tracking.detail.hpp
12.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_HPP
#define OPENCV_VIDEO_DETAIL_TRACKING_HPP
/*
* Partially based on:
* ====================================================================================================================
* - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
* - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
*
* This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
*
*/
#include "opencv2/core.hpp"
namespace cv {
namespace detail {
inline namespace tracking {
/** @addtogroup tracking_detail
@{
*/
/************************************ TrackerFeature Base Classes ************************************/
/** @brief Abstract base class for TrackerFeature that represents the feature.
*/
class CV_EXPORTS TrackerFeature
{
public:
virtual ~TrackerFeature();
/** @brief Compute the features in the images collection
@param images The images
@param response The output response
*/
void compute(const std::vector<Mat>& images, Mat& response);
protected:
virtual bool computeImpl(const std::vector<Mat>& images, Mat& response) = 0;
};
/** @brief Class that manages the extraction and selection of features
@cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
section 3.1 - 3.2)
TrackerFeatureSet is an aggregation of TrackerFeature
@sa
TrackerFeature
*/
class CV_EXPORTS TrackerFeatureSet
{
public:
TrackerFeatureSet();
~TrackerFeatureSet();
/** @brief Extract features from the images collection
@param images The input images
*/
void extraction(const std::vector<Mat>& images);
/** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
@param feature The TrackerFeature class
*/
bool addTrackerFeature(const Ptr<TrackerFeature>& feature);
/** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
*/
const std::vector<Ptr<TrackerFeature>>& getTrackerFeatures() const;
/** @brief Get the responses
@note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses
*/
const std::vector<Mat>& getResponses() const;
private:
void clearResponses();
bool blockAddTrackerFeature;
std::vector<Ptr<TrackerFeature>> features; // list of features
std::vector<Mat> responses; // list of response after compute
};
/************************************ TrackerSampler Base Classes ************************************/
/** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
sampler.
*/
class CV_EXPORTS TrackerSamplerAlgorithm
{
public:
virtual ~TrackerSamplerAlgorithm();
/** @brief Computes the regions starting from a position in an image.
Return true if samples are computed, false otherwise
@param image The current frame
@param boundingBox The bounding box from which regions can be calculated
@param sample The computed samples @cite AAM Fig. 1 variable Sk
*/
virtual bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) = 0;
};
/**
* \brief Class that manages the sampler in order to select regions for the update the model of the tracker
* [AAM] Sampling e Labeling. See table I and section III B
*/
/** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
@cite AAM Sampling e Labeling. See table I and section III B
TrackerSampler is an aggregation of TrackerSamplerAlgorithm
@sa
TrackerSamplerAlgorithm
*/
class CV_EXPORTS TrackerSampler
{
public:
TrackerSampler();
~TrackerSampler();
/** @brief Computes the regions starting from a position in an image
@param image The current frame
@param boundingBox The bounding box from which regions can be calculated
*/
void sampling(const Mat& image, Rect boundingBox);
/** @brief Return the collection of the TrackerSamplerAlgorithm
*/
const std::vector<Ptr<TrackerSamplerAlgorithm>>& getSamplers() const;
/** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
*/
const std::vector<Mat>& getSamples() const;
/** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
@param sampler The TrackerSamplerAlgorithm
*/
bool addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler);
private:
std::vector<Ptr<TrackerSamplerAlgorithm>> samplers;
std::vector<Mat> samples;
bool blockAddTrackerSampler;
void clearSamples();
};
/************************************ TrackerModel Base Classes ************************************/
/** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
Inherits this class with your Target state, In own implementation you can add scale variation,
width, height, orientation, etc.
*/
class CV_EXPORTS TrackerTargetState
{
public:
virtual ~TrackerTargetState() {};
/** @brief Get the position
* @return The position
*/
Point2f getTargetPosition() const;
/** @brief Set the position
* @param position The position
*/
void setTargetPosition(const Point2f& position);
/** @brief Get the width of the target
* @return The width of the target
*/
int getTargetWidth() const;
/** @brief Set the width of the target
* @param width The width of the target
*/
void setTargetWidth(int width);
/** @brief Get the height of the target
* @return The height of the target
*/
int getTargetHeight() const;
/** @brief Set the height of the target
* @param height The height of the target
*/
void setTargetHeight(int height);
protected:
Point2f targetPosition;
int targetWidth;
int targetHeight;
};
/** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
@sa TrackerTargetState
*/
typedef std::vector<std::pair<Ptr<TrackerTargetState>, float>> ConfidenceMap;
/** @brief Represents the estimate states for all frames
@cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
@sa TrackerTargetState
*/
typedef std::vector<Ptr<TrackerTargetState>> Trajectory;
/** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
See @cite AAM State estimator
See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
*/
class CV_EXPORTS TrackerStateEstimator
{
public:
virtual ~TrackerStateEstimator();
/** @brief Estimate the most likely target state, return the estimated state
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
*/
Ptr<TrackerTargetState> estimate(const std::vector<ConfidenceMap>& confidenceMaps);
/** @brief Update the ConfidenceMap with the scores
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
*/
void update(std::vector<ConfidenceMap>& confidenceMaps);
/** @brief Create TrackerStateEstimator by tracker state estimator type
@param trackeStateEstimatorType The TrackerStateEstimator name
The modes available now:
- "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
The modes available soon:
- "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
*/
static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType);
/** @brief Get the name of the specific TrackerStateEstimator
*/
String getClassName() const;
protected:
virtual Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) = 0;
virtual void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) = 0;
String className;
};
/** @brief Abstract class that represents the model of the target.
It must be instantiated by specialized tracker
See @cite AAM Ak
Inherits this with your TrackerModel
*/
class CV_EXPORTS TrackerModel
{
public:
TrackerModel();
virtual ~TrackerModel();
/** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
@param trackerStateEstimator The TrackerStateEstimator
@note You can add only one TrackerStateEstimator
*/
bool setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator);
/** @brief Estimate the most likely target location
@cite AAM ME, Model Estimation table I
@param responses Features extracted from TrackerFeatureSet
*/
void modelEstimation(const std::vector<Mat>& responses);
/** @brief Update the model
@cite AAM MU, Model Update table I
*/
void modelUpdate();
/** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
*/
bool runStateEstimator();
/** @brief Set the current TrackerTargetState in the Trajectory
@param lastTargetState The current TrackerTargetState
*/
void setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState);
/** @brief Get the last TrackerTargetState from Trajectory
*/
Ptr<TrackerTargetState> getLastTargetState() const;
/** @brief Get the list of the ConfidenceMap
*/
const std::vector<ConfidenceMap>& getConfidenceMaps() const;
/** @brief Get the last ConfidenceMap for the current frame
*/
const ConfidenceMap& getLastConfidenceMap() const;
/** @brief Get the TrackerStateEstimator
*/
Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
private:
void clearCurrentConfidenceMap();
protected:
std::vector<ConfidenceMap> confidenceMaps;
Ptr<TrackerStateEstimator> stateEstimator;
ConfidenceMap currentConfidenceMap;
Trajectory trajectory;
int maxCMLength;
virtual void modelEstimationImpl(const std::vector<Mat>& responses) = 0;
virtual void modelUpdateImpl() = 0;
};
/************************************ Specific TrackerStateEstimator Classes ************************************/
// None
/************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
/** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
*/
class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
{
public:
~TrackerSamplerCSC();
enum MODE
{
MODE_INIT_POS = 1, //!< mode for init positive samples
MODE_INIT_NEG = 2, //!< mode for init negative samples
MODE_TRACK_POS = 3, //!< mode for update positive samples
MODE_TRACK_NEG = 4, //!< mode for update negative samples
MODE_DETECT = 5 //!< mode for detect samples
};
struct CV_EXPORTS Params
{
Params();
float initInRad; //!< radius for gathering positive instances during init
float trackInPosRad; //!< radius for gathering positive instances during tracking
float searchWinSize; //!< size of search window
int initMaxNegNum; //!< # negative samples to use during init
int trackMaxPosNum; //!< # positive samples to use during training
int trackMaxNegNum; //!< # negative samples to use during training
};
/** @brief Constructor
@param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
*/
TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters = TrackerSamplerCSC::Params());
/** @brief Set the sampling mode of TrackerSamplerCSC
@param samplingMode The sampling mode
The modes are:
- "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
- "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
- "MODE_TRACK_POS = 3" -- for the positive sampling in update step
- "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
- "MODE_DETECT = 5" -- for the sampling in detection step
*/
void setMode(int samplingMode);
bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) CV_OVERRIDE;
private:
Params params;
int mode;
RNG rng;
std::vector<Mat> sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000);
};
//! @}
}}} // namespace cv::detail::tracking
#endif // OPENCV_VIDEO_DETAIL_TRACKING_HPP