar>()[rc.id] = meta; break;
case GShape::GFRAME: mag.meta<cv::MediaFrame>()[rc.id] = meta; break;
case GShape::GMAT:
mag.meta<cv::Mat>() [rc.id] = meta;
mag.meta<cv::RMat>()[rc.id] = meta;
#if !defined(GAPI_STANDALONE)
mag.meta<cv::UMat>()[rc.id] = meta;
#endif
break;
default: util::throw_error(std::logic_error("Unsupported GShape type")); break;
}
}
} // anonymous namespace
}}} // namespace cv::gimpl::magazine
void cv::gimpl::GExecutor::initResource(const ade::NodeHandle & nh, const ade::NodeHandle &orig_nh)
{
const Data &d = m_gm.metadata(orig_nh).get<Data>();
if ( d.storage != Data::Storage::INTERNAL
&& d.storage != Data::Storage::CONST_VAL)
return;
// INTERNALS+CONST only! no need to allocate/reset output objects
// to as it is bound externally (e.g. already in the m_res)
switch (d.shape)
{
case GShape::GMAT:
{
// Let island allocate it's outputs if it can,
// allocate cv::Mat and wrap it with RMat otherwise
GAPI_Assert(!nh->inNodes().empty());
const auto desc = util::get<cv::GMatDesc>(d.meta);
auto& exec = m_gim.metadata(nh->inNodes().front()).get<IslandExec>().object;
auto& rmat = m_res.slot<cv::RMat>()[d.rc];
if (exec->allocatesOutputs()) {
rmat = exec->allocate(desc);
} else {
Mat mat;
createMat(desc, mat);
rmat = make_rmat<RMatAdapter>(mat);
}
}
break;
case GShape::GSCALAR:
if (d.storage == Data::Storage::CONST_VAL)
{
auto rc = RcDesc{d.rc, d.shape, d.ctor};
magazine::bindInArg(m_res, rc, m_gm.metadata(orig_nh).get<ConstValue>().arg);
}
break;
case GShape::GARRAY:
if (d.storage == Data::Storage::CONST_VAL)
{
auto rc = RcDesc{d.rc, d.shape, d.ctor};
magazine::bindInArg(m_res, rc, m_gm.metadata(orig_nh).get<ConstValue>().arg);
}
break;
case GShape::GOPAQUE:
// Constructed on Reset, do nothing here
break;
case GShape::GFRAME: {
// Should be defined by backend, do nothing here
break;
}
default:
GAPI_Assert(false);
}
}
class cv::gimpl::GExecutor::Input final: public cv::gimpl::GIslandExecutable::IInput
{
cv::gimpl::Mag &mag;
virtual StreamMsg get() override
{
cv::GRunArgs res;
for (const auto &rc : desc()) { res.emplace_back(magazine::getArg(mag, rc)); }
return StreamMsg{std::move(res)};
}
virtual StreamMsg try_get() override { return get(); }
public:
Input(cv::gimpl::Mag &m, const std::vector<RcDesc> &rcs) : mag(m) { set(rcs); }
};
class cv::gimpl::GExecutor::Output final: public cv::gimpl::GIslandExecutable::IOutput
{
cv::gimpl::Mag &mag;
std::unordered_map<const void*, int> out_idx;
GRunArgP get(int idx) override
{
auto r = magazine::getObjPtrExec(mag, desc()[idx]);
// Remember the output port for this output object
out_idx[cv::gimpl::proto::ptr(r)] = idx;
return r;
}
void post(GRunArgP&&) override { } // Do nothing here
void post(EndOfStream&&) override {} // Do nothing here too
void meta(const GRunArgP &out, const GRunArg::Meta &m) override
{
const auto idx = out_idx.at(cv::gimpl::proto::ptr(out));
magazine::assignMetaStubExec(mag, desc()[idx], m);
}
public:
Output(cv::gimpl::Mag &m, const std::vector<RcDesc> &rcs)
: mag(m)
{
set(rcs);
}
};
void cv::gimpl::GExecutor::run(cv::gimpl::GRuntimeArgs &&args)
{
// (2)
const auto proto = m_gm.metadata().get<Protocol>();
// Basic check if input/output arguments are correct
// FIXME: Move to GCompiled (do once for all GExecutors)
if (proto.inputs.size() != args.inObjs.size()) // TODO: Also check types
{
util::throw_error(std::logic_error
("Computation's input protocol doesn\'t "
"match actual arguments!"));
}
if (proto.outputs.size() != args.outObjs.size()) // TODO: Also check types
{
util::throw_error(std::logic_error
("Computation's output protocol doesn\'t "
"match actual arguments!"));
}
namespace util = ade::util;
// ensure that output Mat parameters are correctly allocated
// FIXME: avoid copy of NodeHandle and GRunRsltComp ?
for (auto index : util::iota(proto.out_nhs.size()))
{
auto& nh = proto.out_nhs.at(index);
const Data &d = m_gm.metadata(nh).get<Data>();
if (d.shape == GShape::GMAT)
{
using cv::util::get;
const auto desc = get<cv::GMatDesc>(d.meta);
auto check_rmat = [&desc, &args, &index]()
{
auto& out_mat = *get<cv::RMat*>(args.outObjs.at(index));
GAPI_Assert(desc.canDescribe(out_mat));
};
#if !defined(GAPI_STANDALONE)
// Building as part of OpenCV - follow OpenCV behavior In
// the case of cv::Mat if output buffer is not enough to
// hold the result, reallocate it
if (cv::util::holds_alternative<cv::Mat*>(args.outObjs.at(index)))
{
auto& out_mat = *get<cv::Mat*>(args.outObjs.at(index));
createMat(desc, out_mat);
}
// In the case of RMat check to fit required meta
else
{
check_rmat();
}
#else
// Building standalone - output buffer should always exist,
// and _exact_ match our inferred metadata
if (cv::util::holds_alternative<cv::Mat*>(args.outObjs.at(index)))
{
auto& out_mat = *get<cv::Mat*>(args.outObjs.at(index));
GAPI_Assert(out_mat.data != nullptr &&
desc.canDescribe(out_mat));
}
// In the case of RMat check to fit required meta
else
{
check_rmat();
}
#endif // !defined(GAPI_STANDALONE)
}
}
// Update storage with user-passed objects
for (auto it : ade::util::zip(ade::util::toRange(proto.inputs),
ade::util::toRange(args.inObjs)))
{
magazine::bindInArgExec(m_res, std::get<0>(it), std::get<1>(it));
}
for (auto it : ade::util::zip(ade::util::toRange(proto.outputs),
ade::util::toRange(args.outObjs)))
{
magazine::bindOutArgExec(m_res, std::get<0>(it), std::get<1>(it));
}
// Reset internal data
for (auto &sd : m_slots)
{
const auto& data = m_gm.metadata(sd.data_nh).get<Data>();
magazine::resetInternalData(m_res, data);
}
// Run the script
for (auto &op : m_ops)
{
// (5), (6)
Input i{m_res, op.in_objects};
Output o{m_res, op.out_objects};
op.isl_exec->run(i, o);
}
// (7)
for (auto it : ade::util::zip(ade::util::toRange(proto.outputs),
ade::util::toRange(args.outObjs)))
{
magazine::writeBackExec(m_res, std::get<0>(it), std::get<1>(it));
}
}
const cv::gimpl::GModel::Graph& cv::gimpl::GExecutor::model() const
{
return m_gm;
}
bool cv::gimpl::GExecutor::canReshape() const
{
// FIXME: Introduce proper reshaping support on GExecutor level
// for all cases!
return std::all_of(m_ops.begin(), m_ops.end(),
[](const OpDesc& op) { return op.isl_exec->canReshape(); });
}
void cv::gimpl::GExecutor::reshape(const GMetaArgs& inMetas, const GCompileArgs& args)
{
GAPI_Assert(canReshape());
auto& g = *m_orig_graph.get();
ade::passes::PassContext ctx{g};
passes::initMeta(ctx, inMetas);
passes::inferMeta(ctx, true);
// NB: Before reshape islands need to re-init resources for every slot.
for (auto slot : m_slots)
{
initResource(slot.slot_nh, slot.data_nh);
}
for (auto& op : m_ops)
{
op.isl_exec->reshape(g, args);
}
}
void cv::gimpl::GExecutor::prepareForNewStream()
{
for (auto &op : m_ops)
{
op.isl_exec->handleNewStream();
}
}